本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません。

東海第二発	電所 工事計画審査資料
資料番号	工認-899 改2
提出年月日	平成 30 年 9 月 12 日

V-3-別添 3-2-4-3 SA用海水ピット開口部浸水防止蓋の強度計算書

目 次

1.	概	要1
2.	<u> </u>	般事項2
2	2. 1	配置概要
2	2. 2	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2. 3	評価方針4
2	2.4	適用基準6
2	2. 5	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	評	価部位9
4.	古	有周期10
4	. 1	固有周期の計算方法・・・・・・・・・・・・・・・・・・・・・・・10
4	. 2	固有周期の計算条件・・・・・・・・・・・・・・・・・・・・・・・10
4	. 3	固有周期の計算結果・・・・・・・・・・・・・・・・・・・・・・・・10
5.	構	造強度評価11
5	5. 1	構造強度評価方法11
5	5. 2	荷重及び荷重の組合せ・・・・・・・・・・・・・・11
5	5. 3	許容限界13
5	5.4	設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	5. 5	計算方法16
5	6.6	計算条件19
6	量亚.	価結里 20

1. 概要

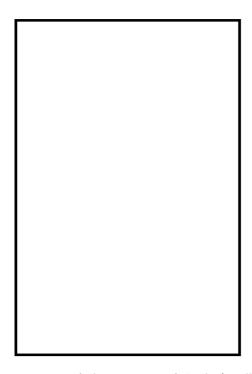
本資料は、添付書類「V-3-別添 3-1 津波への配慮が必要な施設の強度計算の方針」に基づき、 浸水防護施設のうちSA用海水ピット開口部浸水防止蓋が津波荷重及び余震を考慮した荷重に対 し、主要な構造部材が構造健全性を有することを確認するものである。

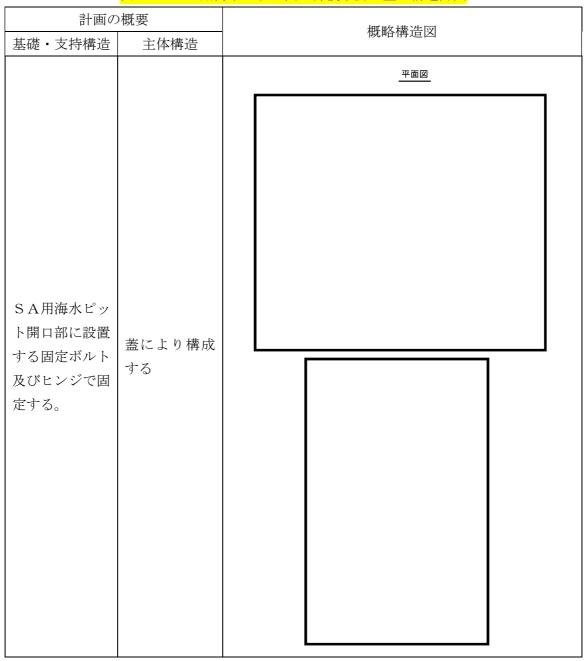
津波荷重については、基準津波による津波荷重を考慮した評価と敷地に遡上する津波による津 波荷重を考慮した評価を実施する。

