補足-40-11【逃がし安全弁の環境条件の設定について】

1. はじめに

東海第二発電所の有効性評価では,格納容器破損モード「高圧溶融物放出/格納容器雰囲気直 接加熱」における評価事故シーケンス(以下「DCH シーケンス」という。)の解析結果を入力と して,逃がし安全弁(以下「SRV」という。)(自動減圧機能)の中で高温影響を受けやすい部位 の温度を評価し,評価した温度が図1に示す安全上重要な機器の信頼性確認に関する研究(平成 7年度)のSRV環境試験条件を下回ることで,SRV(自動減圧機能)の機能が維持されることを 確認している(添付資料①)。また,SRV環境試験は本体,補助作動装置(シリンダ,電磁弁 等)を組み上げて実施しており,その範囲を図2に示す。

以下では、DCH シーケンス以外の SRV(自動減圧機能)に対して厳しい環境となる様々なシーケンスを想定した場合の環境条件についてまとめる。

図1 安全上重要な機器の信頼性確認に関する研究(平成7年度)のSRV環境試験条件

図2 安全上重要な機器の信頼性確認に関する研究(平成7年度)の SRV環境試験機器概要図

- 2. 様々なシーケンスを想定した場合の SRV(自動減圧機能)の環境条件について
 - (1) SRV(自動減圧機能)の環境が厳しくなるシーケンスについて

SRV(自動減圧機能)は、本体と補助作動装置から構成されており、補助作動装置の温度が 上昇すると、電磁弁又はピストンのシール部が高温劣化し、SRVの機能に影響を及ぼす恐れが ある。このため、SRV(自動減圧機能)の高温劣化の観点から、格納容器内が高温状態で長時 間維持される事象について、以下に考察する。

SRV が必要になるのは、原子炉注水等のために原子炉圧力容器(以下「RPV」という。)の減 圧が必要になる場合であり、起因事象として過渡事象又は破断面積の小さい LOCA を想定する (大破断 LOCA のような RPV 減圧が不要な事象は想定しない)。

炉心損傷の有無については、SRV(自動減圧機能)の環境が厳しくなるのは、原子炉水位の 低下により炉心損傷し、格納容器内の雰囲気温度が上昇する場合であり、炉心が損傷するシー ケンスを想定する。

SRV(自動減圧機能)に期待する時間としては、長時間期待する方がSRV(自動減圧機能) にとって厳しい条件となることから、RPVが破損しない場合を想定する。

以上を踏まえると、様々なシーケンスを想定した場合、SRV(自動減圧機能)の環境が厳し くなるシーケンスは表1のとおりとなる。

表1 SRV(自動減圧機能)の環境が厳しくなるシーケンス

No.	シーケンス			
1	破断面積の小さいLOCA+炉心損傷+SRV(自動減圧機能)開,低圧注水復旧+RPV			
	破損防止(SRV(自動減圧機能)開維持,低圧注水維持)			
2	過渡事象+炉心損傷+SRV(自動減圧機能)開,低圧注水復旧+RPV 破損防止(SRV			
	(自動減圧機能)開維持,低圧注水維持)			

なお,DCHシーケンスでは低圧代替注水系(常設)による原子炉注水機能を評価上考慮して おらず,重大事故等対処設備の一部の機能に期待していない。また,代替格納容器スプレイ冷 却系(常設)や代替循環冷却系が機能喪失するシーケンスも存在し得るが,このような重大事 故等対処設備が機能喪失する場合は大規模損壊の範囲であり,SRV(自動減圧機能)の健全性 確保が必須ではないと考える。

(2) No.1 (破断面積の小さい LOCA) シーケンスについて

破断口から D/W に蒸気等が流出することにより D/W 圧力及び雰囲気温度が上昇するが,格 納容器圧力が上昇し 465kPa[gage]に到達した場合は,代替格納容器スプレイ冷却系(常設) により D/W スプレイを実施することから,D/W 圧力は 465kPa[gage] を超えることはない。ま た,D/W スプレイ実施により D/W 内は過熱状態にはならず,D/W 雰囲気温度は 465kPa[gage]の 飽和温度(約156℃)を超えることはない。さらに,東海第二発電所では,SRV(自動減圧機 能)の環境緩和のために事故後 90 分後に代替循環冷却系を起動し D/W へ連続してスプレイす ることとしているため,仮に D/W 雰囲気温度が約156℃,D/W 圧力が 465kPa[gage]に一時的に 到達した場合でも,代替循環冷却系を起動後 D/W 雰囲気温度及び D/W 圧力は低下傾向とな る。

