図 5.1-12 (10) 断面①の過剰間隙水圧比分布 (S<sub>s</sub>-22)

図 5.1-12 (11) 断面①の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H+, V+))

図 5.1-12(12) 断面①の過剰間隙水圧比分布(S<sub>s</sub>-31(H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-12 (13) 断面①の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-12(14) 断面①の過剰間隙水圧比分布(S<sub>s</sub>-31(H-, V+))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-12(15) 断面①の過剰間隙水圧比分布(S<sub>s</sub>-31(H-, V+))

b. 断面②

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-13(1) 断面②の過剰間隙水圧比分布(S<sub>s</sub>-D1(H+,V+))

図 5.1-13 (2) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V-))

図 5.1-13(4) 断面②の過剰間隙水圧比分布(S<sub>s</sub>-D1(H-, V-))



図 5.1-13 (6) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-12)

図 5.1-13(7) 断面②の過剰間隙水圧比分布(S<sub>s</sub>-13)

図 5.1-13 (8) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-14)

図 5.1-13 (9) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-21)

図 5.1-13 (10) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-22)

図 5.1-13 (11) 断面②の過剰間隙水圧比分布(S<sub>s</sub>-31 (H+, V+))

図 5.1-13 (12) 断面②の過剰間隙水圧比分布(S<sub>s</sub>-31 (H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-13 (13) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-13 (14) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-13 (15) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-13 (16) 断面②の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H+, V+))

c. 断面③

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-14 (1) 断面③の過剰間隙水圧比分布 (Ss-D1 (H+, V+))

図 5.1-14 (2) 断面③の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V-))

図 5.1-14 (3) 断面③の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H-, V+))







図 5.1-14(7) 断面③の過剰間隙水圧比分布(S<sub>s</sub>-13)



図 5.1-14 (9) 断面③の過剰間隙水圧比分布 (S<sub>s</sub>-21)



図 5.1-14 (11) 断面③の過剰間隙水圧比分布(S<sub>s</sub>-31 (H+, V+))



図 5.1-14 (13) 断面③の過剰間隙水圧比分布 (S s - D 1 (H+, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-14 (14) 断面③の過剰間隙水圧比分布 (S s - D 1 (H+, V+))

検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-14 (15) 断面③の過剰間隙水圧比分布 (Ss-D1 (H+, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース

図 5.1-14 (16) 断面③の過剰間隙水圧比分布 (Ss-D1 (H+, V-))

d. 断面④

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-15(1) 断面④の過剰間隙水圧比分布(Ss-D1(H+,V+))

図 5.1-15(2) 断面④の過剰間隙水圧比分布(Ss-D1(H+, V-))

図 5.1-15 (3) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H-, V+))

図 5.1-15 (4) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H-, V-))

図 5.1-15 (5) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-11)

図 5.1-15(6) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-12)

図 5.1-15(7) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-13)

図 5.1-15(8) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-14)

図 5.1-15(9) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-21)

図 5.1-15 (10) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-22)

図 5.1-15 (11) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-31 (H+, V+))

図 5.1-15(12) 断面④の過剰間隙水圧比分布(S<sub>s</sub>-31(H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-15 (13) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-15 (14) 断面④の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-15 (15) 断面④の過剰間隙水圧比分布 (S s - D 1 (H+, V+))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-15 (16) 断面④の過剰間隙水圧比分布 (Ss-D1 (H+, V-))

e. 断面⑤

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-16 (1) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-D1 (H+, V+))

図 5.1-16(2) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-D1(H+, V-))

図 5.1-16(3) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-D1(H-, V+))

| 図 5.1-16 (4) | 断面⑤の過剰間隙水圧比分布 | $(S_{s} - D1)$ | (H-, V-) | ) |
|--------------|---------------|----------------|----------|---|
|--------------|---------------|----------------|----------|---|

図 5.1-16(5) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-11)



図 5.1-16(7) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-13)

図 5.1-16(8) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-14)

図 5.1-16(9) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-21)

図 5.1-16 (10) 断面⑤の過剰間隙水圧比分布 (S<sub>s</sub>-22)

図 5.1-16 (11) 断面⑤の過剰間隙水圧比分布 (S<sub>s</sub>-31 (H+, V+))



・検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-16 (13) 断面⑤の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V-))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-16 (14) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-D1 (H+, V-))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-16(15) 断面⑤の過剰間隙水圧比分布(S<sub>s</sub>-D1(H+, V-))

・検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-16 (16) 断面⑤の過剰間隙水圧比分布 (S<sub>s</sub>-D1 (H+, V+))

- (4) 最大加速度分布図
  - a. 断面①

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-17(1) 断面①の最大加速度分布(S<sub>s</sub>-D1(H+, V+))



図 5.1-17 (3) 断面①の最大加速度分布 (S<sub>s</sub>-D1 (H-, V+))

図 5.1-17(4) 断面①の最大加速度分布(S<sub>s</sub>-D1(H-, V-))

6.4.1.1-332

図 5.1-17(6) 断面①の最大加速度分布(S<sub>s</sub>-12)

## 図 5.1-17(7) 断面①の最大加速度分布(S<sub>s</sub>-13)

図 5.1-17 (8) 断面①の最大加速度分布 (S<sub>s</sub>-14)

図 5.1-17(9) 断面①の最大加速度分布(S<sub>s</sub>-21)

図 5.1-17 (10) 断面①の最大加速度分布 (S<sub>s</sub>-22)

図 5.1-17 (11) 断面①の最大加速度分布(S<sub>s</sub>-31 (H+, V+))

図 5.1-17 (12) 断面①の最大加速度分布(S<sub>s</sub>-31 (H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース

図 5.1-17 (13) 断面①の最大加速度分布(S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-17 (14) 断面①の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-17 (15) 断面①の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))
・検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース

図 5.1-17 (16) 断面①の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 g)して非液状化の条件を仮定した 解析ケース

図 5.1-17 (17) 断面①の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した 解析ケース

図 5.1-17 (18) 断面①の最大加速度分布 (S<sub>s</sub>-31 (H+, V+))

| b. | 断面② |
|----|-----|
|----|-----|

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-18(1) 断面②の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

図 5.1-18(2) 断面②の最大加速度分布(S<sub>s</sub>-D1(H+, V-))

図 5.1-18 (3) 断面②の最大加速度分布 (S<sub>s</sub>-D1 (H-, V+))

図 5.1-18(4) 断面②の最大加速度分布(S<sub>s</sub>-D1(H-, V-))

図 5.1-18(5) 断面②の最大加速度分布(S<sub>s</sub>-11)

図 5.1-18(6) 断面②の最大加速度分布(S<sub>s</sub>-12)

図 5.1-18(7) 断面②の最大加速度分布(S<sub>s</sub>-13)

図 5.1-18(8) 断面②の最大加速度分布(S<sub>s</sub>-14)

図 5.1-18(9) 断面②の最大加速度分布(S<sub>s</sub>-21)

図 5.1-18 (10) 断面②の最大加速度分布 (S<sub>s</sub>-22)

図 5.1-18 (12) 断面②の最大加速度分布(S<sub>s</sub>-31 (H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース

図 5.1-18 (13) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-18 (14) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-18 (15) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース

図 5.1-18 (16) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 g)して非液状化の条件を仮定した 解析ケース

図 5.1-18 (17) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H-, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-18 (18) 断面②の最大加速度分布 (S<sub>s</sub>-31 (H+, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 g)して非液状化の条件を仮定した 解析ケース

図 5.1-18 (19) 断面②の最大加速度分布(S<sub>s</sub>-31 (H+, V+))

c. 断面③

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-19(1) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

図 5.1-19(2) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V-))

図 5.1-19(3) 断面③の最大加速度分布(S<sub>s</sub>-D1(H-, V+))

図 5.1-19(4) 断面③の最大加速度分布(S<sub>s</sub>-D1(H-, V-))

図 5.1-19(5) 断面③の最大加速度分布(S<sub>s</sub>-11)

図 5.1-19(6) 断面③の最大加速度分布(S<sub>s</sub>-12)

図 5.1-19(7) 断面③の最大加速度分布(S<sub>s</sub>-13)

図 5.1-19(8) 断面③の最大加速度分布(S<sub>s</sub>-14)

図 5.1-19(9) 断面③の最大加速度分布(S<sub>s</sub>-21)

図 5.1-19(10) 断面③の最大加速度分布(S<sub>s</sub>-22)

図 5.1-19(11) 断面③の最大加速度分布(S<sub>s</sub>-31(H+,V+))

図 5.1-19(12) 断面③の最大加速度分布(S<sub>s</sub>-31(H-, V+))

・検討ケース②: 地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-19(13) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

図 5.1-19 (14) 断面③の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-19(15) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

・検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース

図 5.1-19(16) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した 解析ケース

図 5.1-19 (17) 断面③の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

図 5.1-19(18) 断面③の最大加速度分布(S<sub>s</sub>-D1(H+, V-))

| d. 断面④ |
|--------|
|--------|

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-20(1) 断面④の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

図 5.1-20(2) 断面④の最大加速度分布(S<sub>s</sub>-D1(H+, V-))

図 5.1-20 (3) 断面④の最大加速度分布 (S<sub>s</sub>-D1 (H-, V+))

図 5.1-20(4) 断面④の最大加速度分布(S<sub>s</sub>-D1(H-, V-))

図 5.1-20(5) 断面④の最大加速度分布(S<sub>s</sub>-11)

図 5.1-20(6) 断面④の最大加速度分布(S<sub>s</sub>-12)

図 5.1-20(7) 断面④の最大加速度分布(S<sub>s</sub>-13)

図 5.1-20 (8) 断面④の最大加速度分布 (S<sub>s</sub>-14)

図 5.1-20 (9) 断面④の最大加速度分布 (S<sub>s</sub>-21)

図 5.1-20 (10) 断面④の最大加速度分布 (S<sub>s</sub>-22)

図 5.1-20(11) 断面④の最大加速度分布(S<sub>s</sub>-31(H+, V+))

図 5.1-20(12) 断面④の最大加速度分布(S<sub>s</sub>-31(H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース

図 5.1-20 (13) 断面④の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース③:地盤物性のばらつきを考慮(-1 g)した解析ケース

図 5.1-20 (14) 断面④の最大加速度分布(S<sub>s</sub>-D1 (H+, V+))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-20 (15) 断面④の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース

図 5.1-20(16) 断面④の最大加速度分布(S<sub>s</sub>-D1(H+, V+))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した 解析ケース

図 5.1-20 (17) 断面④の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-20(18) 断面④の最大加速度分布(S<sub>s</sub>-D1(H+, V-))

e. 断面⑤

・検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース

図 5.1-21 (1) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

図 5.1-21 (2) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V-))

図 5.1-21 (3) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H-, V+))

図 5.1-21 (4) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H-, V-))



図 5.1-21 (6) 断面⑤の最大加速度分布 (S<sub>s</sub>-12)

図 5.1-21(7) 断面⑤の最大加速度分布(S<sub>s</sub>-13)



図 5.1-21 (9) 断面⑤の最大加速度分布 (S<sub>s</sub>-21)

## 図 5.1-21 (10) 断面⑤の最大加速度分布 (S<sub>s</sub>-22)

図 5.1-21 (11) 断面⑤の最大加速度分布(S<sub>s</sub>-31 (H+, V+))

図 5.1-21 (12) 断面⑤の最大加速度分布(S<sub>s</sub>-31 (H-, V+))

・検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース

図 5.1-21 (13) 断面⑤の最大加速度分布(S<sub>s</sub>-D1 (H+, V-))

・検討ケース③:地盤物性のばらつきを考慮(-1 g)した解析ケース

図 5.1-21 (14) 断面⑤の最大加速度分布(S<sub>s</sub>-D1 (H+, V-))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-21 (15) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V-))

・検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース

図 5.1-21 (16) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V-))

 ・検討ケース⑥:地盤物性のばらつきを考慮(+1 g)して非液状化の条件を仮定した 解析ケース

図 5.1-21 (17) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V-))

・検討ケース④:敷地に存在しない豊浦標準砂に基づく液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース

図 5.1-21 (18) 断面⑤の最大加速度分布 (S<sub>s</sub>-D1 (H+, V+))

- 5.2 耐震評価結果
  - 5.2.1 構造部材の健全性に対する評価結果
    - (1) 鋼管杭の評価結果
    - a. 曲げ軸力に対する照査

断面計算に用いた断面諸元を表 5.2.1-1 に、曲げ軸力に対する照査結果を表 5.2.1-2 ~表 5.2.1-6 に示す。鋼管杭に対して許容応力度法による照査を行った結果、曲げ応力 が短期許容応力度以下であることを確認した。なお、発生応力度は各地震動において最大 となる値を示している。

| WF 77  | 板厚   | 断面積     | 断面係数    |  |
|--------|------|---------|---------|--|
| 的阻     | (mm) | $(m^2)$ | $(m^3)$ |  |
| 1      | ① 25 |         | 0.07258 |  |
| 2      | 25   | 0.187   | 0.11427 |  |
| 3      | 35   | 0.263   | 0.15995 |  |
| 4      | 25   | 0.149   | 0.07258 |  |
| (5) 40 |      | 0.246   | 0.11530 |  |

