本資料のうち、枠囲みの内容は、営業秘密又は防護上の観点から公開できません

東海第二発電所 工事計画審査資料			
資料番号	工認-672 改 4		
提出年月日	平成 30 年 9 月 14 日		

V-2-6-7-2 衛星電話設備(固定型)の耐震性についての計算書

衛星電話設備(固定型)の耐震性についての計算書は、以下の図書より構成されている。

添付書類 V-2-6-7-2-1 衛星電話設備(固定型) (中央制御室) の耐震性についての計算書

添付書類 V-2-6-7-2-2 屋外アンテナ(中央制御室)の耐震性についての計算書

添付書類 V-2-6-7-2-3 衛星電話設備用通信機器収納ラック (中央制御室)

の耐震性についての計算書

添付書類 V-2-6-7-2-4 衛星電話設備(固定型) (緊急時対策所)の耐震性についての計算書

添付書類 V-2-6-7-2-5 屋外アンテナ (緊急時対策所) の耐震性についての計算書

添付書類 V-2-6-7-2-6 衛星電話設備用通信機器収納ラック (緊急時対策所)

の耐震性についての計算書

V-2-6-7-2-1 衛星電話設備(固定型) (中央制御室) の耐震性についての計算書

目次

1.		概	要	L
2.		_	般事項 · · · · · · · · · · · · · · · · · · ·	L
	2.	1	構造計画	l
	2.	2	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
	2.	3	適用基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.		評	価部位 · · · · · · · · · · · · · · · · · · ·	3
4.		機	能維持評価······	1
	4.	1	評価用加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	4.	2	機能確認済加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
5.		評	価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	j
	5.	1	重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき、衛星電話設備(固定型) (中央制御室) が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

衛星電話設備(固定型) (中央制御室) は、設計基準対象施設においてはCクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備、常設重大事故緩和設備及び常設重大事故等対処施設(防止でも緩和でもない設備) に分類される。以下、重大事故等対処設備としての電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

衛星電話設備(固定型) (中央制御室) の構造計画を表 2-1 に示す。

表 2-1 構造計画

計画	の概要	井川市ケナ井ン井,177
基礎・支持構造	主体構造	概略構造図
電話機を固縛用	電話機	
バンド及び粘着		
固定シートにて		
机上に固縛す		固縛用バンド及び粘着固定シート
る。		
机は取付金物を		約 700 mm
使用し,ボルト		約 1000 mm
で床に固定す		
る。		約 700 mm 取付金物
		床

2.2 評価方針

衛星電話設備(固定型)(中央制御室)の機能維持評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した電気的機能維持の方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを、「4. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

衛星電話設備(固定型) (中央制御室) の耐震評価フローを図 2-1 に示す。

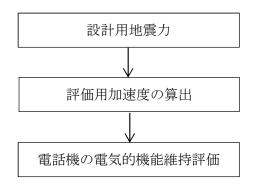


図 2-1 衛星電話設備(固定型) (中央制御室)の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補一 1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)

3. 評価部位

衛星電話設備(固定型) (中央制御室) は、電話機を固縛用バンド及び粘着固定シートにて机上に固縛することから、机が支持している。机は取付金物にて床に固定する。本計算書では、衛星電話設備(固定型) (中央制御室) の電気的機能維持評価について示す。衛星電話設備(固定型) (中央制御室) の評価部位を、表 2-1 の概略構造図に示す。

4. 機能維持評価

4.1 評価用加速度

衛星電話設備(固定型)(中央制御室)は、電話機を固縛用バンド及び粘着固定シートにて 机上に固縛することから、机が支持している。机についても取付金物にて床に固定することか ら、設計用地震力は添付書類「V-2-1-7 設計用床応答曲線の作成方針」に示す、衛星電話設 備(固定型)(中央制御室)の設置床における基準地震動S。に基づく設備評価用床応答曲線 とし、評価用加速度には設置床の最大応答加速度を適用する。

評価用加速度を表 4-1 に示す。

表 4-1 評価用加速度 (×9.8 m/s²)

X I I HI IIII/ 14/4F/CE/X (
146 00 77 16.	据付場所及び床面高さ	4,4	基準地震動 S s		
機器名称	(m)	方向	評価用加速度		
		水平	0.89		
	EL. 18.00 (EL. 20.30*)	鉛直	0. 67		

注記 *:基準床レベルを示す。

4.2 機能確認済加速度

衛星電話設備(固定型) (中央制御室) の機能確認済加速度について以下に示す。

衛星電話設備(固定型) (中央制御室) は、「2.1 構造計画」に示す実機の据付状態を模 擬し、机及び固縛を含め加振台上に設置した上で、当該機器が設置される床における設備評価 用床応答曲線を包絡する模擬地震波により加振試験を行う。機能確認済加速度には、加振試験 において電気的機能の健全性を確認した加振台の最大加速度を適用する。

機能確認済加速度を表 4-2 に示す。

表 4-2 機能確認済加速度 (×9.8 m/s²)

評価部位	方向	機能確認済加速度
衛星電話設備(固定型) (中央制御室)	水平	1. 79
	鉛直	1. 66

5. 評価結果

5.1 重大事故等対処設備としての評価結果

衛星電話設備(固定型) (中央制御室) の重大事故等の状態を考慮した場合の耐震評価結果 を以下に示す。評価用加速度は機能確認済加速度以下であり、設計用地震力に対して電気的機 能を有していることを確認した。

(1) 機能維持評価結果

電気的機能維持評価の結果を次頁の表に示す。

【衛星電話設備(固定型) (中央制御室) の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
衛星電話設備 (固定型)	水平方向	0.89	1.79
(中央制御室)	鉛直方向	0. 67	1.66

[→] 評価用加速度 (1.0ZPA) はすべて機能確認済加速度以下である。

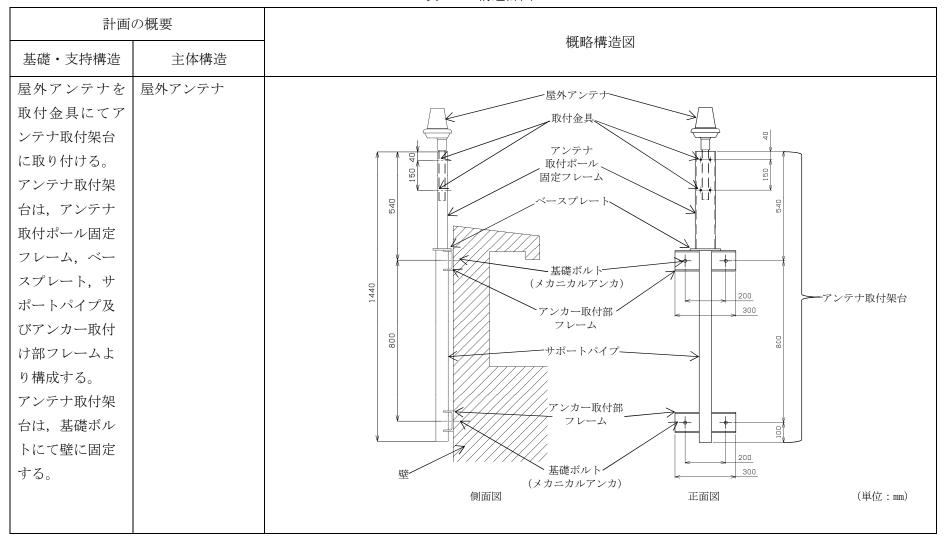
V-2-6-7-2-2 屋外アンテナ (中央制御室) の耐震性についての計算書

目次

1.	,	概	要····· 1
2.		<u></u>	般事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2.	1	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
2	2. :	2	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
2	2.	3	適用基準4
2	2.	4	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
2	2.	5	計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	i	評	価部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		地)	震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ł.	1	地震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・ 7
4	ł. :	2	荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ł. :	3	解析モデル及び諸元・・・・・・・・・・11
4	Į.,	4	固有周期・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ł.,	5	設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ł. (6	計算方法15
4	ł. '	7	計算条件17
4	ł. i	8	応力の評価・・・・・・・・・・・・・・・・・・・・・・・・17
5.	;	機	能維持評価‥‥‥‥‥‥‥‥‥‥‥‥‥‥.18
Ę	5.	1	電気的機能維持評価方法・・・・・・・・・・18
6.	i	評	価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
P	3	1	重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、屋外アンテナ(中央制御室)が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。その耐震評価は、屋外アンテナ(中央制御室)の地震応答解析及び応力評価並びに機能維持評価により行う。


屋外アンテナ(中央制御室)は、設計基準対象施設においてはCクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備、常設重大事故緩和設備及び常設重大事故等対処施設(防止でも緩和でもない設備)に分類される。以下、重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

屋外アンテナ(中央制御室)の構造計画を表 2-1 に示す。

表 2-1 構造計画

2.2 評価方針

屋外アンテナ(中央制御室)の応力評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す屋外アンテナ(中央制御室)の部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また、屋外アンテナ(中央制御室)の機能維持評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

屋外アンテナ(中央制御室)の耐震評価フローを図2-1に示す。

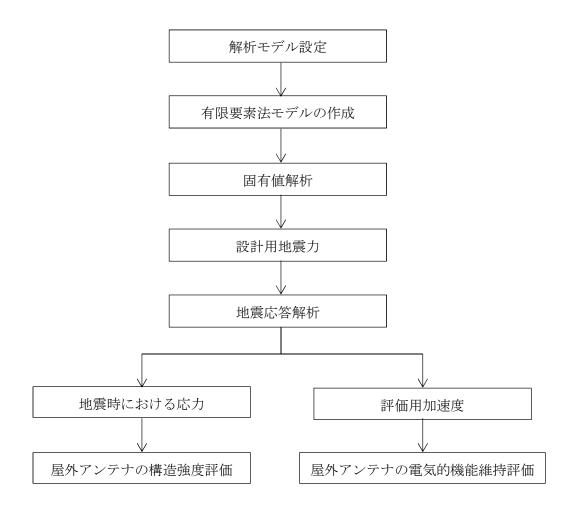


図 2-1 屋外アンテナ(中央制御室)の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601·補-1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追補版含む。)) JSM E SNC1-2005/2007 (日本機械学会)

2.4 記号の説明

記号	記 号 の 説 明	単 位
Сн	水平方向設計震度	_
C _V	鉛直方向設計震度	_
Т	温度条件(雰囲気温度)	$^{\circ}$ C
Е	縦弾性係数	MPa
ν	ポアソン比	_
S y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
S u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
F*	設計・建設規格 SSB-3133に定める値	MPa
A	アンテナ取付架台の断面積	mm^2
Ιy	アンテナ取付架台の断面二次モーメント(Y軸)	mm^4
Ιz	アンテナ取付架台の断面二次モーメント (Z軸)	mm^4
J	アンテナ取付架台のねじり定数	mm^4
Ау	アンテナ取付架台の有効せん断面積(Y軸)	mm^2
A z	アンテナ取付架台の有効せん断面積(Z軸)	mm^2
Z _y	アンテナ取付架台の断面係数(Y軸)	mm^3
Z z	アンテナ取付架台の断面係数 (Z軸)	mm^3
F _b	基礎ボルトに作用する引張力	N
Q _b	基礎ボルトに作用するせん断力	N
Q y	基礎ボルトに作用するY軸方向のせん断力	N
Q z	基礎ボルトに作用するΖ軸方向のせん断力	N
A _b	基礎ボルトの断面積	mm^2
$f_{ m to}$	引張力のみを受ける基礎ボルトの許容引張応力(f t を 1.5 倍した値)	MPa
$f_{ m sb}$	せん断力のみを受ける基礎ボルトの許容せん断応力(f。を1.5倍した値)	MPa
$f_{ m ts}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
σь t	基礎ボルトに生じる引張応力	MPa
τь	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	_	小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}\! \mathbb{C}$	_		整数位
長さ	mm	_	_	整数位*1
面積*2	${\rm mm}^2$	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
カ	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記 *1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

屋外アンテナ(中央制御室)の耐震評価は、耐震評価上厳しくなる基礎ボルトを選定して実施する。屋外アンテナ(中央制御室)の評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価

- (1) 固有周期及び荷重を求めるため、アンテナ取付架台をはり要素としてモデル化した 3 次元 FEM モデルによる固有値解析を行う。固有周期が 0.05 秒以下である場合は、1.2 倍した設置床の最大応答加速度を用いた静解析を実施する。0.05 秒を超える場合は、設備評価用床応答曲線を用いたスペクトルモーダル解析を実施する。
- (2) 屋外アンテナは、建屋の壁面に設置し、基礎ボルトにより固定されるものとする。
- (3) 解析モデルの質量には、屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
- (4) 耐震計算に用いる寸法は、公称値を使用する。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

屋外アンテナ (中央制御室) の重大事故等対処設備の評価に用いる荷重の組合せ及び許容 応力状態を表 4-1 に示す。また、本設備の構造や形状から、風荷重及び積雪荷重の影響が無 視できない可能性があることから、風荷重及び積雪荷重を組合せて評価を行う。