(3) No.2(過渡事象)シーケンスについて

RPV 内の蒸気は SRV(自動減圧機能)を介して S/P に流入し凝縮されるため、S/P 水が飽和 状態となるまでは D/W 圧力及び雰囲気温度が大幅に上昇することはない。S/P 水が飽和状態に なった後、格納容器圧力が上昇し 465kPa[gage]に到達した場合は、代替格納容器スプレイ冷 却系(常設)により D/W スプレイを実施することから、D/W 圧力は 465kPa[gage]を超えるこ とはない。また、D/W スプレイ実施により D/W 内は過熱状態にはならず、D/W 雰囲気温度は 465kPa[gage]の飽和温度(約 156℃)を超えることはない。さらに、東海第二発電所では、 SRV(自動減圧機能)の環境緩和のために事故後 90 分後に代替循環冷却系を起動し D/W へ連続 してスプレイすることとしているため、仮に D/W 雰囲気温度が約 156℃, D/W 圧力が 465kPa[gage]に一時的に到達した場合でも、代替循環冷却系を起動後 D/W 雰囲気温度及び D/W 圧力は低下傾向となる。

(4) SRV(自動減圧機能)の環境条件について

D/W 雰囲気温度について

(2)(3)のとおり、SRV(自動減圧機能)の環境が厳しくなるシーケンスを想定すると、D/W 雰囲気温度は最大約156℃となり、代替循環冷却系の起動後はD/W 雰囲気温度は低下傾向に なるため、長期的にも図1に示す安全上重要な機器の信頼性確認に関する研究(平成7年 度)のSRV環境試験条件を下回ると考えられる。

参考に、直接破断口からの蒸気が D/W に吹き出し、D/W 雰囲気温度が厳しくなる No.1(破断面積の小さい LOCA)シーケンスを対象に D/W 雰囲気温度を解析した。なお、破断面積としては、原子炉圧力容器破損までに DCH 防止のために SRV(自動減圧機能)による減圧が必要となる範囲での最大の破断面積である 14cm²とし、D/W 雰囲気温度が厳しくなる条件とした。その結果、D/W 雰囲気温度の最大値は約 128℃であり、156℃を下回ることを確認した(図 3)。

D/W 圧力について

D/W 圧力の上昇により SRV の機能が喪失する事象として, SRV の電磁弁等のシール材料に 加わる外側圧力の上昇によりシール材料に加わる内外差圧が上昇することによる物理的破損 (引張りによりシール材料が破断する)が考えられる。ただし,既存の SRV に使用されてい るシール材 (フッ素ゴム)の破断強度は 13MPa であるところ,格納容器内に設置される場 合,最大でも内外差圧は 0.62MPa 程度となること,また,弁等の機器に組み込まれるシール 材は,一般的にケーシング等によって変形が拘束され過大な変形が発生することはないこと から,物理的破損が発生する可能性は極めて低く,D/W 圧力の増加による SRV の機能への影 響はない。 したがって,(2)(3)に記載した 465kPa[gage]は、図1に示す安全上重要な機器の信頼性 確認に関する研究(平成7年度)の SRV 環境試験における圧力条件の最大値(4.35kg/cm² g:約0.427MPa[gage])を上回っているが,SRVの機能への影響はない。

以上のとおり,SRV(自動減圧機能)の環境が厳しくなるシーケンスを想定すると,D/W 雰 囲気温度は約156℃を下回り,代替循環冷却系の起動後はD/W 雰囲気温度は低下傾向になるた め,長期的にも図1に示す過去のSRV環境試験における温度条件を下回る。また,D/W 圧力は 図1に示す過去のSRV環境試験における圧力条件を上回る可能性があるが,SRVの機能への影 響はない。

3. まとめ

東海第二発電所では、SRV(自動減圧機能)の環境が厳しくなるシーケンスを想定しても、図 1に示す過去のSRV環境試験条件をSRV(自動減圧機能)の環境条件とすることで問題ないと考 える。また、SRV(自動減圧機能)は7個存在し、仮にDCH防止のための原子炉の急速減圧に使 用するSRV(自動減圧機能)2個が使えなくなった場合でも、残り5個のSRV(自動減圧機能) を使用することにより長期的に減圧維持が可能である。