表 5.2.1-1 鋼管杭 (SM570) 断面諸元

| 検討<br>ケース | 地震動                | 曲げ<br>モーメント<br>(kN・m) | 軸力<br>(kN) |        | 曲げ<br>応力<br>(N/mm <sup>2</sup> ) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|--------------------|-----------------------|------------|--------|----------------------------------|-----------------------------------------|------|
|           | S <sub>s</sub> -D1 | H+, V+                | 10, 620    | 3, 927 | 173                              | 382.5                                   | 0.46 |
|           |                    | H+, V-                | 10, 653    | 3, 397 | 170                              | 382.5                                   | 0.45 |
|           |                    | H-, V+                | 11,094     | 2,094  | 167                              | 382.5                                   | 0.44 |
|           |                    | H-, V-                | 11,090     | 1,204  | 161                              | 382.5                                   | 0.43 |
|           | $S_{s} - 1 1$      |                       | 2,959      | 2.628  | 59                               | 382.5                                   | 0.16 |
| 1)        | $S_{s} = 12$       |                       | 7,113      | 3,110  | 119                              | 382.5                                   | 0.32 |
|           | S <sub>s</sub> -13 |                       | 6,054      | 2,698  | 102                              | 382.5                                   | 0.27 |
|           | $S_{s} = 1.4$      |                       | 4,714      | 2, 727 | 84                               | 382.5                                   | 0.22 |
|           | $S_{s} = 2.1$      |                       | 11, 299    | 1, 353 | 165                              | 382.5                                   | 0.44 |
|           | S <sub>s</sub> -22 |                       | 6, 982     | 2,644  | 114                              | 382.5                                   | 0.3  |
|           | $S_{s} - 31$       | H+, $V+$              | 13, 222    | 1,776  | 195                              | 382.5                                   | 0.51 |
|           | $S_{s} - 31$       | H-, V+                | 13, 100    | 3, 856 | 207                              | 382.5                                   | 0.55 |
| 2         |                    |                       | 13, 559    | 4,257  | 216                              | 382.5                                   | 0.57 |
| 3         |                    |                       | 14, 262    | 4,029  | 224                              | 382.5                                   | 0.59 |
| 4         | $S_{s} - 31$       | H-, V+                | 11, 183    | 3,604  | 179                              | 382.5                                   | 0.47 |
| 5         |                    |                       | 14, 204    | 3,710  | 221                              | 382.5                                   | 0.58 |
| 6         |                    |                       | 14,900     | 3, 970 | 232                              | 382.5                                   | 0.61 |
| 6         | $S_{s} = 3.1$      | H+, V+                | 15,070     | 2, 253 | 223                              | 382.5                                   | 0.59 |

表 5.2.1-2 曲げ軸力に対する照査結果(断面①)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1  $\sigma$ )した解析ケース ③:地盤物性のばらつきを考慮(-1  $\sigma$ )した解析ケース ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース
⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                            |                   | 曲げ<br>モーメント<br>(kN・m) | 軸力<br>(kN) | 曲げ<br>応力<br>(N/mm <sup>2</sup> ) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|--------------------------------|-------------------|-----------------------|------------|----------------------------------|-----------------------------------------|------|
|           | $S_{s} - D 1$<br>$S_{s} - 1 1$ | H+, V+            | 19, 544               | 2, 013     | 182                              | 382.5                                   | 0.48 |
|           |                                | H+, V-            | 19, 483               | 1,007      | 176                              | 382.5                                   | 0.47 |
|           |                                | H-, V+            | 17, 928               | 6, 764     | 194                              | 382.5                                   | 0.51 |
|           |                                | H-, V-            | 18,002                | 6, 416     | 192                              | 382.5                                   | 0.51 |
|           |                                |                   | 6, 599                | 2, 532     | 72                               | 382.5                                   | 0.19 |
|           | $S_{s} = 12$                   |                   | 9, 312                | 3, 055     | 98                               | 382.5                                   | 0.26 |
| Û         | $S_{s} = 1.3$                  |                   | 9, 096                | 3, 037     | 96                               | 382.5                                   | 0.26 |
|           | $S_{s} = 1.4$                  |                   | 5, 295                | 2, 770     | 62                               | 382.5                                   | 0.17 |
|           | $S_{s} = 2.1$                  |                   | 8,878                 | 4,656      | 103                              | 382.5                                   | 0.27 |
|           | S <sub>s</sub> -22             |                   | 12, 963               | 1,734      | 123                              | 382.5                                   | 0.33 |
|           | $S_{s} - 31$                   | H+, V+            | 22, 343               | 3, 236     | 213                              | 382.5                                   | 0.56 |
|           | $S_{s} - 31$                   | H-, V+            | 23, 224               | 4, 181     | 226                              | 382.5                                   | 0.6  |
| 2         |                                | H-, V+            | 24, 918               | 4,242      | 241                              | 382.5                                   | 0.64 |
| 3         | S <sub>s</sub> -31             | H+, $V+$          | 24, 783               | 3, 813     | 238                              | 382.5                                   | 0.63 |
| 3         |                                | $S_s - 31$ H-, V+ | 25, 828               | 3, 896     | 247                              | 382.5                                   | 0.65 |
| 4         |                                |                   | 24, 816               | 1, 391     | 225                              | 382.5                                   | 0.59 |
| 5         |                                |                   | 24, 281               | 2, 924     | 229                              | 382.5                                   | 0.6  |
| 6         |                                |                   | 26, 273               | 2, 879     | 246                              | 382.5                                   | 0.65 |
| 6         |                                | H+, V+            | 25, 179               | 5, 829     | 252                              | 382.5                                   | 0.66 |

表 5.2.1-3 曲げ軸力に対する照査結果(断面②)

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

①: 赤地温に塗って低秋に加度れ住を加いた麻何ケース ②: 地盤物性のばらつきを考慮(+1  $\sigma$ )した解析ケース ③: 地盤物性のばらつきを考慮(-1  $\sigma$ )した解析ケース ④: 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1g)して非液状化の条件を仮定した解析ケース
| 検討<br>ケース | 地震動           |          | 曲げ<br>モーメント<br>(kN・m) | 軸力<br>(kN) | 曲げ<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|---------------|----------|-----------------------|------------|---------------------|-----------------------------------------|------|
|           |               | H+, V+   | 33, 773               | 9, 729     | 249                 | 382.5                                   | 0.66 |
|           | S _ D 1       | H+, V-   | 33, 963               | 9,014      | 247                 | 382.5                                   | 0.65 |
|           | $S_s - DI$    | H-, V+   | 30, 757               | 4, 211     | 209                 | 382.5                                   | 0.55 |
|           |               | H-, V-   | 31, 189               | 3, 960     | 211                 | 382.5                                   | 0.56 |
|           | $S_{s} - 1 1$ |          | 7, 495                | 7, 251     | 75                  | 382.5                                   | 0.2  |
|           | $S_{s} - 1 2$ |          | 16, 420               | 8, 212     | 134                 | 382.5                                   | 0.36 |
| Ú         | $S_{s} - 1 3$ |          | 15, 986               | 8, 223     | 132                 | 382.5                                   | 0.35 |
|           | $S_{s} - 14$  |          | 10, 500               | 8,139      | 97                  | 382.5                                   | 0.26 |
|           | $S_{s} - 21$  |          | 8,997                 | 8,670      | 90                  | 382.5                                   | 0.24 |
|           | $S_{s} - 22$  |          | 10, 123               | 8, 360     | 96                  | 382.5                                   | 0.26 |
|           | $S_{s} - 31$  | H+, V+   | 18, 544               | 6,179      | 140                 | 382.5                                   | 0.37 |
|           | $S_{s} - 31$  | H-, V+   | 14, 403               | 3,024      | 102                 | 382.5                                   | 0.27 |
| 2         |               | H+, V-   | 34, 560               | 8,616      | 249                 | 382.5                                   | 0.66 |
| 2         |               |          | 34, 955               | 9, 015     | 253                 | 382.5                                   | 0.67 |
| 3         | S _ D 1       |          | 27, 556               | 9, 491     | 209                 | 382.5                                   | 0.55 |
| 4         | $S_s - D1$    | H+, $V+$ | 27, 379               | 8,619      | 204                 | 382.5                                   | 0.54 |
| 5         |               |          | 15, 146               | 5, 845     | 117                 | 382.5                                   | 0.31 |
| 6         |               |          | 14, 628               | 5, 484     | 113                 | 382.5                                   | 0.3  |

表 5.2.1-4 曲げ軸力に対する照査結果(断面③)

②:地盤物性のばらつきを考慮(+1  $\sigma$ )した解析ケース ③:地盤物性のばらつきを考慮(-1  $\sigma$ )した解析ケース ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

| 検討<br>ケース | 地震動           |          | 曲げ<br>モーメント<br>(kN・m) | 軸力<br>(kN) | 曲げ<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|---------------|----------|-----------------------|------------|---------------------|-----------------------------------------|------|
|           |               | H+, V+   | 10090                 | 5058       | 173                 | 382.5                                   | 0.46 |
|           | S – D 1       | H+, V-   | 10135                 | 4898       | 173                 | 382.5                                   | 0.46 |
|           | $S_s - D_1$   | H-, V+   | 10164                 | 1107       | 148                 | 382.5                                   | 0.39 |
|           |               | H-, V-   | 10124                 | 967        | 146                 | 382.5                                   | 0.39 |
|           | $S_{s} - 1 1$ |          | 7259                  | 2825       | 119                 | 382.5                                   | 0.32 |
| 1         | $S_{s} - 1 2$ |          | 8344                  | 4395       | 145                 | 382.5                                   | 0.38 |
|           | $S_{s} = 1.3$ |          | 7636                  | 5232       | 141                 | 382.5                                   | 0.37 |
|           | $S_{s} = 1.4$ |          | 5351                  | 2796       | 93                  | 382.5                                   | 0.25 |
|           | $S_s - 2 1$   |          | 5803                  | 3086       | 101                 | 382.5                                   | 0.27 |
|           | $S_{s} = 22$  |          | 5379                  | 3784       | 100                 | 382.5                                   | 0.27 |
|           | $S_{s} - 31$  | H+, V+   | 6411                  | 3220       | 110                 | 382.5                                   | 0.29 |
|           | $S_{s} - 31$  | H-, V+   | 6162                  | 2198       | 100                 | 382.5                                   | 0.27 |
| 2         |               |          | 9846                  | 5727       | 175                 | 382.5                                   | 0.46 |
| 3         |               | H+, $V+$ | 9667                  | 4604       | 165                 | 382.5                                   | 0.44 |
| 4         |               |          | 13700                 | 3945       | 216                 | 382.5                                   | 0.57 |
| 4         | $S_s = D I$   | H+, V-   | 13603                 | 3612       | 212                 | 382.5                                   | 0.56 |
| 5         |               |          | 6341                  | 2444       | 104                 | 382.5                                   | 0.28 |
| 6         |               | H+, V+   | 6420                  | 2222       | 104                 | 382.5                                   | 0.28 |

表 5.2.1-5 曲げ軸力に対する照査結果(断面④)

①: 原地盤に差づく 板状 化強度 特任を用いた 脾初  $f = -\infty$ ②: 地盤物性のばらつきを考慮(+1  $\sigma$ )した解析ケース ③: 地盤物性のばらつきを考慮(-1  $\sigma$ )した解析ケース ④: 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

| 検討<br>ケース | 地震動           |        | 曲げ<br>モーメント<br>(kN・m) | 軸力<br>(kN) | 曲げ<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|---------------|--------|-----------------------|------------|---------------------|-----------------------------------------|------|
|           |               | H+, V+ | 17, 832               | 902        | 159                 | 382.5                                   | 0.42 |
|           | S – D 1       | H+, V- | 17, 863               | 1,021      | 160                 | 382.5                                   | 0.42 |
|           | $S_s - DI$    | H-, V+ | 15, 310               | 2, 908     | 145                 | 382.5                                   | 0.38 |
|           |               | H-, V- | 15, 302               | 2, 759     | 144                 | 382.5                                   | 0.38 |
|           | $S_{s} - 1 1$ |        | 14, 866               | 907        | 133                 | 382.5                                   | 0.35 |
|           | $S_{s} = 12$  |        | 14, 839               | 1, 378     | 135                 | 382.5                                   | 0.36 |
| Û         | $S_{s} - 1 3$ |        | 13, 358               | 1, 310     | 122                 | 382.5                                   | 0.32 |
|           | $S_{s} = 1.4$ |        | 7,825                 | 625        | 71                  | 382.5                                   | 0.19 |
|           | $S_{s} = 2.1$ |        | 10, 460               | 735        | 94                  | 382.5                                   | 0.25 |
|           | $S_{s} = 2.2$ |        | 11, 928               | 276        | 105                 | 382.5                                   | 0.28 |
|           | $S_{s} - 31$  | H+, V+ | 13, 344               | 366        | 118                 | 382.5                                   | 0.31 |
|           | $S_{s} = 3.1$ | H-, V+ | 13,041                | 1,089      | 118                 | 382.5                                   | 0.31 |
| 2         |               |        | 16, 462               | 1, 302     | 149                 | 382.5                                   | 0.39 |
| 3         |               | H+, V- | 17, 967               | 677        | 159                 | 382.5                                   | 0.42 |
| 4         |               |        | 22, 979               | 8, 499     | 234                 | 382.5                                   | 0.62 |
| 4         | $S_s - DI$    | H+, V+ | 22, 819               | 8, 516     | 233                 | 382.5                                   | 0.61 |
| 5         |               |        | 14, 226               | 898        | 128                 | 382.5                                   | 0.34 |
| 6         |               | H+, V- | 13, 804               | 810        | 124                 | 382.5                                   | 0.33 |