4.2.2 許容応力

屋外アンテナ(中央制御室)の許容応力は、添付書類「V-2-1-9 機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

屋外アンテナ (中央制御室) の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-3 に示す。

4.2.4 風荷重

風荷重は、風速 30 m/s を使用し、屋外アンテナ(中央制御室)の架台形状、風向きを踏まえ、作用する風圧力を算出する。風圧力の算出の基準となる基準速度圧を表 4-4 に示す。

4.2.5 積雪荷重

積雪荷重は、単位荷重 20 N/cm/m² *を使用し、屋外アンテナ(中央制御室)の架台形状を踏まえ、作用する積雪荷重を算出する。算出した積雪荷重を表 4-5 に示す。

注記 *: 積雪量 1cm ごとに 1m² あたり 20N であることを示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類*1	機器等 の区分	荷重の組合せ	許容応力 状態
⇒上沿11 <i>1</i> ±11/5⊓			常設/防止		$D+P_D+M_D+S_s+P_k+P_s^{*3}$	IV _A S
計測制御系統施設	その他	屋外アンテナ(中央制御室)	常設/緩和 その他	<u>*</u> *2	$D+P_{SAD}+M_{SAD}+S_s+P_k+P_s$	V_AS (V_AS として, IV_AS の許容限界 を用いる。)

注記 *1:「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備,

「その他」は常設重大事故等対処施設(防止でも緩和でもない設備)を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

*3:「D+P_{SAD}+M_{SAD}+S_s+P_k+P_s」の評価に包絡されるため、評価結果の記載を省略する。

表 4-2 許容応力 (重大事故等その他の支持構造物)

許容応力状態	許容限界(ボルト		
	一次応力		
	引張り	せん断	
IV _A S			
V _A S	1.5 • f **	1 5 . 6 *	
$(V_AS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1. 0 • 1 t	1.5 · f s*	
許容限界を用いる。)			

注記 *1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

9

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (℃)		S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度		205	520	_

表 4-4 基準速度圧

作用する部位	基準速度圧	
11-77 分型加工	(N/m^2)	
アンテナ取付架台	1808. 3	

表 4-5 積雪荷重

作用する部位	積雪荷重 (N)	
アンテナ取付架台	9. 502	

4.3 解析モデル及び諸元

解析モデルを図 4-1 に、解析モデルの諸元を表 4-6、外形図を図 4-2 に示す。

- (1) 図 4-1 の△は拘束節点を示し、■は質量付加位置を表す。
- (2) 屋外アンテナ及び取付金具の質量は、耐震評価上厳しくなる最上端の節点位置に質量要素として設定した。アンテナ取付架台の質量は、はり要素の材料特性に質量密度を設定することでモデル化した。
- (3) 拘束条件として、図 4-1 の△の節点について、基礎ボルトにて壁面に固定されるため、 XYZ 並進方向を拘束する。かつ、アンカー取付部フレームと壁面が接していることから、 X 軸回りの回転を拘束する。
- (4) 部材の機器要目を表 4-7 に示す。
- (5) 解析コードは「NX NASTRAN」を使用する。なお、評価に用いる解析コードの 検証及び妥当性確認等の概要については、添付書類「V-5-49 計算機プログラム(解析 コード)の概要・NX NASTRAN」に示す。

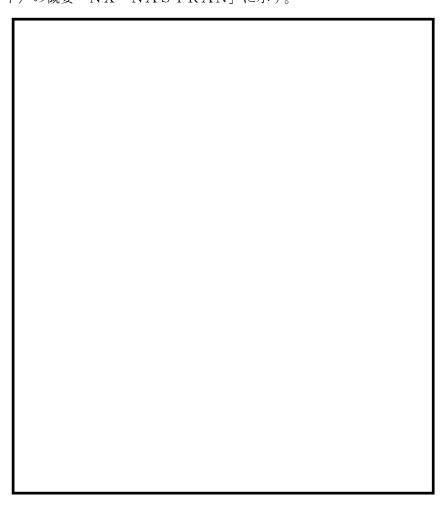


図 4-1 解析モデル図

表 4-6 解析モデルの諸元

項目	単位	入力値
材料	_	
温度条件	$^{\circ}\!\mathbb{C}$	
縦弾性係数	MPa	
ポアソン比	_	
寸法	_	図 4-2
要素数	個	
節点数	個	
質量 (アンテナ取付架台)	kg	
質量 (アンテナ+取付金具)	kg	

表 4-7 部材の機器要目

27.1. Hbb1 2.100 m 2.1.								
機器名	機器名称			屋外アンテナ(中央制御室)				
対象要素			アンカー取付部 フレーム	サポート パイプ	ベースプレート	アンテナ取付 ポールフレーム		
材料	斗							
断面刑	沙 状							
寸法		mm				Ī		
断面積	A	mm^2						
断面二次	Ιz	mm^4						
モーメント	Ιy	mm^4				1		
ねじり定数	J	mm^4						
せん断面積	A _y	mm^2						
せん例画傾	A _z	mm^2						
断面係数	Z y	mm^3						
四田尔奴	Z _z	mm^3						

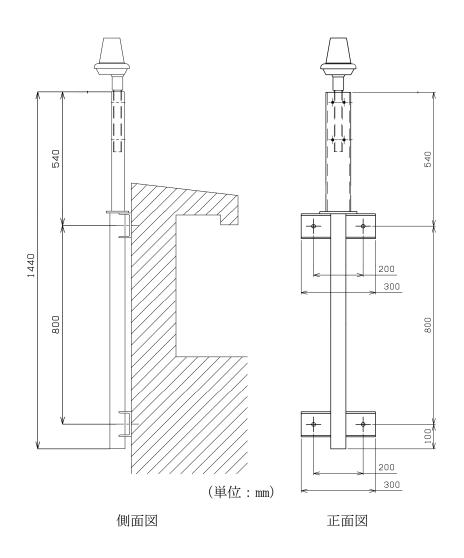


図 4-2 屋外アンテナ(中央制御室)外形図

4.4 固有周期

固有値解析の結果を表 4-8 に示す。

1次モードは水平方向に卓越し、固有周期が 0.05 秒以下であり、剛であることを確認した。また、鉛直方向は 2次モード以降で卓越し、固有周期は 0.05 秒以下であり、剛であることを確認した。

表 4-8 固有值解析結果

モード	固有周期 (s)	卓越方向
1 次		水平

4.5 設計用地震力

「基準地震動 S_s 」による地震力は、添付書類「V-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表 4-9 に示す。

表 4-9 設計用地震力 (重大事故等対処設備)

据付場所	固有周期		基準地震動S。		
及び	(s)		左中地展到 Os		
床面高さ	水平 鉛直		水平方向	鉛直方向	
(m)	方向 方向		設計震度	設計震度	
	0.05		C -0 45	C -1 00	
EL. 63.65*1		以下*2	$C_{H}=2.45$	$C_{V} = 1.88$	

注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり、剛であることを確認した。

4.6 計算方法

FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて、表 4-10 の式により最大 応力を算出する。なお、風荷重について、表 4-4 に示す基準速度圧が、壁面に設置されている アンテナ取付架台に向かい、0 度、45 度又は 90 度の方向から常時作用するものとして解析を 行う。雪荷重ついては、表 4-5 に示す積雪荷重が、鉛直方向から常時作用するものとして解析 を行い、最も応力の厳しい値を評価結果とする。最大応力発生部位を図 4-3 に示す。

表 4-10 応力計算式

応力の種類	単位	応力計算式
引張応力 σ _{bt}	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 _t _b	MPa	$\frac{Q_b}{A_b}$

ここで,

基礎ボルトに作用するせん断力 $Q_b = \sqrt{Q_y^2 + Q_z^2}$

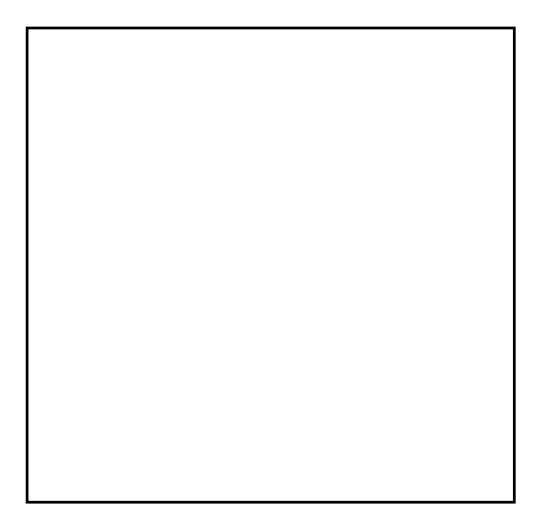


図 4-3 最大応力発生部位

4.7 計算条件

(1) 基礎ボルト

記号	説明	単位	値
F _b	基礎ボルトに作用する引張力	N	489.8
Q _y	基礎ボルトに作用するY軸方向のせん断力	N	170. 7
Q_z	基礎ボルトに作用するZ軸方向のせん断力	N	644. 3
Q _b	基礎ボルトに作用するせん断力	N	666. 5
A_{b}	基礎ボルトの断面積 (M12 ボルト)	mm^2	113. 1
F*	設計・建設規格 SSB-3133 に定める値	MPa	246

4.8 応力の評価

4.8.1 基礎ボルトの応力評価

4.6項で求めた基礎ボルトの引張応力 σ_b は次式より求めた許容引張応力 f_t 。以下であること。ただし、 f_t 。は下表による。

$$f_{\mathrm{t\ s}} = \mathrm{Min}[1.4 \cdot f_{\mathrm{t\ o}} - 1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t\ o}}]$$

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 f_{sb} 以下であること。 ただし、 f_{sb} は下表による。

	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m to}$	$\frac{F^*}{2} \cdot 1.5$
許容せん断応力 $f_{ m sb}$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5. 機能維持評価

5.1 電気的機能維持評価方法

屋外アンテナ(中央制御室)の電気的機能維持評価について、以下に示す。

屋外アンテナ(中央制御室)の評価用加速度が機能確認済加速度以下であることを確認する。 機能確認済加速度には、同形式の器具の正弦波加振試験において、電気的機能の健全性を確認 した評価部位の加速度を適用する。機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度 $(\times 9.8 \text{ m/s}^2)$

評価部位	方向	機能確認済加速度
屋外アンテナ	水平	8. 24
(中央制御室)	鉛直	8. 16

6. 評価結果

6.1 重大事故等対処設備としての評価結果

屋外アンテナ(中央制御室)の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【屋外アンテナ(中央制御室)の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 設計条件

146 DD カ な		現代 現代場所及び床面高さ		引期(s)	基準地震動 S 。		周囲環境温度
機器名称	設備分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	(℃)
	常設/防止 常設/緩和 その他	EL. 63.65*1		0.05以下*2	C _H =2.45	$C_{V} = 1.88$	

注記 *1:基準床レベルを示す。

*2: 固有値解析より 0.05 秒以下であり、剛であることを確認した。

- 1.2 機器要目
- 4.3項に示すとおり。
- 1.3 計算数值
- 4.7項に示すとおり。
- 1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

部	材	材料	応力	基準地質	震動S s
口口	121	171 177)/L /J	算出応力	許容応力
基礎ス	₽a.l		引張り	$\sigma_{bt} = 5$	$f_{\rm t\ s} = 147^*$
左 啶 人	N /V		せん断	$\tau_b = 6$	$f_{\rm s\ b} = 113$

すべて許容応力以下である。 $*: f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b} \quad f_{to}]$ より算出

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
屋外アンテナ	水平方向	2.04	8. 24
(中央制御室)	鉛直方向	1.56	8. 16

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

V-2-6-7-2-3 衛星電話設備用通信機器収納ラック (中央制御室) の耐震性についての計算書

目次

1.		概	要
2.		— }	般事項
	2.	1	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.	2	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
	2.	3	適用基準4
	2.	4	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
	2.	5	計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.		評	価部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		地	震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8
	4.	1	地震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・8
	4.	2	荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・8
	4.	3	解析モデル及び諸元・・・・・・・・・・12
	4.	4	固有周期15
	4.	5	設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.	6	計算方法16
	4.	7	計算条件19
	4.	8	応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・20
5.		機	能維持評価‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.22
	5.	1	電気的機能維持評価方法22
6.		評	価結果22
	6	1	重大事故築対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、衛星電話設備用通信機器収納ラック(中央制御室)が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。その耐震評価は、屋外アンテナ(中央制御室)の地震応答解析及び応力評価並びに機能維持評価により行う。

衛星電話設備用通信機器収納ラック(中央制御室)は、重大事故等対処設備においては常設耐 震重要重大事故防止設備以外の常設重大事故防止設備、常設重大事故緩和設備及び常設重大事故 等対処施設(防止でも緩和でもない設備)に分類される。以下、重大事故等対処設備としての構 造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