さらに、東海第二発電所では、原子炉減圧機能の重要性に鑑み、以下の対応により RPV 減圧機能の信頼性向上を図ることとする。

- SRV(自動減圧機能)の作動に必要な窒素供給機能が喪失した場合を想定して非常用逃がし 安全弁駆動系をSRV(逃がし弁機能)4個に対して設置し、非常用逃がし安全弁駆動系使用
 時には温度200℃及び圧力620kPa[gage]の環境下でも開保持できる設計とする。
- SRV 用アクチュエータの耐環境性能向上のため、SRV(自動減圧機能)7個及び非常用逃がし 安全弁駆動系の流路となるSRV(逃がし弁機能)4個の計11個のSRVを対象に、使用前検査 までにシリンダーピストンの作動に影響を与えないシール部について改良型 EPDM 材を用い た改良品に変更する(添付資料②)。
- SRV 用電磁弁の耐環境性能向上のため、SRV(自動減圧機能)7個及び非常用逃がし安全弁駆 動系の流路となる SRV(逃がし弁機能)4個の計11個の SRV を対象に、使用前検査までに電 磁弁の作動性能に影響を与えないシール部について改良型 EPDM 材に変更する(添付資料 ③)。

5

高温環境下での逃がし安全弁の開保持機能維持について

1. はじめに

原子炉水位が燃料有効長頂部を下回り、炉心損傷に至るような状況では、原子炉圧力容器(以下「RPV」という。)内に高温の過熱蒸気が発生する。高圧溶融物放出/格納容器雰囲気直接加熱(以下「DCH」という。)を防止するためには、その様な環境下でも逃がし安全弁(以下「SRV」という。)を開保持し、RPV内の圧力を 2.0MPa[gage]以下の低圧に維持する必要がある。

SRVは本体と補助作動装置から構成されているが、補助作動装置の温度が上昇すると、電磁 弁又はピストンのシール部が熱によって損傷し、SRVの開保持機能に影響を及ぼす恐れがある。

ここでは、炉心損傷後、DCH防止のために原子炉の減圧を継続する環境下においても、SR Vの開保持機能が損なわれないことを評価する。

2. 評価方法

電力共同研究「安全上重要な機器の信頼性確認に関する研究」において、国内プラントにおけ る設計基準事故時の環境条件を包含する保守的な条件として、「171℃において 3 時間継続の後、 160℃において 3 時間継続した状態」でのSRV機能維持について確認されている(以下「SR V環境試験」という。)。また、長期の機能維持の観点から、126℃において試験開始 24 時間後か ら 15 日後までの機能維持を確認している。図 2 に SRV環境試験条件を示す。

このため、MAAPコードによるDCH有効性評価解析より得られた環境温度条件を入力として、3次元熱流動解析コード(STAR-CCM+)によりSRVの温度を評価し、SRV環境 試験の温度条件に包含されることを確認することで、重大事故時においてもSRVの開保持機能 が維持されることを確認する。

なお、3次元熱流動解析は保守的な温度条件を設定した定常解析にて実施するが、下部プレナ ムへの溶融炉心の落下に伴いRPV内の気相温度が急激に上昇する期間に対しては、SRVの温 度上昇をより現実的に評価するため非定常解析を実施する。

- 3. 評価条件
- (1) 温度条件

図3及び図4に,MAAP解析結果のRPV内気相平均温度及びドライウェル内気相平均温 度を示す。このMAAP解析結果を踏まえ,以下に示す2通りの温度条件を設定する。表1に 評価条件を示す。

·温度条件①(定常解析)

RPV内気相温度については,事象発生から下部プレナムへの溶融炉心移行中の期間を代表する温度条件として,この期間における最高温度を考慮し512℃を設定する。

また、ドライウェル内気相温度については、手順に従い実施する代替循環冷却系による格 納容器除熱操作(格納容器スプレイの冷却効果)を考慮することとし、格納容器スプレイを 開始した以降、RPV破損までの最高温度を考慮し 53℃を設定する*1。なお、格納容器ス プレイを開始するまでの初期のドライウェル内気相温度は 53℃よりも高い 80℃程度で推移 するが、この期間におけるRPV内気相温度は定常解析の温度条件である 512℃より十分に 低いことから、SRV開保持機能維持の観点で、初期のドライウェル内気相温度の影響は、 RPV内気相温度条件の保守性に包含される。