表 5.2.1-6 曲げ軸力に対する照査結果(断面⑤)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

(2) せん断力に対する照査

断面計算に用いた断面諸元は前出の表 5.2.1-1 に, せん断力に対する照査結果を表 5.2.1-7~表 5.2.1-11 に示す。

鋼管杭に対して許容応力度法による照査を行った結果,せん断応力が短期許容応力度以 下であることを確認した。なお,発生応力は各地震動において最大となる値を示している。

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|--------------------|----------|--------------|----------------------|-----------------------------------------|------|
|           |                    | H+, V+   | 2, 922       | 39                   | 217.5                                   | 0.19 |
|           | S – D 1            | H+, V-   | 2, 950       | 40                   | 217.5                                   | 0.19 |
|           | $S_s - DI$         | H-, V+   | 2,974        | 40                   | 217.5                                   | 0.19 |
|           |                    | H-, V-   | 2, 982       | 40                   | 217.5                                   | 0.19 |
|           | S <sub>s</sub> -11 |          | 1,038        | 14                   | 217.5                                   | 0.07 |
|           | S <sub>s</sub> -12 |          | 1,684        | 23                   | 217.5                                   | 0.11 |
| Ú         | S <sub>s</sub> -13 |          | 1, 512       | 20                   | 217.5                                   | 0.10 |
|           | $S_{s} = 1.4$      |          | 1,229        | 17                   | 217.5                                   | 0.08 |
|           | $S_{s} = 2.1$      |          | 3, 089       | 42                   | 217.5                                   | 0.20 |
|           | $S_{s} = 22$       |          | 2, 513       | 34                   | 217.5                                   | 0.16 |
|           | $S_{s} - 31$       | H+, $V+$ | 3, 082       | 41                   | 217.5                                   | 0.20 |
|           | $S_{s} - 31$       | H-, V+   | 2, 997       | 40                   | 217.5                                   | 0.19 |
| 2         |                    |          | 3, 665       | 49                   | 217.5                                   | 0.23 |
| 3         |                    |          | 3, 426       | 46                   | 217.5                                   | 0.22 |
| 4         | $S_{s} = 3.1$      | H-, V+   | 3, 274       | 44                   | 217.5                                   | 0.21 |
| 5         |                    |          | 3, 255       | 44                   | 217.5                                   | 0.21 |
| 6         |                    |          | 3, 931       | 53                   | 217.5                                   | 0.25 |
| 6         | $S_{s} - 31$       | H+, V+   | 3, 949       | 54                   | 217.5                                   | 0.25 |

表 5.2.1-7 せん断力に対する照査結果(断面①)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1 g)した解析ケース

③:地盤物性のばらつきを考慮(-1 g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|--------------------|----------|--------------|----------------------|-----------------------------------------|------|
|           |                    | H+, $V+$ | 4,657        | 50                   | 217.5                                   | 0.23 |
|           | S - D 1            | H+, V-   | 4, 491       | 49                   | 217.5                                   | 0.23 |
|           | $S_s - DI$         | H-, V+   | 5,074        | 55                   | 217.5                                   | 0.26 |
|           |                    | H-, V-   | 5,056        | 55                   | 217.5                                   | 0.26 |
|           | $S_{s} = 1  1$     |          | 1,754        | 19                   | 217.5                                   | 0.09 |
|           | $S_{s} = 12$       |          | 2, 522       | 27                   | 217.5                                   | 0.13 |
| Û         | $S_{s} = 1 3$      |          | 2, 434       | 27                   | 217.5                                   | 0.13 |
|           | $S_{s} = 1.4$      |          | 1, 327       | 15                   | 217.5                                   | 0.07 |
|           | $S_{s} = 2.1$      |          | 2,632        | 29                   | 217.5                                   | 0.14 |
|           | S <sub>s</sub> -22 |          | 3, 662       | 40                   | 217.5                                   | 0.19 |
|           | S <sub>s</sub> -31 | H+, V+   | 5,169        | 56                   | 217.5                                   | 0.26 |
|           | $S_{s} - 31$       | H-, V+   | 5, 298       | 57                   | 217.5                                   | 0.27 |
| 2         |                    | H-, V+   | 5, 880       | 63                   | 217.5                                   | 0.29 |
| 3         |                    | H+, V+   | 5, 765       | 62                   | 217.5                                   | 0.29 |
| 3         |                    |          | 5, 956       | 64                   | 217.5                                   | 0.3  |
| 4         | S <sub>s</sub> -31 | TT 37    | 7,541        | 81                   | 217.5                                   | 0.38 |
| 5         |                    | п—, v+   | 5, 410       | 58                   | 217.5                                   | 0.27 |
| 6         |                    |          | 6,057        | 65                   | 217.5                                   | 0.3  |
| 6         |                    | H+, V+   | 5, 808       | 63                   | 217.5                                   | 0.29 |

表 5.2.1-8 せん断力に対する照査結果(断面②)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

| 検討<br>ケース | 地                  | 震動       | せん断力<br>(kN) | せん断<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値   |  |
|-----------|--------------------|----------|--------------|----------------------|-----------------------------------------|-------|--|
|           |                    | H+, V+   | 7,490        | 57                   | 217.5                                   | 0.27  |  |
|           |                    | H+, V-   | 7, 487       | 57                   | 217.5                                   | 0.27  |  |
|           | $S_s - DI$         | H-, V+   | 6, 717       | 52                   | 217.5                                   | 0.24  |  |
|           |                    | H-, V-   | 6,821        | 52                   | 217.5                                   | 0.24  |  |
|           | S <sub>s</sub> -11 |          | 2, 260       | 18                   | 217.5                                   | 0.09  |  |
|           | S <sub>s</sub> -12 |          | 2, 814       | 22                   | 217.5                                   | 0.11  |  |
| (I)       | S <sub>s</sub> -13 |          | 2, 805       | 22                   | 217.5                                   | 0.11  |  |
|           | $S_{s} = 1.4$      |          | 1,839        | 14                   | 217.5                                   | 0.07  |  |
|           | $S_{s} = 2.1$      |          | 2,637        | 21                   | 217.5                                   | 0.1   |  |
|           | S <sub>s</sub> -22 |          | 2, 361       | 18                   | 217.5                                   | 0.09  |  |
|           | $S_{s} - 31$       | H+, $V+$ | 4, 368       | 34                   | 217.5                                   | 0.16  |  |
|           | $S_{s} - 31$       | H-, V+   | 3, 920       | 30                   | 217.5                                   | 0.14  |  |
| 2         |                    | H+, V-   | 7,860        | 60                   | 217.5                                   | 0.28  |  |
| 2         |                    |          | 7,996        | 61                   | 217.5                                   | 0.29  |  |
| 3         | S _ D 1            |          | 5, 711       | 44                   | 217.5                                   | 0. 21 |  |
| 4         | 3 <sub>s</sub> -D1 | H+, $V+$ | 9, 265       | 71                   | 217.5                                   | 0. 33 |  |
| 5         |                    |          | 3, 782       | 29                   | 217.5                                   | 0.14  |  |
| 6         |                    |          | 4, 428       | 34                   | 217.5                                   | 0.16  |  |

表 5.2.1-9 せん断力に対する照査結果(断面③)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地                  | 震動         | せん断力<br>(kN) | せん断<br>応力<br>(N/mm <sup>2</sup> ) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照查値  |
|-----------|--------------------|------------|--------------|-----------------------------------|-----------------------------------------|------|
|           |                    | H+, V+     | 2591         | 35                                | 217.5                                   | 0.17 |
|           |                    | H+, V-     | 2587         | 35                                | 217.5                                   | 0.17 |
|           | $S_s - D 1$        | H-, V+     | 2615         | 36                                | 217.5                                   | 0.17 |
|           |                    | H-, V-     | 2626         | 36                                | 217.5                                   | 0.17 |
|           | S <sub>s</sub> -11 |            | 2239         | 31                                | 217.5                                   | 0.15 |
|           | S <sub>s</sub> -12 |            | 2526         | 34                                | 217.5                                   | 0.16 |
| Û         | S <sub>s</sub> -13 |            | 2458         | 33                                | 217.5                                   | 0.16 |
|           | $S_{s} - 14$       |            | 1781         | 24                                | 217.5                                   | 0.12 |
|           | $S_{s} = 2.1$      |            | 1486         | 20                                | 217.5                                   | 0.1  |
|           | S <sub>s</sub> -22 |            | 1787         | 24                                | 217.5                                   | 0.12 |
|           | S <sub>s</sub> -31 | H+, V+     | 1635         | 22                                | 217.5                                   | 0.11 |
|           | $S_{s} - 31$       | H-, V+     | 1617         | 22                                | 217.5                                   | 0.11 |
| 2         |                    |            | 2660         | 36                                | 217.5                                   | 0.17 |
| 3         |                    | H+, $V+$   | 2458         | 33                                | 217.5                                   | 0.16 |
| 4         |                    |            | 4254         | 58                                | 217.5                                   | 0.27 |
| 4         | S <sub>s</sub> -D1 | H+, V-     | 4240         | 57                                | 217.5                                   | 0.27 |
| 5         |                    |            | 1576         | 22                                | 217.5                                   | 0.11 |
| 6         |                    | [ n +, v + | 1673         | 23                                | 217.5                                   | 0.11 |

表 5.2.1-10 せん断力に対する照査結果(断面④)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断<br>応力<br>(N/mm²) | 短期<br>許容<br>応力度<br>(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|----------------------|-----------------------------------------|------|
|           |                    | H+, V+   | 4, 267       | 35                   | 217.5                                   | 0.17 |
|           | S - D 1            | H+, V-   | 4, 286       | 35                   | 217.5                                   | 0.17 |
|           | $S_s - DI$         | H-, V+   | 3, 515       | 29                   | 217.5                                   | 0.14 |
|           |                    | H-, V-   | 3, 543       | 29                   | 217.5                                   | 0.14 |
|           | $S_{s} - 1 1$      |          | 3, 566       | 29                   | 217.5                                   | 0.14 |
|           | $S_{s} - 1 2$      |          | 3, 451       | 29                   | 217.5                                   | 0.14 |
| Û         | $S_{s} - 1 3$      |          | 3, 095       | 26                   | 217.5                                   | 0.12 |
|           | S <sub>s</sub> -14 |          | 1, 798       | 15                   | 217.5                                   | 0.07 |
|           | $S_{s} - 21$       |          | 2, 320       | 19                   | 217.5                                   | 0.09 |
|           | S <sub>s</sub> -22 |          | 2, 772       | 23                   | 217.5                                   | 0.11 |
|           | $S_{s} - 31$       | H+, $V+$ | 3, 231       | 27                   | 217.5                                   | 0.13 |
|           | $S_{s} = 3.1$      | H-, V+   | 3, 169       | 26                   | 217.5                                   | 0.12 |
| 2         |                    |          | 3, 974       | 33                   | 217.5                                   | 0.16 |
| 3         |                    | H+, $V-$ | 4, 272       | 35                   | 217.5                                   | 0.17 |
| 4         | S – D 1            |          | 4, 392       | 36                   | 217.5                                   | 0.17 |
| 4         | $S_s - D_1$        | H+, V+   | 4, 364       | 36                   | 217.5                                   | 0.17 |
| 5         |                    | H+ V-    | 3, 587       | 30                   | 217.5                                   | 0.14 |
| 6         |                    | пт, v-   | 3, 513       | 29                   | 217.5                                   | 0.14 |

表 5.2.1-11 せん断力に対する照査結果(断面⑤)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

(2) 鉄筋コンクリートの評価結果

2次元梁バネモデルによる鉄筋コンクリートの照査は以下のケースにおいて実施した。

- (a) 原地盤物性のばらつきを考慮した場合
- (b) 敷地に存在しない豊浦標準砂に基づく液状化強度特性により地盤を強制的に液 状化させることを仮定した場合

2次元梁バネモデルに設定した杭の水平方向バネ定数を表 5.2.2-12 に,水平変位を表 5.2.1-13 に,水平震度を表 5.2.1-14 に示す。

|  |       | 20 01 21 2    | - //   |        |       |       |        |
|--|-------|---------------|--------|--------|-------|-------|--------|
|  | 地震    | <b></b><br>長時 | 杭1     | 杭 2    | 杭3    | 杭4    | 杭 5    |
|  | 除去し   | (a)           | 112292 | 101940 | 91589 | 96112 | 100635 |
|  | 的面白   | (b)           | 83497  | 83497  | 83497 | 83497 | 83497  |
|  | WF FO | (a)           | 57150  | 53368  | 49585 | 51304 | 53023  |
|  | 的面③   | (b)           | 31340  | 31340  | 31340 | 31340 | 31340  |