衛星電話設備用通信機器収納ラック(中央制御室)の構造計画を表 2-1 に示す。

表 2-1 構造計画

2.2 評価方針

衛星電話設備用通信機器収納ラック(中央制御室)の応力評価は,添付書類「V-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき,「2.1 構造計画」にて示す衛星電話設備用通信機器収納ラック(中央制御室)の部位を踏まえ,「3. 評価部位」にて設定する箇所において,「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを,「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また,衛星電話設備用通信機器収納ラック(中央制御室)の機能維持評価は,添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した方針に基づき,地震時の応答加速度が電気的機能確認済加速度以下であることを「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

衛星電話設備用通信機器収納ラック(中央制御室)の耐震評価フローを図 2-1 に示す。

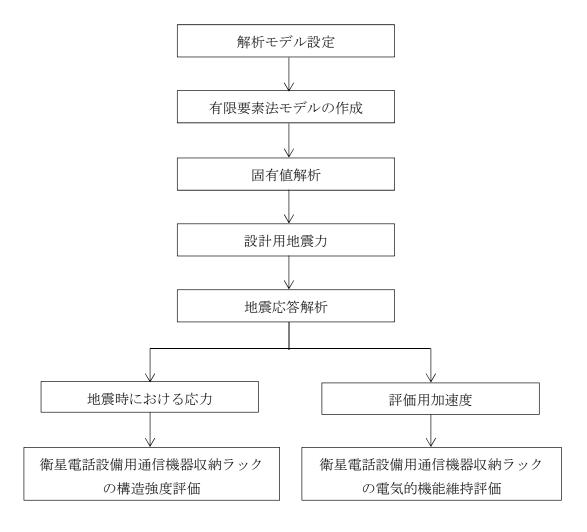


図 2-1 衛星電話設備用通信機器収納ラック(中央制御室)の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601·補-1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追補版含む。)) JSM E SNC1-2005/2007 (日本機械学会)

2.4 記号の説明

記 号	記 号 の 説 明	単 位
Сн	水平方向設計震度	_
C_{V}	鉛直方向設計震度	_
Τ	温度条件 (雰囲気温度)	$^{\circ}$
Е	縦弾性係数	MPa
ν	ポアソン比	_
S y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
S u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
F*	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa
	フレームの応力計算に使用する記号	
A	フレームの断面積	mm^2
Ιy	フレームの断面二次モーメント (Y軸)	mm^4
Ιz	フレームの断面二次モーメント (Z軸)	mm^4
J	フレームのねじり定数	mm^4
A _y	フレームの有効せん断断面積 (Y軸)	mm^2
A z	フレームの有効せん断断面積(Z軸)	mm^2
Z _y	フレームのY軸周りの断面係数	mm^3
Z z	フレームのZ軸周りの断面係数	mm^3
F t	フレームに作用する引張力	N
F c	フレームに作用する圧縮力	N
F y	フレームに作用するY軸方向のせん断力	N
F z	フレームに作用するZ軸方向のせん断力	N
Му	フレームに作用するY軸周りの曲げモーメント	N•mm
M_z	フレームに作用するZ軸周りの曲げモーメント	N•mm
A t	引張力が作用するフレームの断面積	mm^2
A c	圧縮力が作用するフレームの断面積	mm^2
$f_{ m t}$	フレームの許容引張応力 (f t を1.5倍した値)	MPa
$f_{ m s}$	フレームの許容せん断応力(f_s を 1.5 倍した値)	MPa
$f_{ m c}$	フレームの許容圧縮応力 (f 。を1.5倍した値)	MPa
$f_{ m b}$	フレームの許容曲げ応力 (f _b を1.5倍した値)	MPa
σt	フレームに生じる引張応力	MPa
τ	フレームに生じるせん断応力	MPa
σс	フレームに生じる圧縮応力	MPa
σь	フレームに生じる曲げ応力	MPa
	基礎ボルトの応力計算に使用する記号	
Fь	基礎ボルトに作用する引張力	N

Q _b	基礎ボルトに作用するせん断力	N
Q _y	基礎ボルトに作用するY軸方向のせん断力	N
Q z	基礎ボルトに作用するZ軸方向のせん断力	N
Аь	基礎ボルトの断面積	mm^2
$f_{ m to}$	引張力のみを受ける基礎ボルトの許容引張応力 (f t を1.5倍した値)	MPa
$f_{ m sb}$	せん断力のみを受ける基礎ボルトの許容せん断応力(f s を1.5倍した値)	MPa
$f_{ m ts}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
σь t	基礎ボルトに生じる引張応力	MPa
τ _b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
20 III - II 20		1 1-2-4	/C/11/11	70.42.74 14	201111
固有周期		s	小数点以下第4位	四捨五入	小数点以下第3位
震度			小数点以下第3位	切上げ	小数点以下第2位
温度		$^{\circ}$	_		整数位
長さ	下記以外の長さ	mm			整数位*1
さフレームの厚さ		mm	_		小数点以下第1位
面積*	2	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメ	シト	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
カ		N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力		MPa	小数点以下第1位	切上げ	整数位
許容応	·····································	MPa	小数点以下第1位	切捨て	整数位

注記 *1: 設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は,比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

3. 評価部位

衛星電話設備用通信機器収納ラック(中央制御室)の耐震評価は、耐震評価上厳しくなるフレーム及び基礎ボルトを対象に選定する。衛星電話設備用通信機器収納ラック(中央制御室)の耐震評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価

- (1) 固有周期及び荷重を求めるため、ラックを構成する鋼材をはり要素及びシェル要素としてモデル化した3次元FEMモデルによる固有値解析を行う。固有周期が0.05秒以下である場合は、1.2倍した設置床の最大応答加速度を用いた静解析を実施する。0.05秒を超える場合は、設備評価用床応答曲線を用いたスペクトルモーダル解析を実施する。
- (2) 衛星電話設備用通信機器収納ラックは、建屋の床面に設置し、基礎ボルトにより固定されるものとする。
- (3) 解析モデルの質量には、ラックの質量と取付器具の質量を考慮する。
- (4) 耐震計算に用いる寸法は、公称値を使用する。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

衛星電話設備用通信機器収納ラック(中央制御室)の重大事故等対処設備の評価に用いる荷重の組合せ及び許容応力状態を表 4-1 に示す。

4.2.2 許容応力

衛星電話設備用通信機器収納ラック(中央制御室)の許容応力は、添付書類「V-2-1-9機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

衛星電話設備用通信機器収納ラック (中央制御室) の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-3 に示す。

注記 *1:「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

*3:「D+P_{SAD}+M_{SAD}+S_S」の評価に包絡されるため、評価結果の記載を省略する。

NT2 補② V-2-6-7-2-3 R4

表 4-2 許容応力 (重大事故等その他の支持構造物)

		許容限界	許容限界*2, *3			
		(ボルト	(ボルト等)			
許容応力状態		一次	一次	一次応力		
	引張	せん断	圧縮	曲げ	引張	せん断
IV _A S						
V _A S	1.5 • f _t *	1 5 . f *	1 E . f *	1 5 . f *	1 E . f *	1 5 . f *
$(V_AS \ge L T,$		1.0 · 1 s	1.0 · 1 c	1. 0 • 1 b	1.0 · 1 t	1. 0 • 1 s
IVASの許容限界						
を用いる。)						

注記 *1:「鋼構造設計基準 SI 単位版」(2002年日本建築学会)等の幅厚比の制限を満足させる。

*2:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*3: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件	S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
フレーム		周囲環境温度	205	520	_
基礎ボルト		周囲環境温度	205	520	_

4.3 解析モデル及び諸元

解析モデルを図 4-1,解析モデルの諸元を表 4-4,外形図を図 4-2 に示す。

- (1) 図 4-1 の△は拘束節点を示し、■は質量付加位置を表す。
- (2) 拘束条件として, 図 4-1 の△の節点について, 基礎ボルト位置において XYZ 並進方向を 拘束する。
- (3) 取付器具の質量は取付位置での中心に付加する。フレームの質量は、はり要素の材料特性に質量密度を設定することでモデル化した。
- (4) 部材の機器要目を表 4-5 に示す。
- (5) 解析コードは「NX NASTRAN」を使用する。なお、評価に用いる解析コードの 検証及び妥当性確認等の概要については、添付書類「V-5-49 計算機プログラム(解析 コード)の概要・NX NASTRAN」に示す。

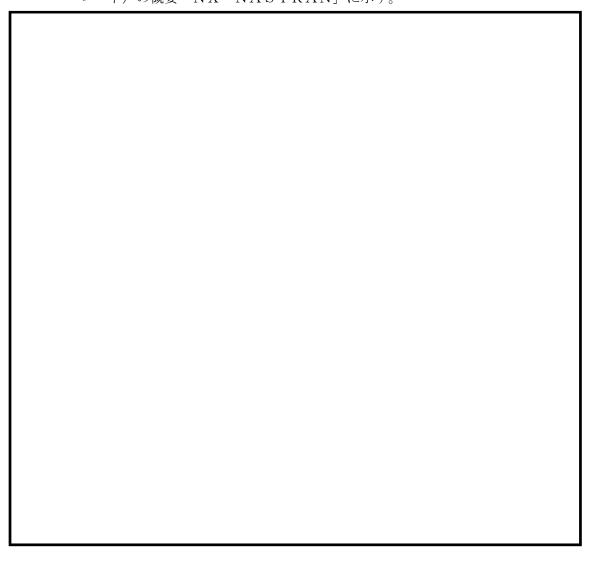


図 4-1 解析モデル図

表 4-4 解析モデルの諸元

項目	単位	入力値
材料	_	
温度条件(雰囲気温度)	$^{\circ}\! \mathbb{C}$	
縦弾性係数	MPa	
ポアソン比	_	
寸法	_	図 4-2
要素数	個	
節点数	個	
質量(収納ラック)	kg	
質量(器具)	kg	

表 4-5 部材の機器要目

機器名称			衛星電話設備用達	通信機器収納ラック	ウ (中央制御室)	
対象要素		~1)	前面用	棚板補強用		
刈多多	之 杀		フレーム	フレーム	フレーム	
材料	斗					
断面刑	沙 状					
寸法		mm				
断面積	A	mm^2				
断面二次	Ιz	mm^4				
モーメント	Ιy	mm^4				
ねじり定数	J	mm^4				
せん断面積	A _y	mm^2				
せん時間が	A z	mm^2				
断面係数	Z y	mm^3				
四田尔刻	Z z	mm^3				

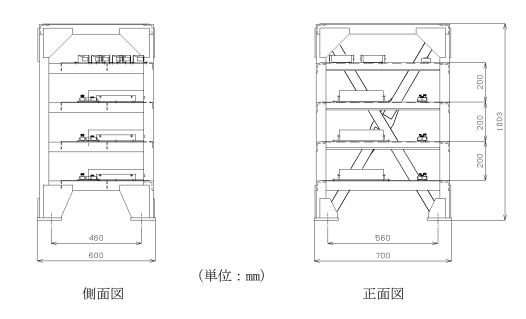


図 4-2 衛星電話設備用通信機器収納ラック (中央制御室) 外形図

4.4 固有周期

固有値解析の結果を表 4-6 に示す。

1次モードは水平方向に卓越し、固有周期が 0.05 秒以下であり、剛であることを確認した。また、鉛直方向は 2次モード以降で卓越し、固有周期は 0.05 秒以下であり、剛であることを確認した。

表 4-6 固有值解析結果

モード	固有周期 (s)	卓越方向
1 次		水平

4.5 設計用地震力

「基準地震動 S_s 」による地震力は、添付書類「V-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表 4-7 に示す。

表 4-7 設計用地震力 (重大事故等対処設備)

据付場所	固有周期		基準地震動S。	
及び	(3	(s) 基準地展期 5 s		長到り _s
床面高さ	水平	鉛直	水平方向	鉛直方向
(m)	方向	方向	設計震度	設計震度
EL. 18.00 (EL. 20.30*1)		0.05 以下* ²	Сн=1.34	$C_{V} = 1.01$

注記 *1:基準床レベルを示す。

*2: 固有値解析より 0.05 秒以下であり、剛であることを確認した。

4.6 計算方法

4.6.1 フレームの応力評価

FEM解析の結果から得られるフレーム部分のはり要素の荷重,モーメントを用いて,表 4-8 の式により最大応力を算出する。また,最大応力発生部位を図 4-3 に示す。