2. 一般事項

2.1 配置概要

SA用海水ピット開口部浸水防止蓋は、SA用海水ピット開口部に設置する。 SA用海水ピット開口部浸水防止蓋の設置位置図を図 2-1 に示す。

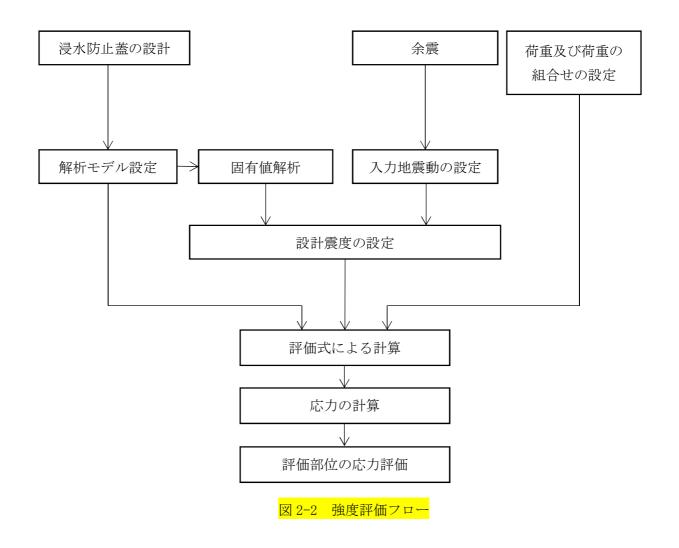



図 2-1 SA用海水ピット開口部浸水防止蓋設置位置図

2.2 構造計画

SA用海水ピット開口部浸水防止蓋の構造は、長方形の鋼板に主桁及び補助桁(ともに溝形鋼)を組合せた構造とする。

SA用海水ピット開口部浸水防止蓋は、本体をSA用海水ピット開口部に設置する固定ボルト及びヒンジで固定する。SA用海水ピット開口部浸水防止蓋の構造計画を表 2-1 に示す。


表 2-1 SA用海水ピット開口部浸水防止蓋の構造計画

2.3 評価方針

SA用海水ピット開口部浸水防止蓋の強度評価は、添付書類「V-3-別添 3-1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて、応力評価により実施する。応力評価では、SA用海水ピット開口部浸水防止蓋の評価部位に作用する応力等が許容限界以下であることを「5.1 構造強度評価方法」に示す方法により、「5.6 計算条件」に示す計算条件を用いて評価する。応力評価の確認結果を「6. 評価結果」にて確認する。

SA用海水ピット開口部浸水防止蓋の強度評価フローを図 2-2 に示す。SA用海水ピット開口部浸水防止蓋の強度評価においては,その構造を踏まえ,津波及び余震に伴う荷重の作用方向及び伝達過程を考慮し,評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは,津波に伴う荷重作用時(以下「津波時」という。)及び津波に伴う荷重と余震に伴う荷重の作用時(以下「重畳時」という。)を考慮し,評価される最大荷重を設定する。重畳時の評価においては,添付書類「V-3-別添 3-1 津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動Sdを入力して得られた設置床の最大床応答加速度の最大値を考慮して設定した設計震度を用いる。なお,強度評価に当たっては,基準津波による津波荷重を考慮した評価と敷地に遡上する津波による津波荷重を考慮した評価を実施する。

2.4 適用基準

適用する規格, 基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- <mark>(3)</mark> 原子力発電所耐震設計技術指針(JEAG4601-1991 追補版)(日本電気協会)
- (4) 日本工業規格 JIS G4053(2008) 機械構造用合金鋼鋼材
- (5) 「ダム・堰施設技術基準(案)(基準解説編・マニュアル編)」(ダム・堰施設技術協会 平成 25 年 6 月)

2.5 記号の説明

SA用海水ピット開口部浸水防止蓋の固有周期の計算に用いる記号を表 2-2 に, 応力評価に用いる記号を表 2-3 にそれぞれ示す。

表 2-2 SA用海水ピット開口部浸水防止蓋の固有周期算出に用いる記号

記号	定義	単位
Т	固有周期	S
f	一次固有振動数	Hz
Е	縦弾性係数	N/mm^2
I	主桁の断面二次モーメント	mm^4
m	主桁の単位長さ当たりの質量	kg/mm
L	主桁の長さ	mm

表 2-3 SA用海水ピット開口部浸水防止蓋の応力評価に用いる記号 (1/2)

記号	記号の説明	単位
g	重力加速度	m/s^2
σν	日本工業規格に規定される材料の設計降伏点	N/mm^2
σu	日本工業規格に規定される材料の設計引張強さ	N/mm ²
σа	許容圧縮・引張・曲げ応力 ダム・堰施設技術基準 (案) $\sigma_a = \sigma_v / F^*$	N/mm²
τa	許容せん断応力 ダム・堰施設技術基準 (案) $\tau_a = \sigma_a / \sqrt{3}$	N/mm^2
K _{HSd}	弾性設計用地震動Saによる水平方向の設計震度	_
K _{VSd}	弾性設計用地震動Saによる鉛直方向の設計震度	_
W _o	海水の密度	kg/m^3
h	津波荷重水位(T. P. +)	m
q	津波時静水圧	N/mm^2
I _{HSd}	余震による水平方向地震荷重	N
I _{VSd}	余震による鉛直方向地震荷重	N
m _D	蓋の質量	Kg
m _S	積雪荷重による質量	kg
A	浸水防止蓋の面積	mm^2
M	浸水防止蓋に加わる最大曲げモーメント	N • mm