表 5.2.1-12 杭の水平方向バネ定数 (kN/m)

| 衣 5.2.1-15 八十多位(四) |     |        |        |        |        |        |  |  |
|--------------------|-----|--------|--------|--------|--------|--------|--|--|
| 地震時                |     | 杭1     | 杭 2    | 杭 3    | 杭4     | 杭 5    |  |  |
| 胀盂①                | (a) | -0.118 | -0.126 | -0.134 | -0.139 | -0.144 |  |  |
| 例阻①                | (b) | -0.360 | -0.360 | -0.360 | -0.360 | -0.360 |  |  |
| W. JO              | (a) | -0.204 | -0.265 | -0.327 | -0.343 | -0.358 |  |  |
| 函<br>国<br>③        | (b) | -0.313 | -0.313 | -0.313 | -0.313 | -0.313 |  |  |

表 5.2.1-13 水平変位(m)



図 5.2.1-1 2次元梁バネモデル杭位置図

表 5.2.1-14 水平震度(S<sub>s</sub>-D1++)

|                            | (a)  | (b)  |
|----------------------------|------|------|
| 断面① (S <sub>s</sub> -31-+) | 0.31 | 0.14 |
| 断面③ (S <sub>s</sub> -D1++) | 0.24 | 0.12 |

a. 曲げ軸力に対する照査

断面計算に用いた断面諸元を表 5.2.1-15 に, 2次元梁バネモデルによる曲げ軸力に対 する照査結果を表 5.2.1-16 及び表 5.2.1-17 に示す。また,配筋図を図 5.2.1-2 に示 す。

鉄筋コンクリートに対して許容応力度法による照査を行った結果,コンクリートに発生 する曲げ圧縮応力及び鉄筋に発生する曲げ引張応力が短期許容応力度以下であることを確 認した。なお,発生応力は各地震動において最大となる値を示している。

| 断面     | かぶり<br>(m) | 断面有効高さ<br>(m) | 主筋        | 主筋断面積<br>(cm <sup>2</sup> ) |
|--------|------------|---------------|-----------|-----------------------------|
| ① 0.15 |            | 0.55          | 6.667-D35 | 63.777                      |
| 3      | 0.15       | 0.55          | 6.667-D35 | 63.777                      |

表 5.2.1-15 鉄筋コンクリート断面諸元

図 5.2.2-2(1) 概略配筋図(断面①)

図 5.2.2-2 (2) 概略配筋図 (断面③)



図 5.2.1-3 断面力図(断面①:2次元梁バネモデル)

表 5.2.1-16 曲げ軸力に対する照査結果(断面①:2次元梁バネモデル)

| 解析  | 北電動                  | 曲げ       | 軸力 曲げ 圧縮広力 | 軸力 曲げ 圧縮広力                   |                                | 短期許窄<br>(N/i | 客応力度<br>mm <sup>2</sup> ) | 曲げ<br>圧縮  | 曲げ<br>引張  |
|-----|----------------------|----------|------------|------------------------------|--------------------------------|--------------|---------------------------|-----------|-----------|
| ケース | 地展期                  | (kN • m) | (kN)       | 上縮応力<br>(N/mm <sup>2</sup> ) | ら「短心フ」<br>(N/mm <sup>2</sup> ) | 曲げ<br>圧縮     | 曲げ<br>引張                  | 応力<br>照査値 | 応力<br>照査値 |
| (a) | S <sub>s</sub> -31-+ | 50       | 0          | 1                            | 18                             | 21           | 435                       | 0.05      | 0.05      |
| (b) | $S_s - 3 1 - +$      | 5        | 0          | 1                            | 2                              | 21           | 435                       | 0.05      | 0.01      |



図 5.2.1-4 断面力図(断面③:2次元梁バネモデル)

| 解析  |         | 曲げ              | 軸力   | 軸力 曲げ 広応式力                   | 曲げ     曲け                       |          | 曲げ       | 短期許約<br>(N/i | 客応力度<br>mm <sup>2</sup> ) | 曲げ<br>圧縮 | 曲げ<br>引張 |
|-----|---------|-----------------|------|------------------------------|---------------------------------|----------|----------|--------------|---------------------------|----------|----------|
| ケース | 地展期     | モーメント<br>(kN・m) | (kN) | 圧縮応力<br>(N/mm <sup>2</sup> ) | 515版応フリ<br>(N/mm <sup>2</sup> ) | 曲げ<br>圧縮 | 曲げ<br>引張 | 応力<br>照査値    | 応力<br>照査値                 |          |          |
| (a) | Ss-D1++ | 302             | 0    | 5                            | 103                             | 21       | 435      | 0.24         | 0.24                      |          |          |
| (b) | Ss-D1++ | 8               | 0    | 1                            | 3                               | 21       | 435      | 0.05         | 0.01                      |          |          |

表 5.2.1-17 曲げ軸力に対する照査結果(断面③:2次元梁バネモデル)

b. せん断に対する照査

断面計算に用いた断面諸元は表 5.2.1-15 及び表 5.2.1-18 に, 2次元梁バネモデルに よるせん断に対する照査結果を表 5.2.1-19 及び表 5.2.1-20 に示す。

鉄筋コンクリートにおける許容応力度法による照査を行った結果, せん断力が許容限界 以下であることを確認した。なお, 発生せん断力は各地震動において最大となる値を示し ている。

|    | 斜め引張鉄     | 区間 s | 区間 s における |
|----|-----------|------|-----------|
| 断面 | 筋         | (m)  | 斜め引張鉄筋断面積 |
|    |           |      | $(cm^2)$  |
| 1) | 3.333-D22 | 0.2  | 12.902    |
| 3  | 3.333-D22 | 0.2  | 12.902    |

表 5.2.2-18 鉄筋コンクリート断面諸元

斜め引張鉄筋を考慮した許容せん断力を以下に計算する。

$$Va = Vc + Vs$$
$$Vc = \frac{1}{2}\tau_{a1}b_w jd$$
$$Vs = \frac{A_w \cdot \sigma_{sa} \cdot j \cdot d}{s}$$

ここで

- Va : 許容せん断力
- Vc : コンクリートの許容せん断力
- Vs :斜め引張鉄筋の許容せん断力
- *て*<sup>a1</sup>:斜め引張鉄筋を考慮しない場合の許容せん断応力度
- *b*<sub>w</sub> : 断面幅
- j : 1/1.15
- *d* : 有効高さ
- Aw : 斜め引張鉄筋断面積
- σ<sub>sa</sub>:鉄筋の許容引張応力度
- *s* :斜め引張鉄筋間隔

 $Vc = 1/2 \times 0.825/1.15 \times 0.55 \times 1.0 \times 1000 = 197.28$  $Vs = 1290.2 \times 300/1.15 \times 0.55/0.2/1000 = 925.58$ Va = 197.28 + 925.58 = 1122.86



図 5.2.1-5 断面力図(断面①:2次元梁バネモデル)

| 解析<br>ケース | 地震動                  | せん断力<br>(kN) | 許容せん断力<br>(kN) | 照査値  |
|-----------|----------------------|--------------|----------------|------|
| (a)       | S <sub>s</sub> -31-+ | 26           | 1122           | 0.03 |
| (b)       | $S_s - 3 1 - +$      | 8            | 1122           | 0.01 |

表 5.2.1-19 せん断力に対する照査結果(断面①:2次元梁バネモデル)



図 5.2.1-6 断面力図(断面③:2次元梁バネモデル)

| 解析<br>ケース | 地震動               | せん断力<br>(kN) | 許容せん断力<br>(kN) | 照査値  |
|-----------|-------------------|--------------|----------------|------|
| (a)       | $S_{s} - D 1 + +$ | 77           | 1122           | 0.07 |
| (b)       | $S_{s} - D 1 + +$ | 10           | 1122           | 0.01 |

表 5.2.1-20 せん断力に対する照査結果(断面③:2次元梁バネモデル)

(3) 地盤高さの嵩上げ部(改良体)及び表層改良体に対する評価結果

地盤高さの嵩上げ部(改良体)及び表層改良体に対する照査結果を表 5.2.1-21~表 5.2.1-25 に示す。

地盤高さの嵩上げ部(改良体)及び表層改良体に対する照査を行った結果,安全率が 1.2以上であることを確認した。なお,発生応力は,各地震動において最大となる値を示 している。

| 表 5.2.1-21            | 地盤高さの嵩上げ部 | (改良体) | 及び表層改良体に対する安全率 | (断面①) |
|-----------------------|-----------|-------|----------------|-------|
| $1 \times 0.2.1$ $21$ |           |       | 及日本自民民任任内了公民王干 |       |

| 検討  | 地震動                |          | すべり力最大       | せん断抵抗力         | 中人壶  |
|-----|--------------------|----------|--------------|----------------|------|
| ケース |                    |          | Q $(kN/m^2)$ | R ( $kN/m^2$ ) | 女王平  |
|     |                    | H+, $V+$ | 420          | 750            | 1.78 |
|     | S – D 1            | H+, V-   | 416          | 750            | 1.80 |
|     | 3 <sub>s</sub> -D1 | H-, V+   | 392          | 750            | 1.91 |
|     |                    | H-, V-   | 393          | 750            | 1.90 |
|     | $S_{s} - 1 1$      |          | 189          | 750            | 3.96 |
|     | $S_{s} - 1 2$      |          | 316          | 750            | 2.37 |
| Û   | $S_{s} - 1 3$      |          | 277          | 750            | 2.70 |
|     | $S_{s} - 14$       |          | 238          | 750            | 3.15 |
|     | S <sub>s</sub> -21 |          | 402          | 750            | 1.86 |
|     | $S_{s} - 22$       |          | 350          | 750            | 2.14 |
|     | S <sub>s</sub> -31 | H+, $V+$ | 418          | 750            | 1.79 |
|     | S <sub>s</sub> -31 | H-, V+   | 443          | 750            | 1.69 |
| 2   |                    |          | 509          | 750            | 1.47 |
| 3   |                    |          | 488          | 750            | 1.53 |
| 4   | S <sub>s</sub> -31 | H-, V+   | 368          | 750            | 2.03 |
| 5   |                    |          | 463          | 750            | 1.61 |
| 6   |                    |          | 529          | 750            | 1.41 |
| 6   | S <sub>s</sub> -31 | H+, V+   | 514          | 750            | 1.45 |

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1 g)した解析ケース

③:地盤物性のばらつきを考慮(-1 o)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討  | 地震動                |               | すべり力最大       | せん断抵抗力       | 中公束  |
|-----|--------------------|---------------|--------------|--------------|------|
| ケース |                    |               | Q $(kN/m^2)$ | $R (kN/m^2)$ | 女主卒  |
|     |                    | H+, $V+$      | 451          | 750          | 1.66 |
|     | S – D 1            | H+, V-        | 456          | 750          | 1.64 |
|     | З <sub>s</sub> -D1 | H-, V+        | 467          | 750          | 1.60 |
|     |                    | H-, V-        | 462          | 750          | 1.62 |
|     | $S_{s} - 1 1$      |               | 235          | 750          | 3.19 |
|     | $S_{s} - 1 2$      |               | 313          | 750          | 2.39 |
| Û   | $S_{s} - 1 3$      |               | 307          | 750          | 2.44 |
|     | $S_{s} - 14$       |               | 192          | 750          | 3.90 |
|     | $S_{s} = 2.1$      |               | 325          | 750          | 2.30 |
|     | S <sub>s</sub> -22 |               | 377          | 750          | 1.98 |
|     | $S_{s} - 31$       | H+, V+        | 487          | 750          | 1.54 |
|     | $S_{s} - 31$       | H-, V+        | 477          | 750          | 1.57 |
| 2   |                    | H-, V+        | 548          | 750          | 1.36 |
| 3   |                    | H+, $V+$      | 535          | 750          | 1.40 |
| 3   |                    |               | 527          | 750          | 1.42 |
| 4   | $S_{s} - 31$       | <b>Ц_</b> V.+ | 477          | 750          | 1.57 |
| 5   | ]                  | 11—, v +      | 484          | 750          | 1.54 |
| 6   |                    |               | 554          | 750          | 1.35 |
| 6   |                    | H+, V+        | 567          | 750          | 1.66 |

表 5.2.1-22 地盤高さの嵩上げ部(改良体)及び表層改良体に対する安全率(断面②)

②:地盤物性のばらつきを考慮(+1 g)した解析ケース

③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地                  | 震動       | すべり力最大<br>Q (kN/m <sup>2</sup> ) | せん断抵抗力<br>R(kN/m <sup>2</sup> ) | 安全率  |
|-----------|--------------------|----------|----------------------------------|---------------------------------|------|
|           |                    | H+, $V+$ | 442                              | 750                             | 1.69 |
|           | S – D 1            | H+, V-   | 443                              | 750                             | 1.69 |
|           | З <sub>s</sub> -D1 | H-, V+   | 380                              | 750                             | 1.97 |
|           |                    | H-, V-   | 375                              | 750                             | 2.00 |
|           | $S_{s} - 1 1$      |          | 264                              | 750                             | 2.84 |
|           | $S_{s} - 1 2$      |          | 306                              | 750                             | 2.45 |
| Ū         | $S_{s} - 1 3$      |          | 295                              | 750                             | 2.54 |
|           | $S_{s} = 1.4$      |          | 280                              | 750                             | 2.67 |
|           | $S_{s} - 21$       |          | 286                              | 750                             | 2.62 |
|           | $S_{s} - 22$       |          | 267                              | 750                             | 2.80 |
|           | $S_{s} - 31$       | H+, $V+$ | 385                              | 750                             | 1.94 |
|           | $S_{s} - 31$       | H-, V+   | 375                              | 750                             | 2.00 |
| 2         |                    | H+, V-   | 478                              | 750                             | 1.56 |
| 2         |                    |          | 486                              | 750                             | 1.54 |
| 3         | S – D 1            |          | 469                              | 750                             | 1.59 |
| 4         | З <sub>s</sub> −и1 | H+, V+   | 318                              | 750                             | 2.35 |
| 5         |                    |          | 364                              | 750                             | 2.06 |
| 6         |                    |          | 426                              | 750                             | 1.76 |