表 4-8 応力計算式

応力の種類		単位	応力計算式
引張応力 σ _t		MPa	$\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{A}_{\mathrm{t}}}$
せん断応力 τ		MPa	$\frac{\mathbf{F}_{y}}{\mathbf{A}_{y}}$, $\frac{\mathbf{F}_{z}}{\mathbf{A}_{z}}$
圧縮原	圧縮応力 σ 。		$\frac{\mathrm{F}_{\mathrm{c}}}{\mathrm{A}_{\mathrm{c}}}$
曲げ	曲げ応力 σ _b		$\frac{M_y}{Z_y}$, $\frac{M_z}{Z_z}$
如人让	引張+曲げ	_	$rac{\sigma_{\mathrm{t}} + \sigma_{\mathrm{b}}}{f_{\mathrm{t}}} \leq 1$
組合せ	圧縮+曲げ	_	$rac{\sigma_{ m c}}{f_{ m c}} + rac{\sigma_{ m b}}{f_{ m b}} \; \leqq 1$

4.6.2 基礎ボルトの応力評価

FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて、表 4-9 の式により最大応力を算出する。また、最大応力発生部位を図 4-3 に示す。

表 4-9 応力計算式

応力の種類	単位	応力計算式
引張応力 σ _{bt}	MPa	$\frac{F_b}{A_b}$
せん断応力 τ _b	MPa	$\frac{Q_b}{A_b}$

ここで,

基礎ボルトに作用するせん断力 $Q_b = \sqrt{Q_y^2 + Q_z^2}$

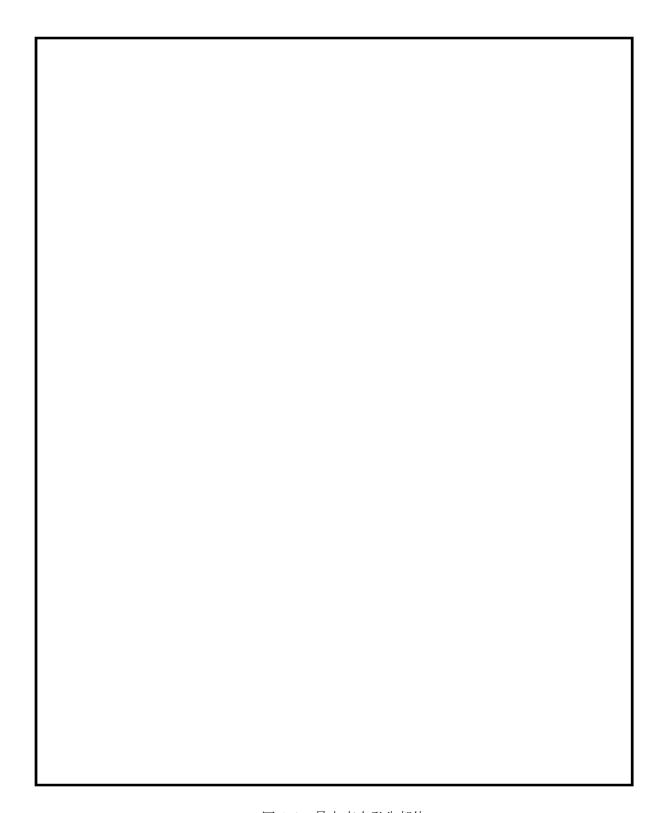


図 4-3 最大応力発生部位

4.7 計算条件

(1)フレーム

(前後+鉛直)

記号	説明	単位	値
F t	フレームに作用する引張力	N	344. 4
F c	フレームに作用する圧縮力	N	938. 1
A _t	引張力が作用するフレームの断面積	mm^2	114. 0
A _c	圧縮力が作用するフレームの断面積	mm^2	564. 4
F y	フレームに作用するY軸方向のせん断力	N	440. 4
A _y	フレームの有効せん断断面積 (Y軸)	mm^2	246. 9
M_z	フレームに作用するZ軸周りの曲げモーメント	N•mm	9. 043×10^4
Z _z	フレームのZ軸周りの断面係数	mm^3	3. 540×10^3
F*	設計・建設規格 SSB-3121.3 に定める値	MPa	246

(左右+鉛直)

記号	説明	単位	値
F t	フレームに作用する引張力	N	354. 2
F c	フレームに作用する圧縮力	N	1.371×10^3
A _t	引張力が作用するフレームの断面積	mm^2	114.0
A _c	圧縮力が作用するフレームの断面積	mm^2	564. 4
F z	フレームに作用するZ軸方向のせん断力	N	381.6
A_z	フレームの有効せん断断面積 (Z 軸)	mm^2	246. 9
M_{z}	フレームに作用するZ軸周りの曲げモーメント	N•mm	7. 151×10^4
Z z	フレームのZ軸周りの断面係数	mm^3	3.540×10^3
F*	設計・建設規格 SSB-3121.3 に定める値	MPa	246

(2) 基礎ボルト

記号	説明	単位	値
F _b	基礎ボルトに作用する引張力	N	2.236×10^3
Q_b	基礎ボルトに作用するせん断力	N	562. 6
Q _y	基礎ボルトに作用するY軸方向のせん断力	N	209. 7
Q_z	基礎ボルトに作用するZ軸方向のせん断力	N	522. 1
A _b	基礎ボルトの断面積	mm^2	113. 1
F*	設計・建設規格 SSB-3133 に定める値	MPa	246

4.8 応力の評価

- 4.8.1 フレームの応力評価
 - (1) 4.6.1項で求めた各応力が下表で定めた許容応力以下であること。ただし、許容組合せ応力は $f_{\rm t}$ 以下であること。

		基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m t}$ 許容せん断応力 $f_{ m s}$		$\frac{F^*}{1.5} \cdot 1.5$
		$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容圧縮応力	$(\lambda \leq \Lambda)$	$\left\{1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^2\right\} \cdot \frac{F^*}{\nu} \cdot 1.5$
$f_{ m c}$	$(\lambda > \Lambda)$	$0.277 \cdot F^* \cdot \left(\frac{\Lambda}{\lambda}\right)^2 \cdot 1.5$
許容曲げ応力 $f_{ ext{b}}$		F* · 1.5

ただし,

$$\lambda = \frac{\ell_k}{i}$$

$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F^*}}$$

$$\nu = 1.5 + \frac{2}{3} \left(\frac{\lambda}{\Lambda}\right)^2$$

(2) 引張力と曲げモーメントを受ける部材の応力は次式を満足すること。

$$\frac{\sigma_{\mathrm{t}} + \sigma_{\mathrm{b}}}{f_{\mathrm{t}}} \leq 1$$

(3) 圧縮力と曲げモーメントを受ける部材の応力は次式を満足すること。

$$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}} \le 1$$

4.8.2 基礎ボルトの応力評価

4.6.2項で求めた基礎ボルトの引張応力 $\sigma_{\rm b}$ t は次式より求めた許容引張応力 $f_{\rm t}$ s 以下であること。ただし, $f_{\rm to}$ は下表による。

$$f_{\text{t s}} = \text{Min}[1.4 \cdot f_{\text{to}} - 1.6 \cdot \tau_{\text{b}}, f_{\text{to}}]$$

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 f_{sb} 以下であること。 ただし、 f_{sb} は下表による。

	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m to}$	$\frac{F^*}{2} \cdot 1.5$
許容せん断応力 $f_{ m sb}$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5. 機能維持評価

5.1 電気的機能維持評価方法

衛星電話設備用通信機器収納ラック(中央制御室)の電気的機能維持評価について,以下に示す。

衛星電話設備用通信機器収納ラック(中央制御室)は、実機の据付状態を模擬した上で、当 該機器が設置される床における設備評価用床応答曲線を包絡する模擬地震波により加振試験を 行う。機能確認済加速度には、加振試験において電気的機能の健全性を確認した加振波の最大 加速度を適用する。

機能確認済加速度を表 5-1 に示す。

10 1 1	及自己作用的心存	
評価部位	方向	機能確認済加速度
衛星電話設備用	水平	1.84
通信機器収納ラック (中央制御室)	鉛直	1.67

表 5-1 機能確認済加速度 (×9.8 m/s²)

6. 評価結果

6.1 重大事故等対処設備としての評価結果

衛星電話設備用通信機器収納ラック(中央制御室)の重大事故等時の状態を考慮した場合の 耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な 構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【衛星電話設備用通信機器収納ラック(中央制御室)の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 設計条件

144 DD 17 Ale	設備分類	据付場所及び床面高さ	固有周期(s)		基準地震動 S _s		周囲環境温度
機器名称	放佣分類 (m)		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	(℃)
	常設/防止 常設/緩和 その他	EL. 18.00 (EL. 20.30*1)		0.05以下*2	C _H =1.34	$C_{V} = 1.01$	

注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり、剛であることを確認した。

- 1.2 機器要目
- 4.3項に示すとおり。
- 1.3 計算数値
- 4.7項に示すとおり。

23

1.4 結論

1.4.1 応力

ما ما جوجاب	- Lakel	応力	加き座の七台	基準地震動 S _s		
部材	部材 材料		加速度の方向	算出応力	許容応力	
		引張り	前後+上下	$\sigma_{t} = 3$	£ - 246	
		517K 9	左右+上下	$\sigma_{\rm t}=4$	$f_{\rm t} = 246$	
		せん断	前後+上下	$\tau = 2$	£ — 149	
		E NEW	左右+上下	$\tau = 2$	$f_{\rm s} = 142$	
		口佐	前後+上下	$\sigma_{c} = 2$	C — 10F	
		圧縮	左右+上下	$\sigma_{c} = 3$	$f_{\rm c} = 185$	
		曲げ	前後+上下	$\sigma_b = 26$	C - 94C	
フレーム			左右+上下	$\sigma_b = 21$	$f_{\rm b} = 246$	
		引張+曲げの 組合せ	_	$rac{\sigma_{ exttt{t}} + \sigma_{ exttt{b}}}{f_{ exttt{t}}} \leqq 1$		
			前後+上下	0.11 (無次元)		
			左右+上下	0.09 (無次元)		
		圧縮+曲げの 組合せ	_	$rac{\sigma_{ m c}}{f_{ m c}} + rac{\sigma_{ m b}}{f_{ m b}} \leqq 1$		
			前後+上下	0.11 (無次元)	
			左右+上下	0.09 (無次元)		
基礎ボルト		引張り		$\sigma_{bt} = 20$	$f_{\rm ts} = 147^*$	
を使か/アト		せん断		$\tau_{b}=5$	$f_{\rm sb} = 113$	

すべて許容応力以下である。

*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
衛星電話設備用	水平方向	0.89	1.84
通信機器収納ラック (中央制御室)	鉛直方向	0.67	1.67

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

V-2-6-7-2-4 衛星電話設備(固定型) (緊急時対策所) の耐震性についての計算書

目次

1.		概	要	L
2.		_	般事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	L
	2.	1	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	L
	2.	2	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
	2.	2	適用基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
3.		評	価部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
4.		機	能維持評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	4.	1	評価用加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	4.	2	機能確認済加速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
5.		評	価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	5.	1	重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき、衛星電話設備(固定型) (緊急時対策所)が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

衛星電話設備(固定型) (緊急時対策所) は、設計基準対象施設においてはCクラス施設に、 重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備、常 設重大事故緩和設備及び常設重大事故等対処施設(防止でも緩和でもない設備) に分類される。 以下、重大事故等対処設備としての電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

衛星電話設備(固定型) (緊急時対策所) の構造計画を表 2-1 に示す。

表 2-1 構造計画

計画	の概要	井川市ケナ井ン井,177
基礎・支持構造	主体構造	概略構造図
電話機を固縛用	電話機	
バンド及び粘着		
固定シートにて		
机上に固縛す		固縛用バンド及び粘着固定シート
る。		
机は取付金物を		約 700 mm
使用し,ボルト		約 1000 mm
で床に固定す		
る。		約 700 mm 取付金物
		床

2.2 評価方針

衛星電話設備(固定型)(緊急時対策所)の機能維持評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した電気的機能維持の方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを、「4. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

衛星電話設備(固定型) (緊急時対策所)の耐震評価フローを図 2-1 に示す。

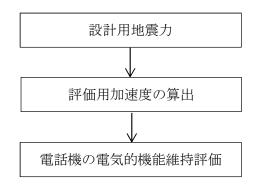


図 2-1 衛星電話設備(固定型) (緊急時対策所)の耐震評価フロー

2.2 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補一 1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)

3. 評価部位

衛星電話設備(固定型) (緊急時対策所) は、電話機を固縛用バンド及び粘着固定シートにて 机上に固縛することから、机が支持している。机は取付金物にて床に固定する。本計算書では、 衛星電話設備(固定型) (緊急時対策所)の電気的機能維持評価について示す。衛星電話設備 (固定型) (緊急時対策所)の評価部位を、表 2-1 の概略構造図に示す。

4. 機能維持評価

4.1 評価用加速度

衛星電話設備(固定型)(緊急時対策所)は、電話機を固縛用バンド及び粘着固定シートにて机上に固縛することから、机が支持している。机についても取付金物にて床に固定することから、設計用地震力は添付書類「V-2-1-7 設計用床応答曲線の作成方針」に示す、衛星電話設備(固定型)(緊急時対策所)の設置床における基準地震動S。に基づく設備評価用床応答曲線とし、評価用加速度には設置床の最大応答加速度を適用する。