- 注記 *1:格納容器スプレイによるドライウェル内気相部の冷却効果は考慮しているが,格納容 器スプレイによる液滴がSRVの構造物に接触することによる冷却効果は考慮してい ない。
 - ·温度条件②(非定常解析)

下部プレナムへの溶融炉心移行に伴うRPV内の気相温度の急激な上昇を考慮した温度 条件として,温度条件①で設定した期間以降のRPV内気相温度の最高値到達までの温度条 件として,512℃から586℃の温度履歴を設定する。

また、ドライウェル内気相温度については、温度条件①と同様に 53℃を設定する。

(2) 評価部位

SRV(自動減圧機能)の開保持には、電磁弁コイルを励磁することで、補助作動装置のピ ストン部へ窒素を供給し、SRV本体スプリングの閉止力を上回る駆動力を発生させ、ピス トンを押上げた状態とする必要がある。SRVの開保持機能維持の観点では、高温影響を受 けやすい以下の部位について評価する必要がある。

①電磁弁(下部コイルハウジング)

電磁弁のコイルは熱容量が小さく,高温影響を受けやすい。電磁弁のコイルが熱によっ て損傷した場合,電磁弁のコイルが消磁することで,補助作動装置のピストンへの窒素供 給が遮断されるとともに,流路が排気側へ切り替わることから,ピストンを押上げていた 窒素が排出され,SRV本体スプリングの閉止力によってSRV(自動減圧機能)が閉止 する。このため,電磁弁を評価の対象とするが,その中でも高温配管に近く,最も温度が 高くなりやすい下部コイルハウジングの温度を評価する。

②ピストン (シール部)

ピストンのシール部にはフッ素ゴム製のOリングが用いており,高温影響を受けやすい。 ピストンのシール部が熱によって損傷した場合,シール部よりピストンを押上げていた窒 素が排出され,SRV本体スプリングの閉止力によってSRV(自動減圧機能)が閉止す る。このため,ピストンの温度を評価する。

(3) 評価モデル

SRVの温度上昇を厳しく評価する観点から,互いの配管内を流れる高温の過熱蒸気の影響 を受けやすい箇所として,SRV(自動減圧機能)が最も近く隣接するバルブB及びバルブH を含む範囲をモデル化する。実際の事故対応では互いに離れた位置のSRV2個を開操作する 手順とするが,電磁弁及びピストンのシール部の温度条件を厳しく評価する観点より,本評価 では、隣接した2個を同時に開状態とする評価モデルとする。図5にSRV配置図及びモデル 化範囲を、図6にモデル図及び断面メッシュ図を示す。

4. 評価結果

評価結果を表2及び図7から図9に示す。

事象発生から下部プレナムへの溶融炉心移行中の期間を代表する温度条件を適用した温度条件 (①の定常解析では、下部コイルハウジングの最高温度はバルブBの約 120℃,ピストン部の最 高温度はバルブBの約 124℃であり、SRV環境試験温度である 160℃を下回る。

また、下部プレナムへの溶融炉心移行に伴うRPV内の気相温度の急激な上昇を考慮した温度 条件②の非定常解析では、下部コイルハウジングの最高温度はバルブBの約 124℃,ピストン部 の最高温度はバルブBの約 124℃であり、SRV環境試験温度である 160℃を下回る。

なお、SRV環境試験では、160℃以上の温度条件において 6 時間の機能維持が確認されてい る。この試験の初期の温度条件として 171℃を与えていることを踏まえると、160℃以下の温度条 件では約 7.6 時間の機能維持が可能*2であると考えられる。したがって、逃がし安全弁(自動減 圧機能)の開保持機能が要求される、事象発生から原子炉圧力容器破損までの時間(約 4.5 時間) に対して、十分な余裕がある。

以上のとおり, 炉心損傷後, DCH防止のために原子炉の減圧を継続している状況を想定した 環境下でも, SRV開保持機能は維持されると考えられる。

- 注記 *2: SRVは、「171℃において3時間継続の後、160℃において3時間継続(合計6時間)」 という環境条件での機能維持がSRV環境試験によって確認されている。この初期の 熱負荷(171℃において3時間継続)をアレニウス則に基づき、160℃の熱負荷に換算 すると、160℃において約4.6時間継続となり、これを後段の試験時間と合計すると約 7.6時間は機能維持が可能となる。したがって、逃がし安全弁(自動減圧機能)の開保 持機能が要求される4.5時間よりも3時間以上SRV開保持機能は維持されることと なり、十分余裕が確保されている。
- 5. 本体部の温度上昇による影響