表 5.2.1-23 地盤高さの嵩上げ部(改良体)及び表層改良体に対する安全率(断面③)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | すべり力最大<br>Q (kN/m <sup>2</sup> ) | せん断抵抗力<br>R(kN/m <sup>2</sup> ) | 安全率  |
|-----------|--------------------|----------|----------------------------------|---------------------------------|------|
|           |                    | H+, $V+$ | 235                              | 750                             | 3.19 |
|           | S – D 1            | H+, V-   | 239                              | 750                             | 3.13 |
|           | З <sub>s</sub> -D1 | H-, V+   | 231                              | 750                             | 3.24 |
|           |                    | H-, V-   | 232                              | 750                             | 3.23 |
|           | $S_{s} - 1 1$      |          | 146                              | 750                             | 5.13 |
|           | $S_{s} = 12$       |          | 155                              | 750                             | 4.83 |
| Ū         | $S_{s} - 1 3$      |          | 154                              | 750                             | 4.87 |
|           | $S_{s} - 14$       |          | 112                              | 750                             | 6.69 |
|           | $S_{s} - 21$       |          | 245                              | 750                             | 3.06 |
|           | $S_{s} - 22$       |          | 173                              | 750                             | 4.33 |
|           | $S_{s} - 31$       | H+, $V+$ | 225                              | 750                             | 3.33 |
|           | $S_{s} - 31$       | H-, V+   | 162                              | 750                             | 4.62 |
| 2         |                    |          | 293                              | 750                             | 2.55 |
| 3         |                    | H+, $V+$ | 274                              | 750                             | 2.73 |
| 4         | S _ D 1            |          | 282                              | 750                             | 2.65 |
| 4         | З <sub>s</sub> -D1 | H+, V-   | 286                              | 750                             | 2.62 |
| 5         |                    |          | 200                              | 750                             | 3.75 |
| 6         |                    | п+, v+   | 237                              | 750                             | 3.16 |

表 5.2.1-24 地盤高さの嵩上げ部(改良体)及び表層改良体に対する安全率(断面④)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | すべり力最大<br>Q (kN/m <sup>2</sup> ) | せん断抵抗力<br>R(kN/m <sup>2</sup> ) | 安全率  |
|-----------|--------------------|----------|----------------------------------|---------------------------------|------|
|           |                    | H+, $V+$ | 458                              | 750                             | 1.63 |
|           | S – D 1            | H+, V-   | 453                              | 750                             | 1.65 |
|           | З <sub>s</sub> -D1 | H-, V+   | 447                              | 750                             | 1.67 |
|           |                    | H-, V-   | 444                              | 750                             | 1.68 |
|           | $S_{s} - 1 1$      |          | 432                              | 750                             | 1.73 |
|           | $S_{s} - 1 2$      |          | 462                              | 750                             | 1.62 |
| Ū         | $S_{s} - 1 3$      |          | 448                              | 750                             | 1.67 |
|           | S <sub>s</sub> -14 |          | 396                              | 750                             | 1.89 |
|           | $S_{s} - 21$       |          | 383                              | 750                             | 1.95 |
|           | $S_{s} - 22$       |          | 396                              | 750                             | 1.89 |
|           | $S_{s} - 31$       | H+, $V+$ | 427                              | 750                             | 1.75 |
|           | $S_{s} - 31$       | H-, V+   | 450                              | 750                             | 1.66 |
| 2         |                    |          | 437                              | 750                             | 1.71 |
| 3         |                    | H+, V-   | 463                              | 750                             | 1.61 |
| 4         | S – D 1            |          | 428                              | 750                             | 1.75 |
| 4         | З <sub>s</sub> -D1 | H+, V+   | 433                              | 750                             | 1.73 |
| 5         |                    |          | 435                              | 750                             | 1.72 |
| 6         |                    | п+, v-   | 458                              | 750                             | 1.63 |

表 5.2.1-25 地盤高さの嵩上げ部(改良体)及び表層改良体に対する安全率(断面⑤)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

(4) シートパイルに対する評価結果

シートパイルの断面諸元を表 5.2.1-26 に、せん断力に対する照査結果を表 5.2.1-27 ~表 5.2.1-31 に示す。

シートパイルに対する照査を行った結果,発生応力が許容限界以下であることを確認した。

表 5.2.1-26 シートパイルの断面諸元

| 仕様                              | U型鋼矢板 Ⅲ型            |
|---------------------------------|---------------------|
| 弾性係数 E(kN/m <sup>2</sup> )      | $200 \times 10^{6}$ |
| 断面積 A (mm <sup>2</sup> /m)      | 19100               |
| 断面二次モーメント I (m <sup>4</sup> /m) | 0.000168            |

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断応力<br>(N/mm <sup>2</sup> ) | 短期許容<br>応力度(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|-------------------------------|---------------------------------|------|
|           |                    | H+, V+   |              | 2                             | 190                             | 0.02 |
|           | 0 D 1              | H+, V-   | 28           | 2                             | 190                             | 0.02 |
|           | 5 <sub>s</sub> -D1 | H-, V+   | 34           | 2                             | 190                             | 0.02 |
|           |                    | H-, V-   | 34           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -11 |          | 9            | 1                             | 190                             | 0.01 |
|           | $S_{s} = 1.2$      |          | 15           | 1                             | 190                             | 0.01 |
| Û         | S <sub>s</sub> -13 |          | 14           | 1                             | 190                             | 0.01 |
|           | $S_{s} = 1.4$      |          | 8            | 1                             | 190                             | 0.01 |
|           | S <sub>s</sub> -21 |          | 25           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -22 |          | 23           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H+, $V+$ | 25           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H-, V+   | 14           | 1                             | 190                             | 0.01 |
| 2         |                    |          | 8            | 1                             | 190                             | 0.01 |
| 3         |                    |          | 12           | 1                             | 190                             | 0.01 |
| 4         | $S_{s} - 31$       | H-, V+   | 19           | 1                             | 190                             | 0.01 |
| 5         |                    |          | 17           | 1                             | 190                             | 0.01 |
| 6         |                    |          | 6            | 1                             | 190                             | 0.01 |
| 6         | $S_{s} - 31$       | H+, $V+$ | 16           | 1                             | 190                             | 0.01 |

表 5.2.1-27 せん断力に対する照査結果(断面①)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断応力<br>(N/mm <sup>2</sup> ) | 短期許容<br>応力度(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|-------------------------------|---------------------------------|------|
|           |                    | H+, V+   | 36           | 2                             | 190                             | 0.02 |
|           | 0 D 1              | H+, V-   | 33           | 2                             | 190                             | 0.02 |
|           | 5 <sub>s</sub> -D1 | H-, V+   | 28           | 2                             | 190                             | 0.02 |
|           |                    | H-, V-   | 30           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -11 |          | 8            | 1                             | 190                             | 0.01 |
|           | $S_{s} = 1.2$      |          | 9            | 1                             | 190                             | 0.01 |
| Û         | S <sub>s</sub> -13 |          | 11           | 1                             | 190                             | 0.01 |
|           | $S_{s} = 1.4$      |          | 6            | 1                             | 190                             | 0.01 |
|           | S <sub>s</sub> -21 |          | 17           | 1                             | 190                             | 0.01 |
|           | S <sub>s</sub> -22 |          | 17           | 1                             | 190                             | 0.01 |
|           | S <sub>s</sub> -31 | H+, $V+$ | 19           | 1                             | 190                             | 0.01 |
|           | S <sub>s</sub> -31 | H-, V+   | 44           | 3                             | 190                             | 0.02 |
| 2         |                    |          | 20           | 2                             | 190                             | 0.02 |
| 3         |                    |          | 34           | 2                             | 190                             | 0.02 |
| (4)       | $S_{s} = 3.1$      | H-, V+   | 28           | 2                             | 190                             | 0.02 |
| (5)       |                    |          | 42           | 3                             | 190                             | 0.02 |
| 6         |                    |          | 20           | 2                             | 190                             | 0.02 |
| 3         | S <sub>s</sub> -31 | H+, $V+$ | 13           | 1                             | 190                             | 0.01 |
| 6         | $S_{s} - 31$       | H+, $V+$ | 8            | 1                             | 190                             | 0.01 |

表 5.2.1-28 せん断力に対する照査結果(断面②)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

③:地盤物性のばらつきを考慮(-1 g)した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断応力<br>(N/mm <sup>2</sup> ) | 短期許容<br>応力度(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|-------------------------------|---------------------------------|------|
|           |                    | H+, V+   |              | 4                             | 190                             | 0.03 |
|           | 0 D 1              | H+, V-   | 64           | 4                             | 190                             | 0.03 |
|           | S₅−D1              | H-, V+   | 64           | 4                             | 190                             | 0.03 |
|           |                    | H-, V-   | 62           | 4                             | 190                             | 0.03 |
|           | S <sub>s</sub> -11 |          | 49           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -12 |          | 58           | 4                             | 190                             | 0.02 |
| Û         | S <sub>s</sub> -13 |          | 58           | 4                             | 190                             | 0.02 |
|           | $S_{s} = 1.4$      |          | 41           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -21 |          | 47           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -22 |          | 56           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H+, $V+$ | 39           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H-, V+   | 54           | 3                             | 190                             | 0.02 |
| 2         |                    |          | 34           | 2                             | 190                             | 0.02 |
| 3         |                    |          | 49           | 3                             | 190                             | 0.02 |
| 4         | $S_s - D 1$        | H+, $V+$ | 71           | 4                             | 190                             | 0.03 |
| 5         |                    |          | 60           | 4                             | 190                             | 0.03 |
| 6         |                    |          | 43           | 3                             | 190                             | 0.02 |
| 2         | $S_s - D1$         | H+, $V-$ | 34           | 2                             | 190                             | 0.01 |

表 5.2.1-29 せん断力に対する照査結果(断面③)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断応力<br>(N/mm <sup>2</sup> ) | 短期許容<br>応力度(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|-------------------------------|---------------------------------|------|
|           |                    | H+, V+   | 106          | 6                             | 190                             | 0.04 |
|           |                    | H+, V-   | 106          | 6                             | 190                             | 0.04 |
|           | S₅−D1              | H-, V+   | 127          | 7                             | 190                             | 0.04 |
|           |                    | H-, V-   | 127          | 7                             | 190                             | 0.04 |
|           | S <sub>s</sub> -11 |          | 64           | 4                             | 190                             | 0.03 |
|           | S <sub>s</sub> -12 |          | 85           | 5                             | 190                             | 0.03 |
| Û         | S <sub>s</sub> -13 |          | 64           | 4                             | 190                             | 0.03 |
|           | S <sub>s</sub> -14 |          | 42           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -21 |          | 127          | 7                             | 190                             | 0.04 |
|           | S <sub>s</sub> -22 |          | 85           | 5                             | 190                             | 0.03 |
|           | S <sub>s</sub> -31 | H+, $V+$ | 64           | 4                             | 190                             | 0.03 |
|           | S <sub>s</sub> -31 | H-, V+   | 127          | 7                             | 190                             | 0.04 |
| 2         |                    |          | 85           | 5                             | 190                             | 0.03 |
| 3         |                    |          | 127          | 7                             | 190                             | 0.04 |
| 4         | $S_s - D 1$        | H+, $V+$ | 149          | 8                             | 190                             | 0.05 |
| 5         |                    |          | 127          | 7                             | 190                             | 0.04 |
| 6         |                    |          | 106          | 6                             | 190                             | 0.04 |
| 4         | $S_s - D 1$        | H+, V-   | 138          | 8                             | 190                             | 0.04 |

表 5.2.1-30 せん断力に対する照査結果(断面④)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討<br>ケース | 地震動                |          | せん断力<br>(kN) | せん断応力<br>(N/mm <sup>2</sup> ) | 短期許容<br>応力度(N/mm <sup>2</sup> ) | 照査値  |
|-----------|--------------------|----------|--------------|-------------------------------|---------------------------------|------|
|           |                    | H+, V+   | 45           | 3                             | 190                             | 0.02 |
|           | 8 D 1              | H+, V-   | 45           | 3                             | 190                             | 0.02 |
|           | $S_s - DI$         | H-, V+   | 41           | 3                             | 190                             | 0.02 |
|           |                    | H-, V-   | 40           | 3                             | 190                             | 0.02 |
|           | S <sub>s</sub> -11 |          | 27           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -12 |          | 44           | 3                             | 190                             | 0.02 |
| Û         | S <sub>s</sub> -13 |          | 47           | 3                             | 190                             | 0.02 |
|           | $S_{s} - 14$       |          | 23           | 2                             | 190                             | 0.02 |
|           | $S_{s} = 2.1$      |          | 31           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -22 |          | 31           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H+, V+   | 29           | 2                             | 190                             | 0.02 |
|           | S <sub>s</sub> -31 | H-, V+   | 27           | 2                             | 190                             | 0.02 |
| 2         |                    |          | 36           | 2                             | 190                             | 0.02 |
| 3         |                    |          | 58           | 4                             | 190                             | 0.03 |
| (4)       | $S_s - D 1$        | H+, V-   | 37           | 2                             | 190                             | 0.02 |
| 5         |                    |          | 37           | 2                             | 190                             | 0.02 |
| 6         |                    |          | 29           | 2                             | 190                             | 0.02 |
| 4         | $S_{s} - D 1$      | H+, $V+$ | 37           | 2                             | 190                             | 0.01 |