評価用加速度を表 4-1 に示す。

表 4-1 評価用加速度 (×9.8 m/s²)

146 00 77 16.	据付場所及び床面高さ	4,4	基準地震動 S s
機器名称	(m)	方向	評価用加速度
衛星電話設備(固定型)		水平	0.67
(緊急時対策所)	EL. 30.30	鉛直	0.61

注記 *1:基準床レベルを示す。

4.2 機能確認済加速度

衛星電話設備(固定型) (緊急時対策所)の機能確認済加速度について以下に示す。

衛星電話設備(固定型) (緊急時対策所) は,「2.1 構造計画」に示す実機の据付状態を模擬した上で,机及び固縛を含め加振台上に設置した上で,当該機器が設置される床における設備評価用床応答曲線を包絡する模擬地震波により加振試験を行う。機能確認済加速度には,加振試験において電気的機能の健全性を確認した加振台の最大加速度を適用する。

機能確認済加速度を表 4-2 に示す。

表 4-2 機能確認済加速度

 $(\times 9.8 \text{ m/s}^2)$

評価部位	方向	機能確認済加速度
衛星電話設備(固定型)	水平	1. 79
(緊急時対策所)	鉛直	1. 66

5. 評価結果

5.1 重大事故等対処設備としての評価結果

衛星電話設備(固定型)(緊急時対策所)の重大事故等の状態を考慮した場合の耐震評価結果を以下に示す。評価用加速度は機能確認済加速度以下であり、設計用地震力に対して電気的機能を有していることを確認した。

(1) 機能維持評価結果

電気的機能維持評価の結果を次頁の表に示す。

【衛星電話設備(固定型) (緊急時対策所)の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
衛星電話設備 (固定型)	水平方向	0. 67	1.79
(緊急時対策所)	鉛直方向	0.61	1.66

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

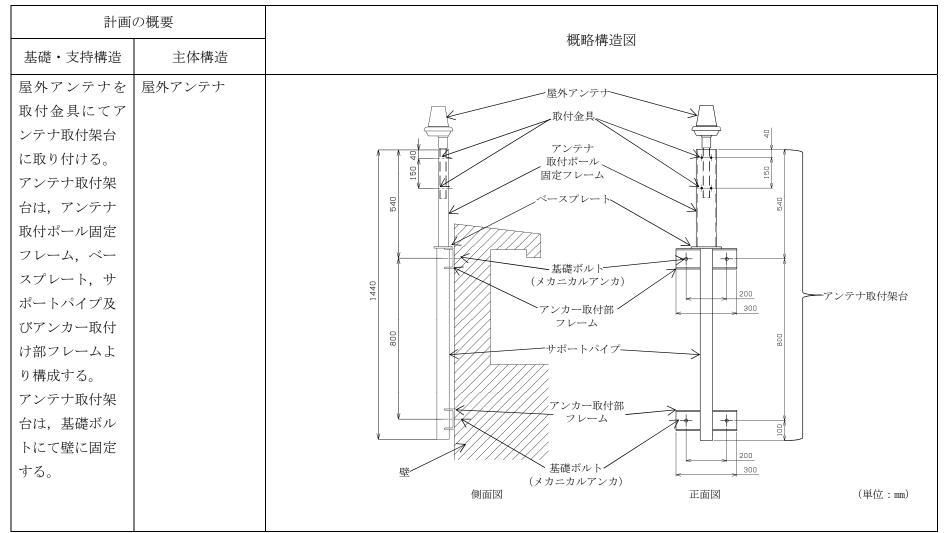
V-2-6-7-2-5 屋外アンテナ (緊急時対策所) の耐震性についての計算書

目次

1.	概	要
2.	<u> </u>	般事項
2	2. 1	構造計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
2	2. 2	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2. 3	適用基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2. 4	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2. 5	計算精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	評	価部位
4.	地	震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・ 7
4	1 . 1	地震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・ 7
4	1. 2	荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・ 7
4	1. 3	解析モデル及び諸元・・・・・・・・・・・・・・・・11
4	1. 4	固有周期14
4	1.5	設計用地震力14
4	1.6	計算方法15
4	1. 7	計算条件 · · · · · · · · · · · · · · · · · · ·
4	1.8	応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	機	能維持評価18
Ę	5. 1	電気的機能維持評価方法・・・・・・・・・・・・・・・・・・・・・・18
6.	評	価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
e	3 1	重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、屋外アンテナ(緊急時対策所)が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。その耐震評価は、屋外アンテナ(緊急時対策所)の地震応答解析及び応力評価並びに機能維持評価により行う。


屋外アンテナ(緊急時対策所)は、設計基準対象施設においてはCクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備,常設重大事故緩和設備及び常設重大事故等対処施設(防止でも緩和でもない設備)に分類される。以下、重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

屋外アンテナ(緊急時対策所)の構造計画を表 2-1 に示す。

2

2.2 評価方針

屋外アンテナ(緊急時対策所)の応力評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す屋外アンテナ(緊急時対策所)の部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また、屋外アンテナ(緊急時対策所)の機能維持評価は、添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6.評価結果」に示す。

屋外アンテナ(緊急時対策所)の耐震評価フローを図 2-1 に示す。

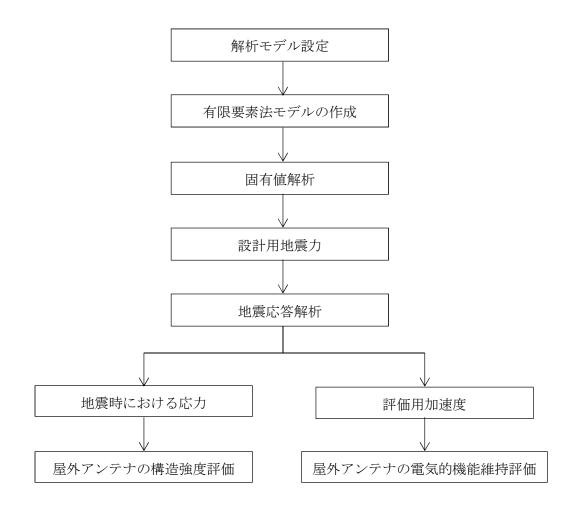


図 2-1 屋外アンテナ (緊急時対策所) の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601·補-1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追補版含む。)) JSM E SNC1-2005/2007 (日本機械学会)

2.4 記号の説明

記号	記 号 の 説 明	単 位			
Сн	水平方向設計震度	_			
C _V	鉛直方向設計震度	_			
Т	温度条件(雰囲気温度)	$^{\circ}$ C			
Е	縦弾性係数	MPa			
ν	ポアソン比	_			
S y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa			
S u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa			
F*	設計・建設規格 SSB-3133に定める値	MPa			
A	アンテナ取付架台の断面積	mm^2			
Ιy	アンテナ取付架台の断面二次モーメント(Y軸)	mm^4			
Ιz	アンテナ取付架台の断面二次モーメント (Z軸)	mm^4			
J	アンテナ取付架台のねじり定数	mm^4			
Ау	アンテナ取付架台の有効せん断面積(Y軸)	mm^2			
A z	アンテナ取付架台の有効せん断面積(Z軸)	mm^2			
Z _y	アンテナ取付架台の断面係数(Y軸)	mm^3			
Z z	アンテナ取付架台の断面係数 (Z 軸)				
F _b	基礎ボルトに作用する引張力				
Q _b	基礎ボルトに作用するせん断力				
Q y	基礎ボルトに作用するY軸方向のせん断力	N			
Q z	基礎ボルトに作用するΖ軸方向のせん断力	N			
A _b	基礎ボルトの断面積	mm^2			
$f_{ m to}$	引張力のみを受ける基礎ボルトの許容引張応力(f t を 1.5 倍した値)	MPa			
$f_{ m sb}$	せん断力のみを受ける基礎ボルトの許容せん断応力(f。を1.5倍した値)	MPa			
$f_{ m ts}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa			
σь t	基礎ボルトに生じる引張応力	MPa			
τь	基礎ボルトに生じるせん断応力	MPa			

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

	1 4	2 教作する妖能の方	- / / •	ı
数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度		小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}$	_		整数位
長さ	mm	_	_	整数位*1
面積*2	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2
モーメント	ーメント N·mm		四捨五入	有効数字4桁*2
カ N		有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記 *1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

屋外アンテナ(緊急時対策所)の耐震評価は、耐震評価上厳しくなる基礎ボルトを選定して実施する。屋外アンテナ(緊急時対策所)の評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価

- (1) 固有周期及び荷重を求めるため、アンテナ取付架台をはり要素としてモデル化した 3 次元 FEM モデルによる固有値解析を行う。固有周期が 0.05 秒以下である場合は、1.2 倍した設置床の最大応答加速度を用いた静解析を実施する。0.05 秒を超える場合は、設備評価用床応答曲線を用いたスペクトルモーダル解析を実施する。
- (2) 屋外アンテナは、建屋の壁面に設置し、基礎ボルトにより固定されるものとする。
- (3) 解析モデルの質量には、屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
- (4) 耐震計算に用いる寸法は、公称値を使用する。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

屋外アンテナ (緊急時対策所)の重大事故等対処設備の評価に用いる荷重の組合せ及び許容応力状態を表 4-1 に示す。また、本設備の構造や形状から、風荷重及び積雪荷重の影響が無視できない可能性があることから、風荷重及び積雪荷重を組合せて評価を行う。

4.2.2 許容応力

屋外アンテナ (緊急時対策所) の許容応力は, 添付書類「V-2-1-9 機能維持の基本方針」 に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

屋外アンテナ (緊急時対策所) の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表 4-3 に示す。

4.2.4 風荷重

風荷重は、風速 30 m/s を使用し、屋外アンテナ(緊急時対策所)の架台形状、風向きを踏まえ、作用する風圧力を算出する。風圧力の算出の基準となる基準速度圧を表 4-4 に示す。

4.2.5 積雪荷重

積雪荷重は、単位荷重 20 N/cm/m² *を使用し、屋外アンテナ(緊急時対策所)の架台形状を踏まえ、作用する積雪荷重を算出する。算出した積雪荷重を表 4-5 に示す。

注記 *: 積雪量 1cm ごとに 1m² あたり 20N であることを示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	'区分	機器名称	設備分類*1	機器等 の区分	荷重の組合せ	許容応力 状態
⇒上沿11 <i>1</i> ±11/5⊓			常設/防止		$D+P_D+M_D+S_s+P_k+P_s^{*3}$	IV _A S
計測制御系統施設	その他	屋外アンテナ(緊急時対策所)	常設/緩和 その他	<u>*</u> *2	$D+P_{SAD}+M_{SAD}+S_s+P_k+P_s$	V_AS (V_AS として, IV_AS の許容限界 を用いる。)

注記 *1:「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備,

「その他」は常設重大事故等対処施設(防止でも緩和でもない設備)を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

*3:「D+P_{SAD}+M_{SAD}+S_s+P_k+P_s」の評価に包絡されるため、評価結果の記載を省略する。

表 4-2 許容応力 (重大事故等その他の支持構造物)

	許容限界(ボルト		
許容応力状態	一次応力		
	引張り	せん断	
IV _A S			
V _A S	1.5 • f *	1 F . £ *	
$(V_AS \ge U \cap W_AS \mathcal{O})$	1. 0 • 1 _t	1.5 · f s*	
許容限界を用いる。)			

注記 *1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (℃)		S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度		205	520	_

表 4-4 基準速度圧

作用する部位	基準速度圧
	(N/m^2)
アンテナ取付架台	1533. 6

表 4-5 積雪荷重

作用する部位	積雪荷重 (N)
アンテナ取付架台	9. 502

4.3 解析モデル及び諸元

解析モデルを図 4-1 に、解析モデルの諸元を表 4-6、外形図を図 4-2 に示す。

- (1) 図 4-1 の△は拘束節点を示し、■は質量付加位置を表す。
- (2) 屋外アンテナ及び取付金具の質量は、耐震評価上厳しくなる最上端の節点位置に質量要素として設定した。アンテナ取付架台の質量は、はり要素の材料特性に質量密度を設定することでモデル化した。
- (3) 拘束条件として、図 4-1 の△の節点について、基礎ボルトにて壁面に固定されるため、 XYZ 並進方向を拘束する。かつ、アンカー取付部フレームと壁面が接していることから、 X 軸回りの回転を拘束する。
- (4) 部材の機器要目を表 4-7 に示す。
- (5) 解析コードは「NX NASTRAN」を使用する。なお、評価に用いる解析コードの 検証及び妥当性確認等の概要については、添付書類「V-5-49 計算機プログラム(解析 コード)の概要 ・NX NASTRAN」に示す。