前述のとおり、重大事故時においてもSRVの開保持機能は維持されるが、ここではSRV強 制開機能に対する温度上昇の影響について評価する。

閉状態のSRVを強制開とするためには、補助作動装置の駆動力がSRV本体の閉止力を上回 る必要がある。表 3 に温度上昇の影響を示す。SRV本体の閉止力に対する温度上昇の影響は、 いずれも強制開の妨げとなることはない。

項目	温度条件①【定常解析】	温度条件②【非定常解析】	
RPV内	512%	512°C → 596°C	
気相平均温度	512 C	512 C→586 C	
ドライウェル内	53%	F3%C	
気相平均温度	53 C	53 C	

表1 3次元熱流動解析での温度条件

表2 3次元熱流動解析での評価結果

т	温度条件①【定常解析】		温度条件②【非定常解析】	
	バルブB	バルブH	バルブB	バルブH
下部コイル ハウジング 最高温度	約 120℃	約 112℃	約 124℃	約 116℃
ピストン部 最高温度	約 124℃	約 113℃	約 124℃	約 113℃

3次元熱流動解析では,温度条件②【非定常解析】のRPV気相平均温度の初期温度を温度条件① 【定常解析】と同じとしている。また,下部コイルハウジングは,蒸気配管からの距離がピストン 部よりも近く,より蒸気配管内の高温蒸気の影響を受けやすいことから,下部コイルハウジング最 高温度は,定常解析結果に比べて非定常解析結果の方が約4℃上昇している。

一方で、ピストン部は蒸気配管からの距離が下部コイルハウジングよりも遠く、蒸気配管内の高温 蒸気の影響を受けにくいことから、ドライウェル雰囲気温度の影響がより支配的となり、定常解析 結果と非定常解析結果で温度差が小さい。

項目	温度上昇の影響		
	温度上昇に伴い、低下する方向にある。また、補助作動装		
SRVスプリンク閉止力 	置はスフリンク閉止力に対して十分な駆動力を有してい る。		
弁棒・アジャスタリング	主蒸気流路から離れた位置にあり、温度上昇幅は小さく、		
摺動抵抗	SRV強制開機能には影響を及ぼさない。		
会体、マッキブッシン	弁棒はSUS431, ネッキブッシュはニッケルブロンズと,		
井榉・イツイノツンユ	入熱時に隙間が拡大する材料の組合せとなっており, ネッ		
	キブッシュによる弁棒拘束は発生しない。		
ドランフピフトン・ブッシン、切動	バランスピストンはSUS403, ブッシュはニッケルブロ		
「ハノンスヒストン・ノッシュ指動」	ンズと、入熱時に隙間が拡大する材料の組合せとなってお		
	り、ネッキブッシュによる弁棒拘束は発生しない。		
弁体 (ガイド部)・ガイド	主蒸気温度上昇に伴い拡大するため,温度上昇に伴うガイ		
摺動抵抗	ドによる弁体拘束は発生しない。		

表3 SRV本体の抵抗力に対する温度上昇の影響

図1 SRV構造図(開状態)

図2 SRV環境試験条件

MAAP 解析の結果, 炉心領域での気相温度は最大約 930℃に 到達しているが, スタンドパイプ/セパレータ等への伝熱 により, 原子炉圧力容器内気相平均温度の推移としては本 図のとおりとなっている(参考1)

図4 ドライウェル内気相平均温度の推移

図5 SRV配置図及びモデル化範囲

図6 モデル図及び断面メッシュ図

図7 定常解析結果(温度条件①バルブB)

図 8 定常解析結果(温度条件①バルブH)

下部コイルハウジング最高温度

ピストン部最高温度

図 9 非定常解析結果(温度条件②)

MAAPコードによる原子炉圧力容器内平均温度評価について

1. MAAPコードによる解析

MAAPコードでは、水の蒸発による蒸気量の増加及び金属酸化による水素発生等による気体 組成の変化を計算するとともに、炉心露出に伴う伝熱による気体エネルギ増加及び原子炉注水や ヒートシンクへの伝熱による気体のエネルギ減少等を計算し、これらの計算結果を踏まえて、気 体の有するエネルギと組成等から原子炉圧力容器内気相平均温度を計算している(図1)。