表 5.2.1-31 せん断力に対する照査結果(断面⑤)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

## 5.2.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する照査結果を表 5.2.2-1~表 5.2.2-5 に示す。 基礎地盤の支持力に対する照査を行った結果、接地圧が極限支持力度以下であることを 確認した。

| 検討  | 地震動                |          | 最大接地圧      | 極限支持力度     |
|-----|--------------------|----------|------------|------------|
| ケース |                    |          | $(kN/m^2)$ | $(kN/m^2)$ |
|     |                    | H+, $V+$ | 796        | 4324       |
|     | C D 1              | H+, V-   | 782        | 4324       |
|     | $S_s - DI$         | H-, V+   | 786        | 4324       |
|     |                    | H-, V-   | 842        | 4324       |
|     | $S_{s} = 1 \ 1$    |          | 587        | 4324       |
|     | $S_{s} = 1.2$      |          | 622        | 4324       |
| Û   | S <sub>s</sub> -13 |          | 611        | 4324       |
|     | $S_{s} = 1.4$      |          | 577        | 4324       |
|     | $S_{s} = 2.1$      |          | 697        | 4324       |
|     | $S_{s} = 2.2$      |          | 717        | 4324       |
|     | S <sub>s</sub> -31 | H+, $V+$ | 578        | 4324       |
|     | $S_{s} = 3.1$      | H-, V+   | 594        | 4324       |
| 2   |                    |          | 605        | 4324       |
| 3   |                    |          | 614        | 4324       |
| 4   | $S_{s} = 3.1$      | H-, V+   | 733        | 4324       |
| 5   |                    |          | 619        | 4324       |
| 6   |                    |          | 630        | 4324       |
| 6   | $S_{s} = 3.1$      | H+, $V+$ | 557        | 4324       |

表 5.2.2-1 基礎地盤の支持性能に対する照査結果(断面①)

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1σ)した解析ケース
③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤: 原地盤において非液状化の条件を仮定した解析ケース

| 検討  | 討 地震動                     |          | 最大接地圧      | 極限支持力度     |
|-----|---------------------------|----------|------------|------------|
| ケース |                           |          | $(kN/m^2)$ | $(kN/m^2)$ |
|     |                           | H+, $V+$ | 871        | 4322       |
|     | S D 1                     | H+, V-   | 882        | 4322       |
|     | $S_s - D_1$               | H-, V+   | 860        | 4322       |
|     |                           | H-, V-   | 875        | 4322       |
|     | $S_{s} - 1 1$             |          | 660        | 4322       |
|     | $S_{s} - 12$              |          | 679        | 4322       |
| Û   | $S_{s} - 1 3$             |          | 675        | 4322       |
|     | $S_{s} - 14$              |          | 634        | 4322       |
|     | $S_{s} - 21$              |          | 708        | 4322       |
|     | S <sub>s</sub> -22        |          | 697        | 4322       |
|     | $S_{s} - 31$              | H+, $V+$ | 612        | 4322       |
|     | S <sub>s</sub> -31 H-, V+ |          | 617        | 4322       |
| 2   |                           |          | 618        | 4322       |
| 3   |                           |          | 604        | 4322       |
| 4   | $S_{s} = 3.1$             | H-, V+   | 810        | 4322       |
| 5   |                           |          | 627        | 4322       |
| 6   |                           |          | 631        | 4322       |
| 6   | $S_{s} = 3.1$             | H+.V+    | 669        | 4322       |
| 3   | 58 01                     | ±±', * ' | 631        | 4322       |

表 5.2.2-2 基礎地盤の支持性能に対する照査結果(断面②)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討             | 地震動                |          | 最大接地圧      | 極限支持力度     |
|----------------|--------------------|----------|------------|------------|
| ケース            |                    |          | $(kN/m^2)$ | $(kN/m^2)$ |
|                |                    | H+, $V+$ | 1313       | 4843       |
|                | 0 D 1              | H+, V-   | 1335       | 4843       |
|                | $S_s - D_1$        | H-, V+   | 1386       | 4843       |
|                |                    | H-, V-   | 1336       | 4843       |
|                | $S_{s} - 1 1$      |          | 1113       | 4843       |
|                | $S_{s} = 12$       |          | 1214       | 4843       |
| ( <u>1</u> ) S | S <sub>s</sub> -13 |          | 1201       | 4843       |
|                | $S_{s} = 1.4$      |          | 1108       | 4843       |
|                | $S_{s} = 2.1$      |          | 1210       | 4843       |
|                | $S_{s} = 2.2$      |          | 1189       | 4843       |
|                | $S_{s} - 31$       | H+, $V+$ | 937        | 4843       |
|                | S <sub>s</sub> -31 | H-, V+   | 980        | 4843       |
| 2              |                    |          | 1330       | 4843       |
| 3              |                    |          | 1307       | 4843       |
| 4              | $S_s - D1$         | H+, $V+$ | 1498       | 4843       |
| 5              |                    |          | 1252       | 4843       |
| 6              |                    |          | 1234       | 4843       |
| 2              | $S_s - D 1$        | H+, $V-$ | 1355       | 4843       |

表 5.2.2-3 基礎地盤の支持性能に対する照査結果(断面③)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討  | t<br>ス<br>地震動      |          | 最大接地圧      | 極限支持力度     |
|-----|--------------------|----------|------------|------------|
| ケース |                    |          | $(kN/m^2)$ | $(kN/m^2)$ |
|     |                    | H+, $V+$ | 1198       | 4767       |
|     | 0 D 1              | H+, V-   | 1247       | 4767       |
|     | $S_s - DI$         | H-, V+   | 1240       | 4767       |
|     |                    | H-, V-   | 1152       | 4767       |
|     | $S_{s} = 1.1$      |          | 1119       | 4767       |
|     | $S_{s} = 1.2$      |          | 1138       | 4767       |
|     | S <sub>s</sub> -13 |          | 1142       | 4767       |
|     | $S_{s} = 1.4$      |          | 1103       | 4767       |
|     | $S_{s} = 2.1$      |          | 1128       | 4767       |
|     | $S_{s} = 2.2$      |          | 1148       | 4767       |
|     | S <sub>s</sub> -31 | H+, V+   | 936        | 4767       |
|     | S <sub>s</sub> -31 | H-, V+   | 960        | 4767       |
| 2   |                    |          | 1196       | 4767       |
| 3   |                    |          | 1194       | 4767       |
| 4   | $S_s - D1$         | H+, $V+$ | 1589       | 4767       |
| 5   |                    |          | 1204       | 4767       |
| 6   |                    |          | 1204       | 4767       |
| 4   | $S_s - D_1$        | H+, V-   | 1561       | 4767       |

表 5.2.2-4 基礎地盤の支持性能に対する照査結果(断面④)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

| 検討  | 地震動                |           | 最大接地圧      | 極限支持力度     |
|-----|--------------------|-----------|------------|------------|
| ケース |                    |           | $(kN/m^2)$ | $(kN/m^2)$ |
|     |                    | H+, $V+$  | 674        | 4543       |
|     | S D 1              | H+, V-    | 671        | 4543       |
|     | $S_s - DI$         | H-, V+    | 720        | 4543       |
|     |                    | H-, V-    | 666        | 4543       |
|     | $S_{s} - 1 1$      |           | 637        | 4543       |
|     | $S_{s} = 12$       |           | 614        | 4543       |
| (I) | S <sub>s</sub> -13 |           | 607        | 4543       |
|     | $S_{s} - 14$       |           | 649        | 4543       |
|     | $S_{s} = 2.1$      |           | 679        | 4543       |
|     | $S_{s} = 22$       |           | 700        | 4543       |
|     | S <sub>s</sub> -31 | H+, $V+$  | 628        | 4543       |
|     | S <sub>s</sub> -31 | H-, V+    | 646        | 4543       |
| 2   |                    |           | 665        | 4543       |
| 3   |                    |           | 629        | 4543       |
| 4   | $S_s - D 1$        | H+, V $-$ | 435        | 4543       |
| 5   |                    |           | 641        | 4543       |
| 6   |                    |           | 655        | 4543       |
| 4   | $S_s - D_1$        | H+, $V+$  | 473        | 4543       |

表 5.2.2-5 基礎地盤の支持性能に対する照査結果(断面⑤)

②:地盤物性のばらつきを考慮(+1 σ)した解析ケース
③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

5.2.3 構造物の変形性に対する評価結果

地震時の止水ジョイント部の相対変位量に対する照査結果を表 5.2.3-1 及び表 5.2.3 -2 に示す。なお,詳細な算出方法については「6.12 止水ジョイント部材の相対変位量 に関する補足説明」に示す。

地震時の止水ジョイント部の相対変位量に対する照査を行った結果,相対変位量が許容 限界以下であることを確認した。

|                 | δx (m) | δy (m) | δz (m) | 最大合成変位量(m)<br>√(δx <sup>2</sup> +δy <sup>2</sup> +δz <sup>2</sup> ) | 許容限界(m) |
|-----------------|--------|--------|--------|---------------------------------------------------------------------|---------|
| 一般部<br>地震時相対変位量 | 0.812  | 0.824  | 0.100  | 1.162                                                               | 1.5     |

表 5.2.3-1 一般部の地震時相対変位量

| <b>冶</b> 墨 委 見 | 堤内側   | δx    | δу    | δz    | 最大合成変位量 (m)                                     | 新 <u>索</u> 阳田(…) |
|----------------|-------|-------|-------|-------|-------------------------------------------------|------------------|
| 1111 但 留 万     | 角度(゜) | (m)   | (m)   | (m)   | $\sqrt{(\delta x^2 + \delta y^2 + \delta z^2)}$ | 計谷 欧外(m)         |
| 1              | 141.5 | 0.467 | 0.987 | 0.100 | 1.097                                           | 1.5              |
| 2              | 133.9 | 0.984 | 0.419 | 0.100 | 1.075                                           | 1.5              |
| 3              | 192.7 | 0.893 | 0.725 | 0.100 | 1.155                                           | 1.5              |
| 4              | 121.0 | 0.968 | 0.548 | 0.100 | 1.117                                           | 1.5              |
| 5              | 133.2 | 0.984 | 0.426 | 0.100 | 1.077                                           | 1.5              |
| 6              | 138.0 | 0.432 | 0.990 | 0.100 | 1.085                                           | 1.5              |
| 7              | 226.5 | 0.425 | 0.990 | 0.100 | 1.083                                           | 1.5              |
| 8              | 90.2  | 0.819 | 0.817 | 0.100 | 1.162                                           | 1.5              |
| 9              | 146.9 | 0.521 | 0.979 | 0.100 | 1.114                                           | 1.5              |

表 5.2.3-2 隅角部の地震時相対変位量



図 5.2.3-1 隅角部の地震時相対変位量の評価位置番号

## 5.3 まとめ

「5.2 耐震評価結果」による全ての評価項目において、鋼管杭鉄筋コンクリート 防潮壁の評価対象部位に作用する応力の照査値及び接地圧が許容限界以下であること を確認した。
鋼管杭鉄筋コンクリート防潮壁の耐震安全性評価に関する参考資料

(参考1) 減衰定数の設定について

地震応答解析における減衰定数については,固有値解析にて求まる固有周期及び減衰 比に基づき,質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお,Rayleigh 減衰をα=0となる剛性比例型減衰とする。 Rayleigh 減衰の設定は,地盤の低次のモードの変形が特に支配的となる地中埋設構造物 のような地盤及び構造系全体に対して,その特定の振動モードの影響が大きいことを考 慮し,かつ,振動モードの影響が全体系に占める割合の観点から,刺激係数に着目し行 う。

固有値解析による刺激係数及びモード図を図 1-1 に示す。また,設定した Rayleigh 減衰を図 1-2 に示す。

1 次の基準モードについては、地盤及び構造系全体がせん断変形しているモードを選 定している。

構造物の1次モードについては、刺激係数を勘案し構造系がせん断変形しているモードに着目することにより選定している。

なお、初期減衰定数は、地盤については 1%(解析における減衰は、ひずみが大きい 領域では履歴減衰が支配的となる。そのため、解析上の安定のためになるべく小さい値 として 1%を採用している。)とする。また、線形材料としてモデル化する鋼材につい ては 3%(道路橋示方書(V耐震設計編)同解説(平成 14 年 3 月))とする。







(断面③ 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

(参考) 6.4.1.1-5



(断面④ 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

(参考) 6.4.1.1-6







(断面② 検討ケース②:地盤物性のばらつきを考慮(+1α)した解析ケース)