表 2-3 SA用海水ピット開口部浸水防止蓋の強度計算に用いる記号 (2/2)

記号	記号の説明	単位
В	荷重の作用幅	mm
L	支間	mm
S	浸水防止蓋に加わる最大せん断力	N
σ	浸水防止蓋に加わる最大曲げ応力	N/mm^2
Z	浸水防止蓋の断面係数	mm^3
τ	浸水防止蓋に加わる最大せん断応力	N/mm^2
A_{w}	浸水防止蓋のウェブ断面積	mm^2
σт	浸水防止蓋に加わる曲げ応力及びせん断応力による組合せ応力	N/mm^2
σь	固定ボルト1本当たりに加わる引張応力	N/mm^2
Рь	固定ボルト1本当たりに加わる引張荷重	N
Аь	固定ボルトの断面積	mm^2
τь	固定ボルト1本当たりに加わるせん断応力	N/mm^2
S _b	固定ボルト1本当たりに加わるせん断荷重	N
σ _{в т}	固定ボルトに加わる曲げ引張応力及びせん断応力による組合せ応力	N/mm^2
τ	浸水防止蓋に加わる最大せん断応力	N/mm^2
A_{s}	積雪面積	m^2
W _s	積雪量 1cm ごとの積雪荷重	N/mm^3
d _s	垂直積雪量	mm
a	補助桁間隔	mm
b	主桁間隔	mm
t	スキンプレートの板厚	mm
γ	スキンプレートの評価に用いる応力の補正係数	_
k	スキンプレートの評価に用いる辺長比 (b/a) による係数	_

注記 *: Fは安全率

3. 評価部位

SA用海水ピット開口部浸水防止蓋の評価対象部位は,「2.2 構造概要」にて設定している構造を踏まえて,津波に伴う荷重の作用方向及び伝達過程を考慮し設定する。

なお、SA用海水ピット開口部浸水防止蓋の強度計算における評価対象部位は、浸水防止蓋、 固定ボルト及びヒンジとする。

SA用海水ピット開口部浸水防止蓋の強度評価における評価対象部位を図 3-1 に示す。



図 3-1 評価対象部位

4. 固有周期

4.1 固有周期の計算方法

(1) 解析モデル

SA用海水ピット開口部浸水防止蓋の主桁を単純支持梁としてモデル化する。

(2) 固有周期の計算

<mark>固有周期</mark>の計算に用いる寸法は、公称値を使用する。

「構造力学公式集(1988年)、土木学会」より、固有周期は次のとおり与えられる。

$$T = \frac{1}{f}$$

$$f = \frac{\pi^2}{2 \pi L^2} \sqrt{\frac{E \cdot I}{m}}$$

4.2 固有周期の計算条件

表 4-1 に固有周期の計算条件を示す。

主桁の単位長さ 主桁の断面二次 縦弾性係数 主桁の長さ モーメント 当たりの質量 Ε L Ι m (N/mm^2) (mm) (mm^4) (kg/mm) 2.06×10^{5} 1. 229×10^8 673. 48×10^{-3} 1320

表 4-1 固有周期の計算条件

4.3 固有周期の計算結果

表 4-2 に固有周期の算出結果を示す。固有周期は、0.05 s 以下であることから、剛構造である。

表 4-2 固有周期の算出結果

固有振動数 (Hz)	175
固有周期 (s)	0.006

5. 構造強度評価

5.1 構造強度評価方法

SA用海水ピット開口部浸水防止蓋の強度評価は、添付書類「V-3-別添 3-1 津波又は溢水への配慮が必要な施設の強度計算書の方針」の「5. 強度評価方法」にて設定している方法を用いて、強度評価を実施する。