出典 : MAAP4 User's Manual,

*冷却材喪失後の各ヒートシンクの熱伝達は、対流による気相熱伝達及び輻射熱伝達により、 計算される。

図1 MAAP原子炉圧力容器ノード分割図

本体図3には,MAAPコードによるDCH有効性評価解析で得られた原子炉圧力容器内気相 平均温度を示しているが,炉心領域の気相温度及びスタンドパイプ/セパレータの温度の傾向も 合わせて表1に示す。

	事故 発生後	炉心支持板破損 (約2.5時間後)	\rightarrow	全溶融燃料の下部プ レナムへの落下 (約3.4時間後)
炉心領域の気相温度	上昇傾向	約 930℃	一旦低下し, 再度上昇	約 800℃
スタンドパイプ/ セパレータの温度	上昇傾向	約 520℃	一旦低下し, 再度上昇	約 440℃
原子炉圧力容器内 気相平均温度*	上昇傾向	511. 3℃	一旦低下し, 再度上昇	585. 5℃

表1 各部の温度の傾向

*高温となる炉心領域を含む原子炉圧力容器内全体の気相の持つエネルギ及び気相体積から気相平 均温度を算出

表1のとおり、炉心領域の気相温度はスタンドパイプ/セパレータの温度や原子炉圧力容器内 気相平均温度より高くなっているが、スタンドパイプ/セパレータ等のヒートシンクへの伝熱に より気相温度は低下し、原子炉圧力容器内気相平均温度としては本体図3に示す挙動となってい る。これは、炉心領域において過渡的に温度上昇した過熱蒸気の熱量を十分吸収できる熱容量を スタンドパイプ/セパレータ等のヒートシンクが保有しているためと考えられる。

スタンドパイプ/セパレータが過熱蒸気の熱量を吸収可能な熱容量を保持していることを確認するため、スタンドパイプ/セパレータへの伝熱を考慮した簡易計算を実施した。

- 2. スタンドパイプ/セパレータへの伝熱を考慮した簡易計算
- (1) 評価条件

本体図3及び表1に示したとおり,事故後1.2時間から炉心領域の気相温度は徐々に上昇し, 炉心支持板の破損により,温度が一旦低下する事故後2.5時間までの間に約900℃に到達する。

この時間帯にスタンドパイプ/セパレータを介して放出される過熱蒸気がSRVに到達す る前に冷却されるかについて, 簡易計算を実施した。

図2に簡易評価の計算体系を示す。図2に示すように原子炉圧力容器の上部ヘッドの空間体 積(約300m³)を考慮し、この領域の気相温度を保守的に(高めに)評価する条件を設定した (表2)。

図2 簡易評価の計算体系

項目 値 単位 備考 左記体積は主蒸気管やダウンカマ等の体積を $\rm m^{\,3}$ 上部ヘッドの空間体積 300 含まないため保守的な設定となる MAAP 解析におけるスタンドパイプ/セパレ-タを通る気相流量を参考に設定 気相の流入・流出 1 kg/s 同流量は事故後 1.2 時間で約 1.0kg/s, 事故後 2.5 時間後で約 0.5kg/s と徐々に減少する傾 向であり,保守的な設定となる 炉心支持板破損時(事故後 2.5 時間)におけ る炉心領域の気相温度から設定 $^{\circ}\mathrm{C}$ 気相の流入温度 900 炉心領域の気相温度は事故後上昇傾向を示 し,支持板破損時に左記の最高温度となるた め、900℃一定の条件は保守的な設定となる 簡易評価の初期時刻である事故後 1.2 時間後 上部ヘッドの気相温度の初 °C 350 における上部ヘッドの気相温度(約348℃)か 期温度 ら保守的に設定* 簡易評価の初期時刻である事故後 1.2 時間後 スタンドパイプ/セパレー °C 350 における構造材温度(約328℃)から保守的に タの構造材温度の初期温度 設定* 「伝熱概論^[1]」に記載の,流れている空気の スタンドパイプ/セパレー 2.5 W/m^2K 熱伝達率の値(10~250W/m²K)から保守的に タへの熱伝達 設定 スタンドパイプ/セパレータの重量 50t,構造 スタンドパイプ/セパレー 材の材質である SUS の比熱 0.62kJ/kgK より設 MT/K 31 タの熱容量 定 $(50 \times 10^3 \text{ kg} \times 0.62 \text{ kJ/kgK=31 MJ/K})$ *事故後40分後までは炉心部に存在する水により冷却されること、その後の事故後1.2時間後までは原