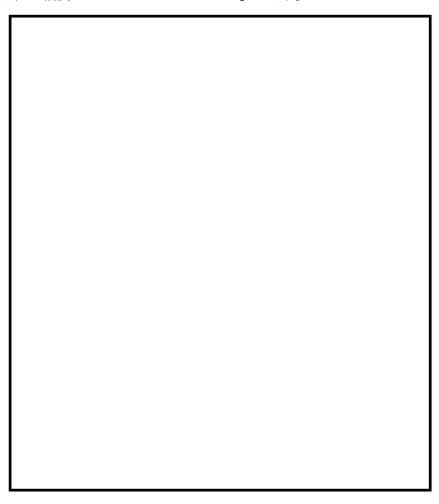


図 4-1 解析モデル図

表 4-6 解析モデルの諸元

単位	入力値
_	
$^{\circ}\!\mathbb{C}$	
MPa	
_	
_	図 4-2
個	
個	
kg	
kg	
	— ℃ MPa — — 個 個 kg

表 4-7 部材の機器要目

				10000000000000000000000000000000000000		
機器名	5称			屋外アンテナ(緊急時対策所)	
対象要	対象要素		アンカー取付部 フレーム	サポート パイプ	ベースプレート	アンテナ取付 ポールフレーム
材料						
断面刑	彡状					
寸法		mm				Ī
断面積	A	mm^2				
断面二次	Ιz	mm^4				
モーメント	Ιy	mm^4				
ねじり定数	J	mm^4				
せん断面積	A _y	mm^2				
せん例画傾	A _z	mm^2				
断面係数	Z y	mm^3				
四面尔敦	Z _z	mm^3			 	

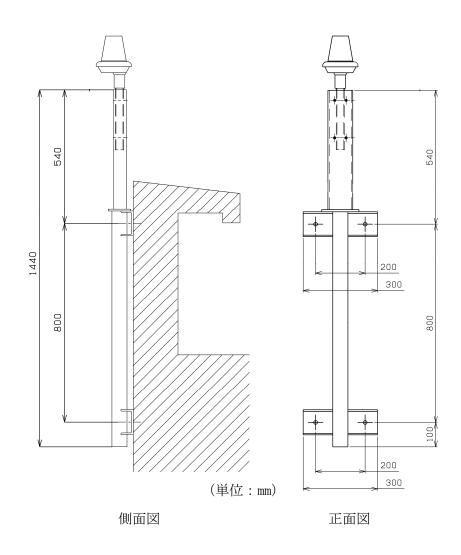


図 4-2 屋外アンテナ (緊急時対策所) 外形図

4.4 固有周期

固有値解析の結果を表 4-8 に示す。

1次モードは水平方向に卓越し、固有周期が 0.05 秒以下であり、剛であることを確認した。また、鉛直方向は 2次モード以降で卓越し、固有周期は 0.05 秒以下であり、剛であることを確認した。

表 4-8 固有值解析結果

モード	固有周期 (s)	卓越方向
1 次		水平

4.5 設計用地震力

「基準地震動 S_s 」による地震力は、添付書類「V-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表 4-9 に示す。

表 4-9 設計用地震力(重大事故等対処設備)

据付場所 及び	固有周期 (s)		基準地	震動S。
床面高さ (m)	水平 鉛直 方向 方向		水平方向 設計震度	鉛直方向 設計震度
EL. 51.00*1		0.05 以下* ²	$C_H = 1.93$	$C_{V} = 1.45$

注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり、剛であることを確認した。

4.6 計算方法

FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて、表 4-10 の式により最大 応力を算出する。なお、風荷重について、表 4-4 に示す基準速度圧が、壁面に設置されている アンテナ取付架台に向かい、0 度、45 度又は 90 度の方向から常時作用するものとして解析を 行う。雪荷重の考慮については、表 4-5 に示す積雪荷重が、鉛直方向から常時作用するものとして解析を して解析を行い、最も応力の厳しい値を評価結果とする。最大応力発生部位を図 4-3 に示す。

表 4-10 応力計算式

応力の種類	単位	応力計算式
引張応力 σ _{bt}	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 _t _b	MPa	$\frac{Q_b}{A_b}$

ここで,

基礎ボルトに作用するせん断力 $Q_b = \sqrt{Q_y^2 + Q_z^2}$

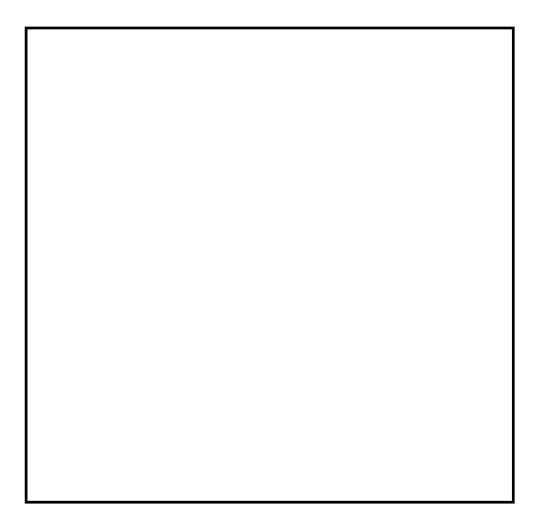


図 4-3 最大応力発生部位

4.7 計算条件

(1) 基礎ボルト

記号	説明	単位	値
F _b	基礎ボルトに作用する引張力	N	404.0
Q _y	基礎ボルトに作用するY軸方向のせん断力	N	136. 1
Q_z	基礎ボルトに作用するZ軸方向のせん断力	N	531.9
Q _b	基礎ボルトに作用するせん断応力	N	549. 0
A_{b}	基礎ボルトの断面積(M12ボルト)	mm^2	113. 1
F*	設計・建設規格 SSB-3133 に定める値	MPa	246

4.8 応力の評価

4.8.1 基礎ボルトの応力評価

4.6項で求めた基礎ボルトの引張応力 σ_b は次式より求めた許容引張応力 f_t 。以下であること。ただし、 f_t 。は下表による。

$$f_{\mathrm{t\ s}} = \mathrm{Min}[1.4 \cdot f_{\mathrm{t\ o}} - 1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t\ o}}]$$

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 f_{sb} 以下であること。 ただし、 f_{sb} は下表による。

	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m to}$	$\frac{F^*}{2} \cdot 1.5$
許容せん断応力 $f_{ m sb}$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5. 機能維持評価

5.1 電気的機能維持評価方法

屋外アンテナ(緊急時対策所)の電気的機能維持評価について、以下に示す。

屋外アンテナ(緊急時対策所)の評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には、同形式の器具の正弦波加振試験において、電気的機能の健全性を確認した評価部位の加速度を適用する。機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度 $(\times 9.8 \text{ m/s}^2)$

評価部位	方向	機能確認済加速度
屋外アンテナ	水平	8. 24
(緊急時対策所)	鉛直	8. 16

6. 評価結果

6.1 重大事故等対処設備としての評価結果

屋外アンテナ(緊急時対策所)の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【屋外アンテナ(緊急時対策所)の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 設計条件

DIK 88 6 4L	凯供八籽	据付場所及び床面高さ	固有周期(s)		基準地震動S。		周囲環境温度
機器名称	設備分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	(℃)
屋外アンテナ (緊急時対策所)	常設/防止 常設/緩和 その他	EL. 51.00*1		0.05以下*2	C _H =1.93	$C_{V} = 1.45$	

注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり、剛であることを確認した。

- 1.2 機器要目
- 4.3 項に示すとおり。
- 1.3 計算数值
- 4.7項に示すとおり。
- 1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

部材		材料	応 力	基準地震動S。	
дβ	12)	171 197) IL 71	算出応力	許容応力
# 7# ·	3 a. l		引張り	$\sigma_{bt} = 4$	$f_{\rm t\ s} = 147^*$
基礎ボルト			せん断	τ _b = 5	$f_{\rm s \ b} = 113$

すべて許容応力以下である。 $*: f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b} \quad f_{to}]$ より算出

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
屋外アンテナ	水平方向	1.61	8.24
(緊急時対策所)	鉛直方向	1.21	8. 16

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

V-2-6-7-2-6 衛星電話設備用通信機器収納ラック (緊急時対策所) の耐震性についての計算書

目次

1.	1	概要
2.	-	一般事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2		1 構造計画‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
2		2 評価方針‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥
2	. :	3 適用基準
2	2. 4	4 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	2. [5 計算精度と数値の丸め方
3.	Ī	評価部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	j	地震応答解析及び構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4		1 地震応答解析及び構造強度評価‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 8
4	. 2	2 荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4		3 解析モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・12
4	. 4	4 固有周期・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・15
4		5 設計用地震力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	. (8 計算方法············1€
4	. 7	7 計算条件‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.19
4	. 8	8 応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 20
5.	1	機能維持評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
5	· .	1
6.	Ī	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
6	. ·	1 重大事故等対処設備としての評価結果······22

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、衛星電話設備用通信機器収納ラック(緊急時対策所)が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。その耐震評価は、屋外アンテナ(緊急時対策所)の地震応答解析及び応力評価並びに機能維持評価により行う。

衛星電話設備用通信機器収納ラック(緊急時対策所)は、重大事故等対処設備においては常設 耐震重要重大事故防止設備以外の常設重大事故防止設備、常設重大事故緩和設備及び常設重大事 故等対処施設(防止でも緩和でもない設備)に分類される。以下、重大事故等対処設備としての 構造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

衛星電話設備用通信機器収納ラック(緊急時対策所)の構造計画を表 2-1 に示す。

表 2-1 構造計画

基礎・支持構造 主体構造	計画0	の概要		
 では、大力・カルアンカ) では、大力・カルアンカ) では、大力・カルアンカ) では、アンレームに関定する。 では、大力・カルアンカ) では、アンレームに関定する。 では、アンレームに関定する。 では、アンレームに関定する。 では、アンレームをは、では、アンレームに関定する。 では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、アンレームをは、では、アンレームをは、では、アンレームをは、では、アンレームをは、アンレームをは、では、アンレームをは、アンレームとは、アンレ	基礎・支持構造 主体構造		概略構造図	
(単位:mm)	礎ボルトにて床に固定する。 棚板及びガセットプレーででする。 物を選にできる。 では、 では、 では、 では、 では、 では、 では、 では、 では、 では、	(衛星電話設備 用通信機器を開 放型のラックに	(電路及び伝送路部位) ボセットブレート 取付ボルト (本体) ボースレーム ボースレーム 基礎ボルト (メカニカルアンカ)	— F

2

2.2 評価方針

衛星電話設備用通信機器収納ラック(緊急時対策所)の応力評価は,添付書類「V-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき,「2.1 構造計画」にて示す衛星電話設備用通信機器収納ラック(緊急時対策所)の部位を踏まえ,「3. 評価部位」にて設定する箇所において,「4.3 解析モデル及び諸元」及び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを,「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また,衛星電話設備用通信機器収納ラック(緊急時対策所)の機能維持評価は,添付書類「V-2-1-9 機能維持の基本方針」のうち「4.2 電気的機能維持」にて設定した方針に基づき,地震時の応答加速度が電気的機能確認済加速度以下であることを「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

衛星電話設備用通信機器収納ラック(緊急時対策所)の耐震評価フローを図 2-1 に示す。

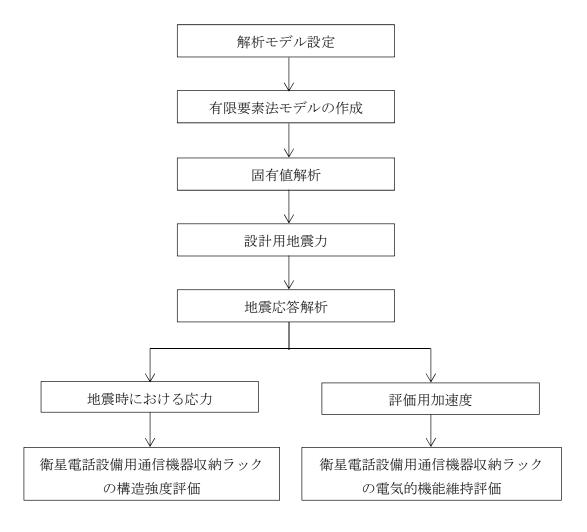


図 2-1 衛星電話設備用通信機器収納ラック (緊急時対策所) の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会)
- (2) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG4601·補-1984(日本電気協会)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(日本電気協会)
- (4) 発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追補版含む。)) JSM E S NC1-2005/2007 (日本機械学会)