SA用海水ピット開口部浸水防止蓋の強度評価は、「3. 評価部位」に示す評価部位に対し、「5.2 荷重及び荷重の組合せ」及び「5.3 許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ、「5.5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

- 5.2.1 荷重の設定
 - (1) 固定荷重(D) 固定荷重として,自重を考慮する。

$$W = m_D \cdot g$$

(2) 突き上げ津波荷重(P₊)

突き上げ津波荷重を考慮して算出した設計水圧と各部材の受圧面積から各部材の津波荷 重を算出する。

$$q = h \, \boldsymbol{\cdot} \, W_0$$

(3) 余震荷重(S_d)

余震荷重は、添付書類「V-3-別添 3-1 津波への配慮が必要な施設の強度計算の方針」に示すとおり、弾性設計用地震動 S_a -D1に伴う地震力(動水圧含む。)とする。強度評価における弾性設計用地震動 S_a -D1に伴う地震力については、表 5-4 にて示す設計震度を用いて設定する。

$$I_{HSd} = W \cdot K_{HSd}$$

$$I_{VSd} = W \cdot (1 + K_{VSd})$$

$$P = 7/8 \cdot W_0 \cdot K_{VSd} \cdot H \cdot h$$

5.2.2 荷重の組合せ

SA用海水ピット開口部浸水防止蓋は、SA用海水ピット最上部の頂版部に設置されているため、風荷重の影響は考慮しない。

荷重の組合せを表 5-1 に示す。

表 5-1 荷重の組合せ

施設区分	機器名称	荷重の組合せ*1*2	
浸水 <mark>防護施設</mark>	SA用海水ピット開口部	D D C *1	
(浸水防止設備)	浸水防止蓋	$D+P_t+S_d^{*1}$	

注記 *1: Dは固定荷重, Sdは余震による地震荷重, Ptは突き上げ津波荷重を示す。

*2:固定荷重(D)及び余震による地震荷重(S_d)の組合せが、強度評価上、突き上げ津波荷重(P_t)を緩和する方向に作用する場合、保守的にこれらを組合せない評価を実施する。

5.3 許容限界

(1) 基準津波と余震による重畳時

SA用海水ピット開口部浸水防止蓋の許容限界は,評価対象部位ごとに,「ダム・堰施設技術基準(案)」に規定される許容応力度を用いる。

各評価対象部位の許容限界を表 5-2 に示す。

表 5-2 各評価対象部位の許容限界

	許容限界*1, *2				
状態	浸水防止蓋			固定ボルト	
		一次応力 一次応力			
<i>6</i> ≅ #n	曲げ	せん断	組合せ	引張	せん断
短期	1.5 σ a	1.5 τ a	1.65 σ a	1.5 σ a	1.5 τ a

注記 *1:「ダム・堰施設技術基準(案)」に準じ、短期時許容値割増1.5または1.65とする。

*2: σ_a: 許容曲げ応力度, τ_a: 許容せん断応力度

表 5-3 許容応力評価条件

, and the state of	BI HAD SORT IMS		
評価部位	 材料	$\sigma_a^{*1,2}$ (N/mm^2)	$ au_{ m a}^{*1,2} \ m (N/mm^2)$
主桁	SM400	120	70
補助桁	SM400	120	70
スキンプレート	SM400	120	
固定ボルト	SUS316L	90	50
ヒンジ	SUS316L	90	50

注記 *1:σa:許容曲げ応力度,τa:許容せん断応力度を示す。

*2:各許容応力度の値は、「ダム・堰施設技術基準(案)(基準解説編・マニュアル編)(ダ

ム・堰施設技術協会 平成25年6月)」に基づく。

表 5-4 許容応力算出結果

	評価部位		許容限界			
			1 次応力			
許容応力度			曲げ	せん断	組合せ	
			(N/mm^2)	(N/mm^2)	(N/mm^2)	
	主桁	端部桁	180	105	198	
		中間桁	180	105	198	
 短期許容応力度	補助桁		180	105	198	
超朔可各心刀及	スキンプレート		180	_	_	
	固定ボルト		135	75	148	
	ヒンジ		135	75	148	