表2 簡易評価の評価条件

*事故後40分後までは炉心部に存在する水により冷却されること,その後の事故後1.2時間後までは原 子炉の減圧に伴い冷却されることから,原子炉が十分に減圧されたことにより上昇傾向を示す事故後 1.2時間までは構造材温度及び気相温度(本体図3)は低く推移している。

[1] 甲藤好郎, "伝熱概論", 養賢堂, 1964 年

(2) 評価結果

図3に簡易評価による原子炉圧力容器の上部ヘッドの気相温度及びスタンドパイプ/セパレ ータの構造材温度を示す。

図3に示すとおり,過熱蒸気の流入により,原子炉圧力容器の上部ヘッドの気相温度は徐々 に上昇するものの,1.2時間後(事故発生2.4時間後に相当)の気相温度は,520℃程度であ る。本簡易評価では上部ヘッドの気相温度を高めに評価する条件としており,MAAP解析に おける約2.5時間後の原子炉圧力容器内気相平均温度は511.3℃(表1)は現実的な上部ヘッ ドの気相温度と同等と考えらえる。

また、本簡易評価におけるスタンドパイプ/セパレータの構造材温度は480℃程度であり、 炉心部領域において過渡的に温度上昇した過熱蒸気の熱量を十分吸収できる熱容量をスタン ドパイプ/セパレータ等のヒートシンクが保有しているといえる。

なお,この480℃は,表1に示したMAAP解析における約2.5時間後のスタンドパイプ/ セパレータの温度(約520℃)より低くなっている。これは,本簡易評価では,上部ヘッドの 気相温度を高めに評価するため,気相からスタンドパイプ/セパレータへの熱伝達を保守的に 低めに設定しているためと考えられる。

ここで、仮にスタンドパイプ/セパレータへの熱伝達率を高めに 10 W/m²K と設定した場合、 図4に示すとおりスタンドパイプ/セパレータの構造材温度と上部ヘッドの気相温度の温度差 がなくなるまで伝熱する結果となり、1.2 時間後(事故発生 2.4 時間後に相当)のスタンドパ イプ/セパレータの構造材温度及び上部ヘッドの気相温度は共に 500℃程度となる。また、ス タンドパイプ/セパレータへの熱伝達率を 10 W/m²K より大きい値に設定した場合においても、 スタンドパイプ/セパレータの構造材温度が入熱源である気相温度より高くなることはないこ とから、スタンドパイプ/セパレータの構造材温度は気相温度と同じ 500℃程度となる。

以上のとおり、スタンドパイプ/セパレータに流入する気相温度は900℃と高いが、気相流 量は1kg/sと小さいことから、本簡易評価におけるスタンドパイプ/セパレータの構造材温度 は高くても500℃程度となる結果となり、スタンドパイプ/セパレータが過熱蒸気の熱量を吸 収可能な熱容量を保持していることを確認した。

22

(参考)

1時間当たりのセカンドパイプ/セパレータの温度上昇量の目安としては、約100℃となる。

過熱蒸気の比エンタルピー(900℃, 0.22MPa[abs]):約4.4MJ/kg
RPV 上部空間の蒸気の比エンタルピー(500℃, 0.22MPa[abs]):約3.5MJ/kg
過熱蒸気の流入量:1kg/s
セカンドパイプセパレータの熱容量:31MJ/K

図3 簡易評価による原子炉圧力容器の上部ヘッドの気相温度及び スタンドパイプ/セパレータの構造材温度

(スタンドパイプ/セパレータへの熱伝達率:2.5 W/m²K)

図4 簡易評価による原子炉圧力容器の上部ヘッドの気相温度及びスタンドパイプ/セパレータ の構造材温度

3. SRVの3次元熱流動解析にて使用する原子炉圧力容器内気相平均温度について

2. の簡易評価の想定では、スタンドパイプ/セパレータのみをヒートシンクとして考慮した が、図1に示したとおり、ヒートシンクとなる炉内構造物はスタンドパイプ/セパレータ以外に もあり、それらのヒートシンクにも過熱蒸気の熱量は吸収される。また、保温材を介しているこ とから、格納容器内温度に与える影響及び原子炉圧力容器からの放熱効果は小さいものの、図1 のヒートシンクのうち、原子炉圧力容器の外面となるヒートシンクについては、格納容器内への 熱伝達もMAAP解析では考慮している。