2.4 記号の説明

Cr 水平方向設計景度 - Cv 鉛直方向設計景度 - T 温度条件(雰囲気温度) で E 縦弾性係数 MPa v ボアソン比 - S _v 設計・建設規格 付録材料図表 Part5 表8に定める値 MPa S _u 設計・建設規格 SSB-3121.3 双はSSB-3133に定める値 MPa F 設計・建設規格 SSB-3121.3 双はSSB-3133に定める値 MPa A フレームの断面積 MPa MPa I フレームの断面二次モーメント (Y軸) mm² I フレームの断面二次モーメント (X軸) mm² I フレームの断面二次モーメント (X軸) mm² I フレームの有効せん断断面積 (Y軸) mm² Z _v フレームの有効せん断断面積 (X軸) mm² Z _v フレームに作用する引張力 N F _v フレームに作用する見軸方向の世ん断力 N F _v フレームに作用する互軸方向のせん断力 N F _v フレームに作用する之軸方向のせん断力 N M _v フレームに作用するフレームの断面積 mm² A _v フレームに作用するフレームの断面積 mm² A _v フレームに作用するフレームの断面積 mm²	2.4 記号の		W 11.
日	記号	記号の説明	単位
T 温度条件 (雰囲気温度) で			_
E 総弾性係数 MPa v ボアソン比 - S _v 設計・建設規格 付録材料図表 Part5 表9に定める値 MPa S _u 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa F* 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa A フレームの断面積 mm² I _v フレームの断面(次モーメント (又軸) mm² I _v フレームの断面(次モーメント (又軸) mm² J フレームの断面(次モーメント (又軸) mm² J フレームの断面(次モーメント (又軸) mm² J フレームの断面(次モーメント (又軸) mm² J フレームの有効せん断断面積 (Y軸) mm² A _v フレームの有効せん断断面積 (Y軸) mm² Z _v フレームのY軸周りの断面係数 mm² F _v フレームに作用するJ職力 N N F _v フレームに作用するY軸局りの世ん断力 N N P _v フレームに作用するY軸局のの世代をカント N・mm N M _v フレームに作用するZ軸局のの曲げモーメント N・mm N・m² A _v フレームに作用するZ軸局のの曲げモーメント N・mm N・m² A _v フレームの許容引張応力 (f _v を1.5倍した値) MPa A _v フレームの許容上がた力 (f _v を1.5倍した値) MPa <			_
v ボアソン比 一 S _y 設計・建設規格 付録材料図表 Part5 表9に定める値 MPa S _u 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa F* 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa J フレームの断面積 mm² 1 _y フレームの断面直次モーメント (Y軸) mm² J フレームの断面二次モーメント (Z軸) mm² J フレームの断面に次モーメント (Z軸) mm² A _y フレームの側面で表数 mm² A _y フレームの有効せん断断面積 (Y軸) mm² Z _y フレームの名物世ん断断面積 (Y軸) mm² Z _y フレームの名物面の断面係数 mm² F _t フレームに作用する引張力 N F _t フレームに作用する日報力 N F _t フレームに作用すると軸方向のせん断力 N M _y フレームに作用すると軸方向のせん断力 N M _y フレームに作用すると軸方のの曲げモーメント N・mm A _c 圧縮力が作用するフレームの断面積 mm² A _c 圧縮力が作用するフレームの断面積 mm² A _c 圧縮力が作用するフレームの許容はん断の力(f _c 。を1.5倍した値) MPa f _c フレームの許容はん断の力(f _c 。を1.5倍した値) MPa <td></td> <td></td> <td></td>			
Sy 設計・建設規格 付線材料図表 Part5 表9に定める値 MPa Su 設計・建設規格 付線材料図表 Part5 表9に定める値 MPa F* 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa A フレームの断面積 mm² Ty フレームの断面(大モーメント (Y軸) mm² I y フレームの断面(大モーメント (Z軸) mm² J フレームの断面(大モーメント (Z軸) mm² Ay フレームの有効せん断断面積 (Y軸) mm² Ay フレームの有効せん断断面積 (Y軸) mm² Zy フレームの手動間の断面係数 mm² Zy フレームの子軸周りの断面係数 mm² Ft フレームに作用する引張力 N Fc フレームに作用する日編力 N Fy フレームに作用すると軸方ののせん断力 N My フレームに作用すると軸方のの世代をありためためためためためためためためためためためためためためためためためためため	Е		MPa
S。 設計・建設規格 付録材料図表 Part5 表9に定める値 MPa F* 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa フレームの断面積 nm² I、フレームの断面二次モーメント (Y軸) nm² I、フレームの断面二次モーメント (Z軸) nm² J、フレームのあむじり定数 nm² A、フレームの有効せん断断面積 (Y軸) nm² A、フレームの有効せん断断面積 (Z軸) nm² Z、フレームのY軸周りの断面係数 nm³ T・フレームのと作用する引張力 N F・フレームに作用する互輸力 N F・フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸周りの曲げモーメント N・mm A、引張力が作用するフレームの断面積 nm² A。圧縮力が作用するフレームの断面積 nm² 方、フレームの許容引張応力 (f。を1.5倍した値) MPa f。フレームの許容は心断応力 (f。を1.5倍した値) MPa f。フレームの許容はが応力 (f。を1.5倍した値) MPa σ。フレームに生じる可能応力 MPa 本確ボルトの応力計算に使用する記号		ポアソン比	_
ド 設計・建設規格 SSB-3121.3又はSSB-3133に定める値 MPa フレームの応力計算に使用する記号 nm² A フレームの断面積 nm² Iy フレームの断面二次モーメント (Y軸) nm⁴ Iz フレームの断面二次モーメント (Z軸) nm⁴ J フレームの胸面二次モーメント (Z軸) nm⁴ Ay フレームの指導などの情報 (Y軸) nm² Az フレームの有効せん断断面積 (Y軸) nm² Zy フレームの有効せん断断面積 (Z軸) nm² Zy フレームの名軸周りの断面係数 nm³ F: フレームに作用する引張力 N F: フレームに作用する見機力 N F: フレームに作用する見軸間りの世ん断力 N My フレームに作用する2軸周りの曲げモーメント N・mm A: 引張力が作用するフレームの断面積 nm² A: 引張力が作用するフレームの断面積 nm² A: 可張力が作用するフレームの断密はが応力 (f。を1.5倍した値) MPa 方: フレームの許容単端応力 (f。を1.5倍した値) MPa 方: フレームの許容単が応力 (f。を1.5倍した値) MPa 方: フレームに生じるけ形応力 (f。を1.5倍した値) MPa 方: フレームに生じる比断応力 (f。を1.5倍した値) MPa 方: <td>S y</td> <td>設計・建設規格 付録材料図表 Part5 表8に定める値</td> <td>MPa</td>	S y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
A フレームの断面積 mm² Iy フレームの断面二次モーメント (Y軸) mm² Iz フレームの断面二次モーメント (Z軸) mm² J フレームの制造に次モーメント (Z軸) mm² Ay フレームの指数せん断断面積 (Y軸) mm² Ay フレームの有効せん断断面積 (Y軸) mm² Zy フレームの有効せん断断面積 (Z軸) mm² Zy フレームの判職間の断面係数 mm³ F, フレームに作用する引張力 N F, フレームに作用する月職力 N My フレームに作用する2軸周りの曲げモーメント N・mm My フレームに作用する2軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² f, フレームの許容引表応力 (f,を1.5倍した値) MPa f, フレームの許容曲げ応力 (f,を1.5倍した値) MPa f, フレームの許容曲げ応力 (f,を1.5倍した値) MPa f フレームの許容曲げ応力 (f,を1.5倍した値) MPa f フレームに生じる出版応力 (f) MPa f フレームに生じる出版応力 (f) MPa f <td>S_u</td> <td>設計・建設規格 付録材料図表 Part5 表9に定める値</td> <td>MPa</td>	S _u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
A フレームの断面に次モーメント(Y軸) mm² Iy フレームの断面二次モーメント(Z軸) mm² J フレームのねじり定数 mm² Ay フレームの有効せん断断面積(Y軸) mm² Az フレームの有効せん断断面積(Z軸) mm² Zy フレームのY軸周りの断面係数 mm³ F: フレームに作用する引張力 N F: フレームに作用する引張力 N F: フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸方向のせん断力 N・mm Mz フレームに作用する又軸局の曲げモーメント N・mm² A: 引張力が作用するフレームの断面積 mm² A: 上縮力が作用するフレームの断面積 mm² A: 上縮力が作用するフレームの断面積 mm² 方。 フレームの許容目號応力(f。を1.5倍した値) MPa 方。 フレームの許容性能応力(f。を1.5倍した値) MPa の: フレームに生じる引張応力 MPa で フレームに生じるせん断応力 MPa 本 フレームに生じる世施応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	F*	設計・建設規格 SSB-3121.3又はSSB-3133に定める値	MPa
T		フレームの応力計算に使用する記号	
Iz フレームの断面二次モーメント (Z軸) mm⁴ J フレームのねじり定数 mm⁴ A₂ フレームの有効せん断断面積 (Y軸) mm² Z₂ フレームのY軸周りの断面係数 mm³ Z₂ フレームのZ軸周りの断面係数 nm³ F₁ フレームに作用する引張力 N F₂ フレームに作用する圧縮力 N F₂ フレームに作用する又軸方向のせん断力 N M₂ フレームに作用する又軸方向のせん断力 N M₂ フレームに作用する又軸方向のせん断力 N・mm A₁ 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² f₁ フレームの許容引張応力 (f₁、を1.5倍した値) MPa f₂ フレームの許容上縮応力 (f₂を1.5倍した値) MPa f₂ フレームの許容上縮応力 (f₂を1.5倍した値) MPa f₂ フレームの許容は施応力 (f₂を1.5倍した値) MPa f₂ フレームに生じる引張応力 MPa σ₂ フレームに生じる世緒応力 MPa σ₀ フレームに生じる出が応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	A	フレームの断面積	mm^2
J フレームのねじり定数 mm² A₂ フレームの有効せん断断面積(Z軸) mm² Z₂ フレームのY軸周りの断面係数 mm³ Z₂ フレームのZ軸周りの断面係数 mm³ F₁ フレームに作用する引張力 N F₂ フレームに作用する圧縮力 N F₂ フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸方向のせん断力 N M₂ フレームに作用する又軸方向のせん断力 N・mm A₁ 引張力が作用するフレームの断面積 mm² A c 圧縮力が作用するフレームの断面積 mm² f₁ フレームの許容引張応力(f₁、を1.5倍した値) MPa f₂ フレームの許容は一筋応力(f₁、を1.5倍した値) MPa f₂ フレームの許容は一筋応力(f₁、を1.5倍した値) MPa f₂ フレームの許容は一筋応力(f₁を1.5倍した値) MPa f₂ フレームに生じる引張応力 MPa σ₂ フレームに生じる上縮応力 MPa σ₂ フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	Ιy	フレームの断面二次モーメント (Y軸)	mm^4
Ay フレームの有効せん断断面積(Y軸) mm² Az フレームの有効せん断断面積(Z軸) mm² Zy フレームのY軸周りの断面係数 mm³ Zz フレームのZ軸周りの断面係数 nm³ Ft フレームに作用する引張力 N Fc フレームに作用すると軸方向のせん断力 N My フレームに作用すると軸方向のせん断力 N My フレームに作用すると軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² fc フレームの許容引張応力(f,を1.5倍した値) MPa fc フレームの許容はが応力(f。を1.5倍した値) MPa fb フレームの許容曲げ応力(f。を1.5倍した値) MPa fc フレームに生じる引張応力 MPa fc フレームに生じるせん断応力 MPa fc フレームに生じる世が応力 MPa fc フレームに生じる世が応力 MPa fc フレームに生じる世が応力 MPa fc フレームに生じる曲げ応力 MPa ga フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	Ιz	フレームの断面二次モーメント (Z軸)	mm^4
Az フレームの有効せん断断面積(Z軸) nm² Zy フレームのY軸周りの断面係数 mm³ Ez フレームのZ軸周りの断面係数 nm³ Ft フレームに作用する引張力 N Fc フレームに作用する圧縮力 N Fy フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸方向のせん断力 N My フレームに作用する又軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 nm² Ac 圧縮力が作用するフレームの断面積 mm² fc フレームの許容引張応力(ftを1.5倍した値) MPa fc フレームの許容性施応力(ftを1.5倍した値) MPa fc フレームの許容性施応力(ftを1.5倍した値) MPa fc フレームに生じる引張応力 MPa c フレームに生じるせん断応力 MPa fc フレームに生じるはん断応力 MPa c フレームに生じる曲げ応力 MPa ac フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	J	フレームのねじり定数	mm^4
Zy フレームのY軸周りの断面係数 mm³ Zz フレームのZ軸周りの断面係数 mm³ Ft フレームに作用する引張力 N Fc フレームに作用する互軸方向のせん断力 N Fy フレームに作用するZ軸方向のせん断力 N My フレームに作用するZ軸方の曲げモーメント N・mm Mz フレームに作用するZ軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力 (f,を1.5倍した値) MPa fc フレームの許容せん断応力 (f。を1.5倍した値) MPa fb フレームの許容はが応力 (f)を1.5倍した値) MPa c フレームの許容曲げ応力 (f)を1.5倍した値) MPa c フレームに生じる引張応力 MPa c フレームに生じるともん断応力 MPa σь フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	A _y	フレームの有効せん断断面積 (Y軸)	mm^2
Z z フレームのZ軸周りの断面係数 mm³ F t フレームに作用する引張力 N F c フレームに作用する圧縮力 N F y フレームに作用するY軸方向のせん断力 N My フレームに作用するZ軸方向のせん断力 N Mz フレームに作用するZ軸周りの曲げモーメント N・mm A t 引張力が作用するフレームの断面積 mm² A c 圧縮力が作用するフレームの断面積 mm² f t フレームの許容引張応力 (f t を1.5倍した値) MPa f s フレームの許容性が応力 (f s を1.5倍した値) MPa f c フレームの許容曲が応力 (f s を1.5倍した値) MPa f c フレームの許容曲が応力 (f s を1.5倍した値) MPa σ t フレームに生じる引張応力 MPa σ c フレームに生じる世術応力 MPa σ b フレームに生じる曲が応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	A z	フレームの有効せん断断面積(Z軸)	mm^2
Ft フレームに作用する引張力 N Fc フレームに作用する圧縮力 N Fy フレームに作用するY軸方向のせん断力 N My フレームに作用するY軸周りの曲げモーメント N・mm Mz フレームに作用する2軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力(ftを1.5倍した値) MPa fc フレームの許容せん断応力(ftを1.5倍した値) MPa fc フレームの許容曲げ応力(ftを1.5倍した値) MPa fc フレームの許容曲げ応力(ftを1.5倍した値) MPa fc フレームに生じる引張応力 MPa fc フレームに生じるせん断応力 MPa fc フレームに生じる上をしたしか応力 MPa fc フレームに生じる上が応力 MPa fc フレームに生じる世が応力 MPa fc フレームに生じる曲げ応力 MPa fc フレームに生じる曲げ応力 MPa	Z y	フレームのY軸周りの断面係数	mm ³
F。 フレームに作用する圧縮力 N Fy フレームに作用するY軸方向のせん断力 N My フレームに作用するY軸周りの曲げモーメント N・mm Mz フレームに作用するZ軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 MPa ft フレームの許容引張応力(f,を1.5倍した値) MPa fc フレームの許容圧縮応力(f,を1.5倍した値) MPa fb フレームの許容曲げ応力(f,を1.5倍した値) MPa σt フレームに生じる引張応力 MPa σ フレームに生じるせん断応力 MPa σ フレームに生じる日を確応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	Z z	フレームのZ軸周りの断面係数	mm ³
Fy フレームに作用するY軸方向のせん断力 N Fz フレームに作用するZ軸方向のせん断力 N My フレームに作用するY軸周りの曲げモーメント N・mm Mz フレームに作用するZ軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 MPa ft フレームの許容引張応力(f,を1.5倍した値) MPa fc フレームの許容圧縮応力(f,を1.5倍した値) MPa fb フレームの許容曲げ応力(f,を1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる田縮応力 MPa 基礎ボルトの応力計算に使用する記号	F t	フレームに作用する引張力	N
Fz フレームに作用する Z 軸方向のせん断力 N My フレームに作用する Z 軸周りの曲げモーメント N・mm Mz フレームに作用する Z 軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力(ftを1.5倍した値) MPa fs フレームの許容性が応力(fsを1.5倍した値) MPa fb フレームの許容曲げ応力(fsを1.5倍した値) MPa σt フレームに生じる引張応力 MPa σc フレームに生じるせん断応力 MPa σb フレームに生じる上が応力 MPa 基礎ボルトの応力計算に使用する記号	F c	フレームに作用する圧縮力	N
My フレームに作用する Y 軸周りの曲げモーメント N・mm Mz フレームに作用する Z 軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力(ftを1.5倍した値) MPa fs フレームの許容性ん断応力(fsを1.5倍した値) MPa fb フレームの許容曲が応力(fsを1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる圧縮応力 MPa σb フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	F y	フレームに作用するY軸方向のせん断力	N
Mz フレームに作用する Z 軸周りの曲げモーメント N・mm At 引張力が作用するフレームの断面積 mm² Ac 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力(ftを1.5倍した値) MPa fc フレームの許容せん断応力(fsを1.5倍した値) MPa fb フレームの許容曲げ応力(fsを1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる圧縮応力 MPa σb フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	F z	フレームに作用するZ軸方向のせん断力	N
A t 引張力が作用するフレームの断面積 mm² A c 圧縮力が作用するフレームの断面積 mm² ft フレームの許容引張応力(f t を1.5倍した値) MPa fs フレームの許容せん断応力(f s を1.5倍した値) MPa fc フレームの許容田が応力(f s を1.5倍した値) MPa σ t フレームの許容曲が応力(f s を1.5倍した値) MPa σ t フレームに生じる引張応力 MPa σ c フレームに生じるせん断応力 MPa σ c フレームに生じる日確応力 MPa 基礎ボルトの応力計算に使用する記号 基礎ボルトの応力計算に使用する記号	Му	フレームに作用するY軸周りの曲げモーメント	N•mm
A。圧縮力が作用するフレームの断面積mm²ftフレームの許容引張応力(ftを1.5倍した値)MPafsフレームの許容せん断応力(fsを1.5倍した値)MPafcフレームの許容圧縮応力(fsを1.5倍した値)MPafbフレームの許容曲げ応力(fsを1.5倍した値)MPaσtフレームに生じる引張応力MPaτフレームに生じるせん断応力MPaσcフレームに生じる圧縮応力MPaσbフレームに生じる曲げ応力MPa基礎ボルトの応力計算に使用する記号	M z	フレームに作用するZ軸周りの曲げモーメント	N•mm
ft フレームの許容引張応力(ftを1.5倍した値) MPa fs フレームの許容せん断応力(fsを1.5倍した値) MPa fc フレームの許容圧縮応力(fsを1.5倍した値) MPa fb フレームの許容曲げ応力(fsを1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる圧縮応力 MPa σb フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号	A t	引張力が作用するフレームの断面積	mm^2
fs フレームの許容せん断応力(f s を1.5倍した値) MPa fc フレームの許容圧縮応力(f s を1.5倍した値) MPa fb フレームの許容曲げ応力(f s を1.5倍した値) MPa σ t フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σ c フレームに生じる圧縮応力 MPa σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号	Ас	圧縮力が作用するフレームの断面積	mm^2
fc フレームの許容圧縮応力(fcを1.5倍した値) MPa fb フレームの許容曲げ応力(fcを1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる圧縮応力 MPa σb フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号	$f_{ m t}$	フレームの許容引張応力 (f t を1.5倍した値)	MPa
fc フレームの許容圧縮応力(fcを1.5倍した値) MPa fb フレームの許容曲げ応力(fcを1.5倍した値) MPa σt フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σc フレームに生じる圧縮応力 MPa σb フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号		フレームの許容せん断応力 (f s を1.5倍した値)	MPa
fb フレームの許容曲げ応力 (f b を1.5倍した値) MPa σ t フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σ c フレームに生じる圧縮応力 MPa σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 MPa	$f_{ m c}$	フレームの許容圧縮応力 (f c を1.5倍した値)	MPa
σ t フレームに生じる引張応力 MPa τ フレームに生じるせん断応力 MPa σ c フレームに生じる圧縮応力 MPa σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号		フレームの許容曲げ応力 (f b を1.5倍した値)	MPa
τ フレームに生じるせん断応力 MPa σ c フレームに生じる圧縮応力 MPa σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号			MPa
σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 ***	τ	フレームに生じるせん断応力	MPa
σ b フレームに生じる曲げ応力 MPa 基礎ボルトの応力計算に使用する記号 ***	σс	フレームに生じる圧縮応力	MPa
基礎ボルトの応力計算に使用する記号		フレームに生じる曲げ応力	MPa
F _b 基礎ボルトに作用する引張力 N		基礎ボルトの応力計算に使用する記号	1
	F _b	基礎ボルトに作用する引張力	N