(2) 敷地に遡上する津波と余震による重畳時

SA用海水ピット開口部浸水防止蓋は、<mark>評価部位</mark>ごとに、ダム・堰施設技術基準(案)に 規定される許容応力度を用いる。

各<mark>評価部位</mark>の許容限界を表 5-5 に, <mark>許容応力評価条件を表 5-6 に, 許容応力算出結果を表 5-7 にそれぞれ</mark>示す。

表 5-5 各評価部位の許容限界

	許容限界*1*2						
状態	浸水防止蓋		固定ボルト				
		一次応力			一次応力		
<i>₩</i> ++n	曲げ	せん断	組合せ	引張	せん断	組合せ	
短期	1. 7 σ a	1.7 τ a	1. 87 σ a	1.7 σ a	1.7 τ a	1. 87 σ a	

注記 *1:ダム・堰施設技術基準(案)に準じ、短期時許容値割増1.7又は1.87とする。

*2: σ_a: 許容曲げ応力度, τ_a: 許容せん断応力度

表 5-6 許容応力評価条件

<u></u>			
評価部位	材料	$\sigma_a^{*1,2}$ (N/mm^2)	$\tau_a^{*1,2}$ (N/mm^2)
主桁	SM400	120	70
補助桁	SM400	120	70
スキンプレート	SM400	120	_
固定ボルト	SUS316L	90	50

注記 *1:σ_a:許容曲げ応力度,τ_a:許容せん断応力度を示す。

*2:各許容応力度の値は、「ダム・堰施設技術基準(案)(基準解説編・マニュアル編)(ダム・堰施設技術協会 平成25年6月)」に基づく。

表 5-7 許容応力算出結果

	評価部位		許容限界			
赤灰片土库			1 次応力			
許容応力度			曲げ	せん断	組合せ	
			(N/mm^2)	(N/mm^2)	(N/mm^2)	
短期許容応力度	主桁	端部桁	204	119	224	
		中間桁	204	119	224	
	補助桁		204	119	224	
	スキンプレート		204	_	_	
	固定ボルト		153	85	168	

5.4 設計用地震力

「4. 固有周期」に示したとおりSA用海水ピット開口部浸水防止蓋の固有周期が 0.05 s 以下であることを確認したため、SA用海水ピット開口部浸水防止蓋の強度計算に用いる設計震度は、添付書類「V-2-1-7 設計用床応答曲線の作成方針」に示すSA用海水ピットにおける設置床の最大床応答加速度の 1.2 倍を考慮して設定する。SA用海水ピット開口部浸水防止蓋の耐震計算に用いる設計震度を表 5-3 に示す。

表 5-3 設計震度の諸元

地震動	据付場所 及び床面高さ (m)	地震による設計震度*1		
弾性設計用地震動	S A用海水 ピット	水平方向K _{HSd}	0. 98	
$S_d - D1$	EL. 7.3 (EL. 8.0*2)	鉛直方向Kvsd	0. 56	

注記 *1:「4. 固有周期」より、SA用海水ピット開口部浸水防止蓋の固有周期が 0.05 s 以下であることを確認したため、設置床の最大床応答加速度の 1.2 倍を考慮した 設計震度を設定した。

*2:基準床レベルを示す。

5.5 計算方法

SA用海水ピット開口部浸水防止蓋の強度評価は、津波荷重や余震荷重による各部材の発生 応力が許容限界以下であることを確認するものとする。

5.5.1 荷重の設定

荷重を等分布荷重として受ける鋼構造物として評価する。応力の算出に必要な荷重を次式 により算出する。

$$\frac{i_{vSd} = I_{VSd} / A}{w = q + i_{vSd} + P}$$

5.5.2 強度評価

(1) 浸水防止蓋

浸水防止蓋は、荷重を等分布荷重として受ける鋼構造物として評価する。<mark>浸水防止蓋を 構成するスキンプレート、主桁及び補助桁に発生する</mark>最大曲げモーメント及び最大せん断 力はダム・堰施設技術基準(案)に規定される計算式を用いる。