(参考) 6.4.1.1-9



(参考) 6.4.1.1-10





(参考) 6.4.1.1-11





図1-1(10) 鋼管抗鉄筋コンクリート防潮壁の固有値解析結果

(参考) 6.4.1.1-12



(断面① 検討ケース③:地盤物性のばらつきを考慮(-1°)した解析ケース)

(参考) 6.4.1.1-13



(参考) 6.4.1.1-14





(断面③ 検討ケース③:地盤物性のばらつきを考慮(-10)した解析ケース)



(断面④ 検討ケース③:地盤物性のばらつきを考慮(-1°)した解析ケース)

(参考) 6.4.1.1-16



(断面⑤ 検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

(参考) 6.4.1.1-17



(参考) 6.4.1.1-18









(断面④ 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース)







図 1-2(1) 設定した Rayleigh 減衰 (断面① 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)



図 1-2(2) 設定した Rayleigh 減衰 (断面② 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)





図 1-2(4) 設定した Rayleigh 減衰 (断面④ 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)



図 1-2(5) 設定した Rayleigh 減衰 (断面⑤ 検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)



図 1-2(6) 設定した Rayleigh 減衰(断面① 検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース)



図 1-2(7) 設定した Rayleigh 減衰(断面② 検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース)



図 1-2(8) 設定した Rayleigh 減衰(断面③ 検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース)



図 1-2(9) 設定した Rayleigh 減衰(断面④ 検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース)



図 1-2(10) 設定した Rayleigh 減衰(断面⑤ 検討ケース②:地盤物性のばらつきを考慮(+1 g)した解析ケース)



図 1-2(11) 設定した Rayleigh 減衰(断面① 検討ケース③:地盤物性のばらつきを考慮(-1 g)した解析ケース)



図 1-2(12) 設定した Rayleigh 減衰 (断面② 検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース)



図 1-2(13) 設定した Rayleigh 減衰(断面③ 検討ケース③:地盤物性のばらつきを考慮(-1 g)した解析ケース)



図 1-2(14) 設定した Rayleigh 減衰 (断面④ 検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース)



図 1-2(15) 設定した Rayleigh 減衰

(断面⑤ 検討ケース③:地盤物性のばらつきを考慮(-1 σ)した解析ケース)



図 1-2 (16) 設定した Rayleigh 減衰 (断面① 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的 に液状化させることを仮定した解析ケース)



図 1-2 (17) 設定した Rayleigh 減衰

(断面② 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的 に液状化させることを仮定した解析ケース)



図 1-2 (18) 設定した Rayleigh 減衰 (断面③ 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的 に液状化させることを仮定した解析ケース)



図 1-2 (19) 設定した Rayleigh 減衰

(断面④ 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的 に液状化させることを仮定した解析ケース)



図 1-2 (20) 設定した Rayleigh 減衰 (断面⑤ 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的 に液状化させることを仮定した解析ケース)

(参考2) 3次元FEM解析について

2.1 解析モデル及び諸元

3次元FEMモデルは、上部構造をソリッド要素、鋼管杭をシェル要素によりモデル化し、 地盤抵抗を表現するための地盤バネを設定する。

・ソリッド要素

ソリッド要素 (Solid or brick element) は、その名の示すとおり、レンガの形をした3 次元要素であり、節点において並進3自由度を有している。



図 2.1-1 3次元ソリッド要素

・シェル要素

シェル要素は、梁と同様に構造要素であり、LNG タンクや圧力容器などの薄肉構造物の解 析にも用いられる。梁要素と同様、ソリッド要素によるモデル化と比べると、総自由度数が 大幅に軽減される。



・地盤バネ

3次元FEMモデルにおける地盤バネの設定は「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」を適用し、地盤反力上限値を考慮したバイリニア型とする。また、地盤高さの嵩上げ部上面から杭下端までの範囲で考慮し、設計上の地盤面は地盤高さの嵩上げ部上面とする。

地盤バネの設定方法は、2次元梁バネモデルと同様に、原地盤物性のばらつきを考慮した 場合と敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させるこ とを仮定した場合の2ケースで設定する。

(1) 原地盤物性のばらつきを考慮した場合

原地盤物性のばらつきを考慮した場合の水平地盤バネは以下の方法で設定する。表 2.1-1 に示したケースで1次元有効応力解析を実施し,地表面変位最大ケース(地盤バネ最小値) と地表面加速度最大ケース(地盤バネ最大値)の平均有効主応力とせん断ひずみにより求め られる地盤剛性及び反力上限値を有する地盤バネを両端の杭に設定する。1次元有効応力解 析に用いる地震波は、2次元有効応力解析検討ケースの①ケース(基本ケース)原地盤に基 づく液状化強度特性を用いた解析ケースにおいて、基準地震動S<sub>s</sub>全地震波による2次元有 効応答解析によって求められる鋼管杭の曲げ軸力照査の照査値が最も大きくなる地震波を用 いる。

中央3箇所の鋼管杭には両端の地盤バネを線形補間した地盤バネを設定する。

|  | 検討ケース          | <ol> <li>①</li> <li>原地盤に基づく液状化強度</li> <li>特性を用いた</li> <li>解析ケース(基本ケース)</li> </ol>   | ②<br>地盤物性の<br>ばらつ(+1<br>σ)した<br>析ケース                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ③<br>地盤物性の<br>ばらっ<br>考慮(-1<br>σ)した解<br>析ケース                                      | <ol> <li>⑤</li> <li>原地盤にお<br/>いて非液状<br/>化の条件を<br/>仮定した<br/>析ケース</li> </ol> | <ul> <li>⑥</li> <li>地盤物性のば</li> <li>らつきを考慮</li> <li>(+1σ)し</li> <li>て非液状化の</li> <li>条件を仮定し</li> <li>た解析ケース</li> </ul> |
|--|----------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|  | 液状化強度特性<br>の設定 | <ul> <li>原地盤に基</li> <li>づく液状化</li> <li>強度特性</li> <li>(標準偏差</li> <li>を考慮)</li> </ul> | <ul><li>原地盤に</li><li>基づく強度</li><li>状化性(</li><li>様</li><li>株</li><li>株</li><li>株</li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul> <li></li> <li><li></li><li><li></li><li><li></li><li><li></li><li><li></li></li></li></li></li></li> | <ul> <li>原地盤に</li> <li>基づく強度</li> <li>状化性(</li> <li>特準偏差</li> <li>考慮)</li> </ul> | 液状化パ<br>ラメータ<br>を非適用                                                       | 液状化パラ<br>メータを非<br>適用                                                                                                  |

表 2.1-1 1次元有効応力解析検討ケース

また,水平方向変位を地盤バネに与える。水平方向変位は,上記の2つの地盤物性を用いた1次元有効応力解析結果における地表面最大変位を,両端のバネにそれぞれ与え,中央3 箇所のバネには両端バネの変位を線形で補間した値を与える。

地盤バネは「道路橋示方書・同解説 IV 下部構造編(平成14年3月)」に基づき,以下の 式で算定する。



図 2.1-3 地盤バネのバイリニアモデル

a. 水平方向地盤バネのバネ定数

鋼管杭周辺の地盤バネは全周の半径方向の面分布バネとしてモデル化する。鋼管杭シ ェルは円周方向に48分割しているため、以下の式により計算する。

 $K_{h1} = k_h \times \pi / 48$ 

ここで, K<sub>h1</sub>: 半径方向拘束バネのバネ定数(kN/m)

kh:水平方向地盤バネのバネ定数(kN/m)

また、鋼管杭鉄筋コンクリート防潮壁の堤内側の地盤バネは以下の式により計算する。  $K_{h2} = k_h \times L \times H_w / (D \times H)$ 

ここで, Kh2: 防潮壁堤内側の地盤バネのバネ定数(kN/m)

k<sub>h</sub>:水平方向地盤バネのバネ定数(kN/m)

- L:分担幅 (m)
- H<sub>w</sub>:分担高さ(m)
- D:杭径 (m)
- H:支配長さ (m)

バネ定数 khの算定方法を以下に示す。

## $k_h = \mu \eta_k \alpha_k k_H D H$

ここで,

k<sub>b</sub>:水平方向地盤バネのバネ定数(kN/m)

μ:水平方向地盤反力係数の補正係数

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づき,以下 に示す水平方向地盤反力係数の補正係数 μ を考慮したバネ定数を設定する。

$$\mu = 1 - 0.2 \left( 2.5 - \frac{L}{D} \right) \left[ L < 2.5D \right]$$

ここで,

D:杭径(m)

η<sub>k</sub>: 群杭効果を考慮した補正係数

L: 杭中心間隔(m)

*a*<sub>k</sub>:単杭における補正係数

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づき,以下 に示す補正係数を考慮したバネ定数を設定する。

表 2.1-2  $\eta_k$ ,  $\alpha_k$ の値

|       | -                   | -               |
|-------|---------------------|-----------------|
| 対象    | $\eta_{\mathrm{k}}$ | $\alpha_{ m k}$ |
| 粘性土地盤 | 2/3                 | 1.5             |
| 砂質土地盤 | 2/3                 | 1.5             |

k<sub>H</sub>:水平方向地盤反力係数(kN/m<sup>3</sup>)

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づき,水平 方向地盤反力係数 k<sub>H</sub>を算定する。

$$k_H = k_{H0} \left(\frac{B_H}{0.3}\right)^{-\frac{3}{4}}$$

ここで,

k<sub>H</sub>:水平方向地盤反力係数(kN/m<sup>3</sup>)

*k<sub>H0</sub>*: 直径 0.3m 剛体円板による水平載荷試験の値に相当する水平方向地盤反力 係数(kN/m<sup>3</sup>)

「道路橋示方書・同解説 IV 下部構造編(平成14年3月)」に基づき,水平方向地盤反力係数 kttoを以下の式より算定する。

$$k_{H0} = \frac{1}{0.3} \alpha E_0$$

ここで,

**α**:地盤反力係数の換算係数(α=1)

E<sub>0</sub>:地盤の変形係数

E<sub>0</sub>は1次元有効応力解析における地表面最大加速度発生時刻 (地盤バネ最大値)及び地表面最大変位発生時刻(地盤バネ最小 値)それぞれの時刻での平均有効主応力σ'm及びせん断ひずみγの 深度分布を用いて以下の式で求められる割線せん断剛性 G<sub>s</sub>により 設定する。

$$E_0 = 2(1+\nu_d)G_s$$

 $c - \tau_s$ 

$$\sigma_{s} = \frac{\gamma}{\gamma}$$

$$\tau_{s} = \frac{\gamma}{\frac{1}{G_{ma} \times \left(\frac{\sigma'_{m}}{\sigma'_{ma}}\right)^{0.5}} + \left|\frac{\gamma}{C \times \cos\phi_{CD} + \sigma'_{m} \times \sin\phi_{CD}}\right|}$$

ここで, ν<sub>d</sub> : 動ポアソン比
$G_s: 割線せん断剛性(kN/m<sup>2</sup>)$ 

 $\tau_s: 骨格曲線上のせん断応力(kN/m<sup>2</sup>)$ 

- γ: せん断ひずみ
- C:粘着力(kN/m<sup>2</sup>)

 $\phi_{CD}$ : 内部摩擦角(°)

B<sub>H</sub>:荷重作用方向に直交する基礎の換算載荷幅(m)

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づき B<sub>H</sub>を算定する。なお,杭基礎の特性値βは初期値 1.0,許容誤差 1.0E-5 を設定し,繰り返し計算により算定する。

$$B_H = \sqrt{D/\beta}$$

ここで,

D:荷重作用方向に直交する基礎の載荷幅 = 杭径

**β**: 杭基礎の特性値(m<sup>-1</sup>)

$$\beta = \sqrt[4]{\frac{k_H D}{4EI}}$$

*EI*: 杭の曲げ剛性(kN・m<sup>2</sup>)

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」の記述に 基づき,換算載荷幅  $B_H$ は,設計上の地盤面から  $1/\beta$  までの深さの平均的 な  $\alpha E_0$  ( $\alpha = 1$ )を用いて算定する。

D: 杭径(m)

H:支配長さ(m)

b. 水平方向地盤バネの反力上限値 P<sub>h</sub>

鋼管杭周辺地盤バネの反力上限値 Ph1は,鋼管杭シェルは円周方向に 48 分割している ため,以下の式により計算する。

 $P_{h1} = P_h \times \pi / 48$ 

ここで, P<sub>h1</sub>: 鋼管杭周辺地盤バネの反力上限値(kN/m)

Ph:水平方向地盤バネの反力上限値(kN/m)

また,鋼管杭鉄筋コンクリート防潮壁の堤内側の地盤バネの反力上限値 Ph2 は,以下の式により計算する。

 $P_{h2} = P_h \times L \times H_w / (D \times H)$ 

ここで、Ph2:防潮壁堤内側の地盤バネの反力上限値(kN/m)

P<sub>h</sub>:水平方向地盤バネの反力上限値(kN/m)

L:分担幅 (m)

H<sub>w</sub>:分担高さ(m)

D:杭径 (m)

H:支配長さ (m)

反力上限値 Phの算定方法を以下に示す。

 $P_h = P_{HU}DH$ 

ここで,

*P<sub>HU</sub>*:受動土圧強度(kN/m<sup>2</sup>)

- D: 杭径(m)
- H:支配長さ(m)

「道路橋示方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づき,受働土圧 強度 *P*<sub>m</sub>を算定する。