これらヒートシンクの影響により,MAAP解析における原子炉圧力容器内気相平均温度は, 炉心領域の気相温度と比較して低く推移しているものと考えられる。

なお、原子炉圧力容器から繋がる主蒸気配管にSRVは設置されているため、実際は原子炉圧 力容器からSRVに到達するまで主蒸気配管等への伝熱により気相温度は低下すると考えられ るが、SRVの3次元熱流動解析においては、SRVを流れる蒸気の温度として原子炉圧力容器 内気相平均温度を適用している。

⁽スタンドパイプ/セパレータへの熱伝達率:10 W/m²K)

MAAPコードにおける下部プレナムでの溶融炉心の挙動について

MAAPコードにおける下部プレナムでの溶融炉心の概念を図1に示す。溶融炉心が下部プレナ ム内の水と接触すると、一部がエントレインされて粒子状となって水中に拡散し、水により冷却さ れつつ重力落下し、下部プレナムに堆積する。その後、崩壊熱により再溶融する過程において、酸 化物との密度差により、上部に金属層が形成される成層化状態を模擬し、溶融プールは周囲にクラ ストを形成することを模擬している。溶融プールの温度は高温であるが、周囲のクラストは固化し ており伝熱量も低いため、冷却水や下部プレナムの構造材に与える熱影響は軽減される。

下部プレナムに水が存在する場合,発生した蒸気は炉心部を通過し過熱蒸気となるが,全溶融燃料の下部プレナムへの落下時点で下部プレナムの水は枯渇しており,炉心部に燃料が存在しないこ とから,過熱蒸気の発生はなく,気相部への伝熱は輻射が支配的となる。

以上から,溶融炉心の全量が下部プレナムに落下した以降は,クラストによって気相部への熱移 行が抑えられ,また,気相部への伝熱量と比較して下部プレナムの構造材への伝熱量が多く支配的 となることから,RPV内の気相部温度が著しく上昇することはない。

- 出典:MAAP4 User's Manual, EPRI

図1 下部プレナムでの溶融炉心の概念

逃がし安全弁用アクチュエータの耐環境性能向上について

1. 概要

逃がし安全弁用アクチュエータは,逃がし安全弁を外部信号によって作動させるための空気 作動式の補助装置であり,シリンダへの窒素供給によってピストンを作動させることで逃がし 安全弁を作動させる設計としている。

シリンダに供給された窒素圧力は、ピストンOリング及びシリンダガスケットにより維持さ れるが、シール材は重大事故等時における高温蒸気環境下において損傷する恐れがあることか ら、シリンダ及びピストンの改良により新たなシール部(バックシート)を設け、ピストンの Oリングが破損した場合においてもシール性能が維持することが可能な設計とすることを計画 している。

逃がし安全弁の概要図を図1に、アクチュエータの概要図を図2に示す。

図1 逃がし安全弁概要図

図2 アクチュエータ概要図

2. 健全性確認試験

改良シリンダについては、開発における健全性確認として表1に示す試験を実施している。 蒸気暴露試験装置の概要を図3に、蒸気暴露試験条件を図4に示す。

	確認項目	試験条件	判定基準	結果
シリンダ単体試	作動試験		円滑に動作すること	良
 験	漏えい試験		漏えいがないこと	良
蒸気暴露試験	漏えい試験		漏えいがないこと	良

表1 改良シリンダの健全性確認試験

図3 蒸気暴露試験装置の概要

図4 蒸気暴露試験条件

3. 今後の方針

シリンダの改良は,設計基準事故時の逃がし安全弁動作に影響を与える変更となることか ら、今後,信頼性確認試験を実施し、プラント運転に影響を与えないことを確認することとし ている。

以上

参考資料③

SRV用電磁弁の耐環境性能向上について

(1) 目的

SRVの機能向上させるための対策として、SRV電磁弁内のシール材を事故時環境下の耐性に 優れた改良型EPDMを使用したSRV電磁弁への交換を行う。改良型EPDMへの変更箇所は、 非常用窒素供給系及び非常用逃がし安全弁駆動系により窒素を供給する際に流路となるバウンダリ のうち、電磁弁の作動性能に影響を与えないシール部を、従来のフッ素ゴムより高温耐性が優れた 改良EPDM材に変更する。

(2) 概要

SRV用電磁弁の改良EPDM材の採用箇所を図1に示す。また、取替対象範囲を図2に示す。

図1 改良EPDM材を採用したSRV用電磁弁概要図

図2 取替対象範囲図

31