(曲げモーメント (主桁))
$$M = \frac{W \cdot B \cdot (2 L - B)}{8}$$

(曲げモーメント (補助桁))
$$M = \frac{w \cdot a \cdot (3 \cdot b^2 - a^2)}{24}$$

(せん断力(主桁) S =
$$\frac{w \cdot B}{2}$$

(せん断力 (補助桁))
$$S = \frac{w \cdot a}{2} \cdot (b - \frac{a}{2})$$

a. 曲げ応力

a) 主桁及び補助桁に発生する曲げ応力

津波時水圧により浸水防止蓋<mark>の主桁及び補助桁に発生する</mark>最大曲げ応力 σ は次式により算出する。

$$\sigma = M/Z$$

b) スキンプレートに発生する曲げ応力

浸水防止蓋のスキンプレートに発生する最大曲げ応力σは次式により算出する。

$$\sigma = \frac{\mathbf{k} \cdot \mathbf{a}^2 \cdot \mathbf{w}}{100 \cdot \mathbf{t}^2} \cdot \gamma$$

b. せん断応力

浸水防止蓋<mark>の主桁及び補助桁に発生する</mark>最大せん断応力 τ は次式により算出する。 $\tau = S / A_w$

c. 組合せ応力

浸水防止蓋に加わる曲げ応力 σ 及びせん断応力 τ による組合せ応力 σ m をダム・堰施設技術基準(案) 記載の次式により算出する。

$$\sigma_{\rm m} = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

(2) 固定ボルト

固定ボルト<mark>に作用する荷重</mark>は、固定ボルト設置位置及び間隔から浸水防止蓋に対する負担面積を設定し、水平方向荷重及び鉛直方向荷重に対して評価を行う。

a. 引張応力

固定ボルト1本当たりに加わる引張応力 σ ι は次式により算出する。

$$\sigma_b = P_b / A_b$$

b. せん断応力

固定ボルト1本当たりに加わるせん断応力τ βは次式により算出する。

$$\tau_b = S_b / A_b$$

c. 組合せ応力

固定ボルトに加わる引張応力 σ_b 及びせん断応力 τ_b による組合せ荷重 σ_{bm} をダム・堰施設技術基準(案)記載の次式により算出する。

$$\sigma_{bm} = \sqrt{\sigma_b^2 + 3 \cdot \tau_b^2}$$

(3) ヒンジ

ヒンジに作用する荷重は、ヒンジ設置位置及び間隔から浸水防止蓋に対する負担面積を 設定し、鉛直方向荷重に対して評価を行う。なお、ヒンジの評価は、ヒンジを構成するブ ラケット及びピンで行う。

a. 曲げ応力(ブラケット)

ブラケットに発生する曲げ応力度 σ ь μ を, 次式により算出する。

$$\sigma_{bu} = M_{bu} / Z_{bu}$$

ここで,

σь и: ブラケットに発生する曲げ応力度

Мьи: ブラケットを片持ち梁でモデル化した時に発生する最大曲げモーメント

Ζьμ:ブラケットの断面二次係数

b. せん断応力(ブラケット)

ブラケットに作用するせん断応力度 τ μ ω を, 次式により算出する。

 $\tau_{bu} = S_{bu} / A_{bu}$

ここで,

ты и: ブラケットに作用するせん断応力度

S_{bu}:ブラケットに作用する最大せん断荷重

A_{bu}:最大せん断荷重発生箇所におけるブラケットの断面積

c. 曲げ応力(ピン)

ピンに発生する曲げ応力度 σ_p を、次式により算出する。

 $\sigma_p = M_p / Z_p$

ここで,

σ_p: ピンに発生する曲げ応力度

Mp: ピンを両端支持梁でモデル化した時に発生する最大曲げモーメント

Z_p:ピンの断面二次係数

d. せん断応力(ピン)

ピンに発生するせん断応力度 τ , を , 次式により算出する。

 $\tau_p = S_p / A_p$

ここで,

τ р: ピンに作用するせん断応力度

Sp: ピンを両端支持梁でモデル化した時に発生する最大せん断荷重

Ap: ピンの断面積

5.6 計算条件

(1) 強度評価に用いるSA用海水ピット開口部浸水防止蓋の仕様及び津波荷重に関わる計算条件 件を除く計算条件

SA用海水ピット開口部浸水防止蓋の仕様及び津波荷重に関わる計算条件を除く計算条件を表 5-9 に示す。

表 5-9 SA用海水ピット開口部浸水防止蓋の強度評価に関する評価条件

浸水防止蓋の材質	蓋の質量mD	積雪質量ms	荷重の負担幅B
仅小则止 鱼 0 的 貝	(kg)	(kg)	(mm)
SM400 8.89×10 ²		_	1.350×10^3