 $P_{HU} = \eta_p \alpha_p p_U$ 

ここで

η<sub>ρ</sub>:群杭効果を考慮した水平方向反力の上限値の補正係数

a<sub>p</sub>: 単杭における水平地盤反力度の上限値の補正係数

pu: 地震時受動土圧強度(kN/m²)

 $\eta_p \alpha_p$ は以下の値とする。

| 対象         | $n_{p}$ | $\alpha_p$ | $\eta_p a_p$            |
|------------|---------|------------|-------------------------|
| 粘性土地盤(N>2) | 1.0     | 1.5        | 1.5                     |
| 粘性土地盤(N≦2) | 1.0     | 1.0        | 1.0                     |
| 砂質土地盤      | _       | 3.0        | $L/D \ (\leq \alpha_p)$ |

表 2.1-3 補正係数 η ραρ

※ 道路橋示方書・同解説 IV 下部構造編(平成14年3月)

※ 表中のLは杭の中心間隔(m), Dは杭径(m)

地震時受働土圧強度 *p*<sub>U</sub>は,1次元有効応力解析における地表面最大加速 度発生時刻(地盤バネ最大値)及び地表面最大変位発生時刻(地盤バネ最小 値)それぞれの時刻での平均有効主応力 σ<sup>'</sup> の深度分布を用いて,以下の式 により算出する。

 $p_{II} = C \times \cos\phi_{CD} + \sigma'_m \times (1 + \sin\phi_{CD})$ 

ここで,

C:粘着力(kN/m²)

φ<sub>CD</sub>: 内部摩擦角(CD条件)

σ'm: 平均有効主応力(kN/m²)

(2) 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを 仮定した場合

水平地盤バネは以下の方法で設定する。

平均剛性地盤で実施した有効応答解析による鋼管杭の曲げ軸力照査で安全率が最も小さ い地震波を用いて、検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケースにおいて1次元有効応力解析を実 施し、各地盤深度の平均有効主応力とせん断ひずみにより求めた割線剛性を用いて地盤バ ネを算出し、地盤バネを算定する。

また,水平方向変位を地盤バネに与える。水平方向変位は,1次元有効応力解析結果に おける変位分布を与える。

バネ定数及び反力上限値は,原地盤物性のばらつきを考慮した場合と同様に「道路橋示 方書・同解説 IV 下部構造編(平成 14 年 3 月)」に基づいて算出する。

3次元FEMモデルの概要図を図 2.1-4 に示す。

図 2.1-4 3次元 FEM解析モデル

- 2.2 鉄筋コンクリートの評価結果
  - 3次元梁バネモデルによる鉄筋コンクリートの照査は以下のケースにおいて実施した。
    - (a) 原地盤物性のばらつきを考慮した場合 設定した両端の杭の水平方向地盤反力係数及び反力上限値を図 2.2-1 及び図 2.2-2
      2 に、それぞれを比較したものを図 2.2-3 に示す。また、両端の杭に与える水平変位 を図 2.2-4 に、比較したものを図 2.2-5 に示す。
    - (b) 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させる ことを仮定した場合 設定した杭の水平方向地盤反力係数及び反力上限値を図 2.2-6 に,杭に与える水平

設定した机の水平方向地盛及力保数及び及力工候値を図 2.2-6 に、机に与える水平 変位を図 2.2-7 に示す。





図 2.2-1 水平方向地盤反力係数及び反力上限値:杭1 (a)

図 2.2-2 水平方向地盤反力係数及び反力上限値:杭5 (a)







図 2.2-4 水平変位 (a)





図 2.2-6 水平方向地盤反力係数及び反力上限値(b)



図 2.2-7 水平変位の比較(b)

水平震度を表 2.2-1 に示す。

| 表 2.2-1 水平震度( | $S_{s} - D1$ | H+, | V+) |
|---------------|--------------|-----|-----|
|---------------|--------------|-----|-----|

|     | (a)  | (b)  |
|-----|------|------|
| 断面③ | 0.24 | 0.12 |

(1) 曲げ軸力に対する照査

3次元FEM解析モデル断面位置図を図2.2-8に,鉄筋コンクリート断面諸元を表2.2 -2に示す。

図 2.2-8 3次元FEM解析モデル断面位置図

| ~~     |      |       |        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |          |
|--------|------|-------|--------|-----------------------------------------|----------|
| 断面     |      | かぶり   | 断面有効高さ | <del>-</del>                            | 主筋断面積    |
|        |      | (m)   | (m)    | 土肋                                      | $(cm^2)$ |
| 断百     | ī A1 | 0.15  | 0.55   | 6.667-D35                               | 63.777   |
| 断面 A2  |      | 0.15  | 0.55   | 6.667-D35                               | 63.777   |
| 断面 A3  |      | 0.15  | 0.55   | 6.667-D35                               | 63.777   |
|        | 堤外側  | 0.35  | 3.15   | 13.333-D35                              | 127.543  |
| 哟 间 DI | 堤内側  | 0.15  | 3.35   | 6.667-D35                               | 63.777   |
| ₩₽₩ ₽2 | 堤外側  | 0.35  | 3.15   | 13.333-D35                              | 127.543  |
| 哟 间 D2 | 堤内側  | 0.15  | 3.35   | 6.667-D35                               | 63.777   |
| 断面 C2  |      | 0.15  | 0.15   | 6.667-D35                               | 63.777   |
| 断面 D   |      | 0. 08 | 0.06   | 6.667-D35                               | 63. 777  |

表2.2-2 鉄筋コンクリート断面諸元(断面③・3次元FEM解析モデル)



図 2.2-9 断面力図(断面③:3次元FEM解析モデル 解析ケース(a))



図 2.2-10 断面力図(断面③: 3 次元 F E M 解析モデル 解析ケース(b))

| 解析<br>ケース |         | 曲げ                      | 曲げ 曲力 曲げ | 曲げ 曲げ |                              | 短期許容応力度<br>(N/mm <sup>2</sup> ) |          | 曲げ<br>引張  |           |
|-----------|---------|-------------------------|----------|-------|------------------------------|---------------------------------|----------|-----------|-----------|
|           | 地震動     | モーメント $(kN \cdot m)$ (h | (kN)     | (kN)  | 引張応力<br>(N/mm <sup>2</sup> ) | 曲げ<br>圧縮                        | 曲げ<br>引張 | 応力<br>照査値 | 応力<br>照査値 |
| (a)       | Ss-D1++ | 1294                    | 50       | 1.0   | 69.0                         | 21                              | 435      | 0.05      | 0.16      |
| (b)       | Ss-D1++ | -10                     | 187      | 2.2   | 41.1                         | 21                              | 435      | 0.11      | 0.10      |

表 2.2-3 曲げ軸力に対する照査(断面③:3次元 FEM解析モデル)

2次元梁バネモデルとの比較として,断面 A2 における断面力図を図 2.2-11 及び図 2.2-12 に,最も照査値が大きくなった位置での照査結果を表 2.2-4 に示す。



図 2.2-11 断面力図(断面③: 3次元 F E M 解析モデル 解析ケース(a))



図 2.2-12 断面力図(断面③: 3次元FEM解析モデル 解析ケース(b))

| 解析  | 业雪乱     | 曲げ               | 軸力   | 曲げ                               | 曲げ<br>司運立力                      | 短期許約<br>(N/i | 客応力度<br>mm <sup>2</sup> ) | 曲げ<br>圧縮  | 曲げ<br>引張  |
|-----|---------|------------------|------|----------------------------------|---------------------------------|--------------|---------------------------|-----------|-----------|
| ケース | 地晨期     | $(kN \cdot m)$ ( | (kN) | )土州目ルいフリ<br>(N/mm <sup>2</sup> ) | 975年パンプ<br>(N/mm <sup>2</sup> ) | 曲げ<br>圧縮     | 曲げ<br>引張                  | 応力<br>照査値 | 応力<br>照査値 |
| (a) | Ss-D1++ | 32               | 27   | 0.4                              | 12.4                            | 21           | 435                       | 0.02      | 0.03      |
| (b) | Ss-D1++ | 16               | 153  | (全引張)                            | 18.6                            | 21           | 435                       |           | 0.05      |

表2.2-3 曲げ軸力に対する照査(断面③:3次元FEM解析モデル)

2次元梁バネモデルの結果と3次元FEM解析モデルの結果である表2.2-3を比較する と,(b) 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させ ることを仮定した場合において,2次元梁バネモデルの曲げ引張応力の照査値0.01に対し て3次元FEM解析の照査値の方が僅かながら大きくなっている。しかし,鉄筋コンクリ ート梁壁断面の決定ケースであるのは「6.4.1.2 鋼管杭鉄筋コンクリート防潮壁の強度計 算書に関する補足説明」に示す津波時であり,津波時においては2次元梁バネモデルの照 査値の方が3次元FEM解析の照査値よりも大きくなっているため,2次元梁バネモデル の方が保守的であるといえる。 (2) せん断力に対する照査

せん断力に対する鉄筋コンクリート断面諸元を表 2.2-4 に、せん断力の照査結果を表 2.2-5 に示す。

| 断面    | 断面有効<br>高さ<br>(m) | 斜め<br>引張鉄筋 | 区間 s<br>(m) | 区間 s における<br>斜め引張鉄筋断面積<br>(cm <sup>2</sup> ) |
|-------|-------------------|------------|-------------|----------------------------------------------|
| 断面 A1 | 0.55              | 3.333-D22  | 0.2         | 12.902                                       |
| 断面 A2 | 0.55              | 3.333-D22  | 0.2         | 12.902                                       |
| 断面 A3 | 0.55              | 3.333-D22  | 0.2         | 12.902                                       |
| 断面 B1 | 3.15              | 6.667-D35  | 0.14        | 63.777                                       |
| 断面 B3 | 3.15              | 6.667-D22  | 0.15        | 25.808                                       |
| 断面 C2 | 0.15              | 13.333-D16 | 0.4         | 26.479                                       |
| 断面D   | 0.06              | 13.333-D16 | 0.06        | 8.182*                                       |

表 2.2-4 鉄筋コンクリート断面諸元(断面③・3次元FEM解析モデル)

\*:斜め引張鉄筋の部材軸方向に対する角度 18°を考慮して、13.333-D16×sin18°
(=26.479×0.309=8.182cm<sup>2</sup>)

斜め引張鉄筋を考慮した許容せん断力を以下に計算する。

Va = Vc + Vs

$$Vc = \frac{1}{2}\tau_{a1}b_{w}jd$$
$$Vs = \frac{A_{w}\cdot\sigma_{sa}\cdot j\cdot d}{s}$$

ここで

Va : 許容せん断力

- Vc : コンクリートの許容せん断力
- Vs :斜め引張鉄筋の許容せん断力
- *て*<sup>a1</sup>:斜め引張鉄筋を考慮しない場合の許容せん断応力度
- *b*<sub>w</sub> :断面幅
- j : 1/1.15
- *d* : 有効高さ
- *A*<sub>w</sub>:斜め引張鉄筋断面積
- σ<sub>sa</sub>:鉄筋の許容引張応力度
- *s* :斜め引張鉄筋間隔

断面 D: Vc=1/2×0.825/1.15×0.06×1.0×1000=21.52

Vs=818.2×300/1.15×0.06/0.06/1000=213.44 Va=21.52+213.44=234.96



図 2.2-13 断面力図(断面③:3次元FEM解析モデル)

| 解析<br>ケース | 地震動                  | せん断力<br>(kN) | 許容せん断力<br>(kN) | 照査値  |
|-----------|----------------------|--------------|----------------|------|
| (a)       | S <sub>s</sub> -D1++ | 58           | 234            | 0.25 |
| (b)       | $S_{s} - D 1 + +$    | 54           | 234            | 0.24 |

表 2.2-5 せん断力に対する照査(断面③:3次元FEM解析モデル)

2次元梁バネモデルとの比較として、断面 A2 における断面力図を図 2.2-14 に、最も照査 値が大きくなった位置での照査結果を表 2.2-6 に示す。



図 2.2-14 断面力図(断面③:3次元FEM解析モデル)

| 解析<br>ケース | 地震動               | せん断力<br>(kN) | 許容せん断力<br>(kN) | 照査値  |
|-----------|-------------------|--------------|----------------|------|
| (a)       | $S_{s} - D 1 + +$ | 140          | 1122           | 0.13 |
| (b)       | $S_{s} - D 1 + +$ | 40           | 1122           | 0.04 |

表 2.2-6 せん断力に対する照査(断面③:3次元 FEM解析モデル)

2次元梁バネモデルの結果と3次元FEM解析モデルの結果である表 2.2-6 を比較する と,(a)原地盤物性のばらつきを考慮した場合においては2次元梁バネモデルの照査値 0.04 に対して,(b) 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状 化させることを仮定した場合においては2次元梁バネモデルの照査値 0.01 に対して,3次 元FEM解析の照査値の方が僅かながら大きくなっている。しかし,鉄筋コンクリート梁壁 断面の決定ケースであるのは「6.4.1.2 鋼管杭鉄筋コンクリート防潮壁の強度計算書に関 する補足説明」に示す津波時であり,津波時においては2次元梁バネモデルの照査値の方が 3次元FEM解析の照査値よりも大きくなっているため,2次元梁バネモデルの方が保守的 であるといえる。