支間 L (mm)	固定ボルトの材質	固定ボルトの呼び径 (mm)	固定ボルトの断面積 A _b (mm²)
1.320×10^{3}	SUS316L	36	8. 76264×10^{2}

積雪量1cm毎の積雪荷	垂直積雪量ds(mm)	固定ボルトの本数n	重力加速度 g
重w _S (N/mm³)			(m/s^2)
		5	9. 80665

補助桁間隔 a	主桁間隔 b	
(mm)	(mm)	
645	380	

(2) 強度評価に用いるSA用海水ピット開口部浸水防止蓋の津波荷重に関わる計算条件 SA用海水ピット開口部浸水防止蓋の津波荷重に関わる計算条件を表 5-10 に示す。

表 5-10 SA用海水ピット開口部浸水防止蓋の強度評価に関する評価条件

対象の津波	津波荷重水位 h 1 (T.P.+m)
基準津波	12.0
敷地に遡上する津波	12.0

6. 評価結果

(1) 基準津波と余震による重畳時

SA用海水ピット開口部浸水防止蓋の強度評価結果を表 6-1 に示す。評価結果から、SA用海水ピット開口部浸水防止蓋の各部位の発生応力は、許容応力以下であり、基準津波荷重を考慮した荷重に対して構造部材が十分な健全性を有することを確認した。

表 6-1 強度評価結果 (重畳時)

評価対象部位		発生応力		許容応力	
		(N/mm^2)		(N/mm^2)	
ス	スキン	プレート	曲げ	102	180
		端部桁	曲げ	78	180
			せん断	37	105
			組合せ*1	100	198
		中間桁	曲げ	137	180
)= -1.6 17± .1	主桁		せん断	76	105
浸水防止			組合せ*1	190	198
蓋		端桁	曲げ	62	180
			せん断	104	105
			組合せ*1	190	198
	補助桁		曲げ	70	180
			せん断	39	105
			組合せ*1	97	198
	1		引張	95	135
固	定ボルト		せん断	2	75
		組合せ*2	95	149	
	ブラケット		曲げ	23	135
ヒンジ			せん断	37	75
	,	1.0°)	曲げ	102	135
	ピン		せん断	26	75
	22) Mr =	1 - 1 1 × 1 × 1 × 1			

注記 *1:曲げとせん断の組合せ応力

*2: 引張とせん断の組合せ応力

(2) 敷地に遡上する津波と余震による重畳時

SA用海水ピット開口部浸水防止蓋の強度評価結果を表 6-2 に示す。評価結果から、SA用海水ピット開口部浸水防止蓋の各部位の発生応力は、許容応力以下であり、敷地に遡上する津波荷重を考慮した荷重に対して構造部材が十分な健全性を有することを確認した。

表 6-2 強度評価結果(重畳時)

37 / T 41 / 42 49 / 4			発生応力		許容応力
評価対象部位		(N/mm^2)		(N/mm^2)	
スキン		プレート	曲げ	102	204
			曲げ	78	204
		端部桁	せん断	37	119
			組合せ*1	100	224
			曲げ	137	204
)∃ →l 27+	主桁	中間桁	せん断	76	119
浸水防 止蓋			組合せ*1	190	224
11. 盆		端桁	曲げ	62	204
			せん断	104	119
			組合せ*1	190	224
	補助桁		曲げ	70	204
			せん断	39	119
			組合せ*1	97	224
			引張	95	153
[固定ボル	1	せん断	2	85
		組合せ*2	95	168	
	デニ	i ケット	曲げ	23	153
ヒンジ	ブラケット		せん断	37	85
		い ン/	曲げ	102	153
	ピン		せん断	26	85

注記 *1:曲げとせん断の組合せ応力

*2: 引張とせん断の組合せ応力