Q _b	基礎ボルトに作用するせん断力	N
Q _y	基礎ボルトに作用するY軸方向のせん断力	N
Q z	基礎ボルトに作用するZ軸方向のせん断力	N
Аь	基礎ボルトの断面積	mm^2
$f_{ m to}$	引張力のみを受ける基礎ボルトの許容引張応力 (ft を1.5倍した値)	MPa
$f_{ m sb}$	せん断力のみを受ける基礎ボルトの許容せん断応力(f s を1.5倍した値)	MPa
$f_{ m ts}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
σь t	基礎ボルトに生じる引張応力	MPa
τ _b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
201 III 1 III III 1 III III 1 III III 1 III III 1 III		1 1-2-4	/C/11/11	70.42.74 14	201111
固有周期		s	小数点以下第4位	四捨五入	小数点以下第3位
震度			小数点以下第3位	切上げ	小数点以下第2位
温度		$^{\circ}$	_		整数位
長さ	下記以外の長さ	mm			整数位*1
さ	フレームの厚さ	mm	_		小数点以下第1位
面積*	2	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメ	シト	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
カ		N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力		MPa	小数点以下第1位	切上げ	整数位
許容応	·····································	MPa	小数点以下第1位	切捨て	整数位

注記 *1: 設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

衛星電話設備用通信機器収納ラック(緊急時対策所)の耐震評価は、耐震評価上厳しくなるフレーム及び基礎ボルトを対象に選定する。衛星電話設備用通信機器収納ラック(緊急時対策所)の耐震評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価

- (1) 固有周期及び荷重を求めるため、ラックを構成する鋼材をはり要素及びシェル要素としてモデル化した3次元FEMモデルによる固有値解析を行う。固有周期が0.05秒以下である場合は、1.2倍した設置床の最大応答加速度を用いた静解析を実施する。0.05秒を超える場合は、設備評価用床応答曲線を用いたスペクトルモーダル解析を実施する。
- (2) 衛星電話設備用通信機器収納ラックは、建屋の床面に設置し、基礎ボルトにより固定されるものとする。
- (3) 解析モデルの質量には、ラックの質量と取付器具の質量を考慮する。
- (4) 耐震計算に用いる寸法は、公称値を使用する。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

衛星電話設備用通信機器収納ラック(緊急時対策所)の重大事故等対処設備の評価に用いる荷重の組合せ及び許容応力状態を表 4-1 に示す。

4.2.2 許容応力

衛星電話設備用通信機器収納ラック(緊急時対策所)の許容応力は,添付書類「V-2-1-9 機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

衛星電話設備用通信機器収納ラック(緊急時対策所)の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表 4-3 に示す。

NT2 補② V-2-6-7-2-6 R4

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類*1	機器等 の区分	荷重の 組合せ	許容応力 状態
計測制御		衛星電話設備用通信機器収納	常設/防止		$D+P_D+M_D+S_s^{*3}$	IV _A S
系統施設	その他	ラック(緊急時対策所)	常設/緩和 その他	<u>*</u> *2	D+P _{SAD} +M _{SAD} +S _s	V_A S $(V_A$ Sとして, IV_A Sの許容限界を用いる。)

注記 *1:「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

*3: 「D+P_{SAD}+M_{SAD}+S_s」の評価に包絡されるため、評価結果の記載を省略する。

表 4-2 許容応力 (重大事故等その他の支持構造物)

	許容限界*1, *2, *3				許容限界*2,*3		
		(ボルト	等以外)		(ボル	(ボルト等)	
許容応力状態		一次	一次応力			一次応力	
	引張	せん断	圧縮	曲げ	引張	せん断	
IV _A S							
V _A S	1 F C *	1 - (*	*	1.5 · f _b *	1 - (*	1 F C *	
(VASとして,	1.5 • f t	1.5 • I s	1.5 · I c	1.5 · I b	1.5 • I t	1. 5 • I s	
IVASの許容限界							
を用いる。)							

注記 *1:「鋼構造設計基準 SI 単位版」(2002年日本建築学会)等の幅厚比の制限を満足させる。

*2:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*3: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

24 - 20 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)						
評価部材	 材料	温度条件		S y	S _u	$S_y(RT)$
市工川川 中1747	17) 147	(℃)		(MPa)	(MPa)	(MPa)
フレーム		周囲環境温度		205	520	_
基礎ボルト		周囲環境温度		205	520	_

4.3 解析モデル及び諸元

解析モデルを図 4-1,解析モデルの諸元を表 4-4,外形図を図 4-2 に示す。

- (1) 図 4-1 の△は拘束節点を示し、■は質量付加位置を表す。
- (2) 拘束条件として、図 4-1 の△の節点について、基礎ボルト位置において XYZ 並進方向を 拘束する。
- (3) 取付器具の質量は取付位置での中心に付加する。フレームの質量は、はり要素の材料特 性に質量密度を設定することでモデル化した。
- (4) 部材の機器要目を表 4-5 に示す。
- (5) 解析コードは「NX NASTRAN」を使用する。なお、評価に用いる解析コードの 検証及び妥当性確認等の概要については、添付書類「V-5-49 計算機プログラム(解析 コード)の概要・NX NASTRAN」に示す。

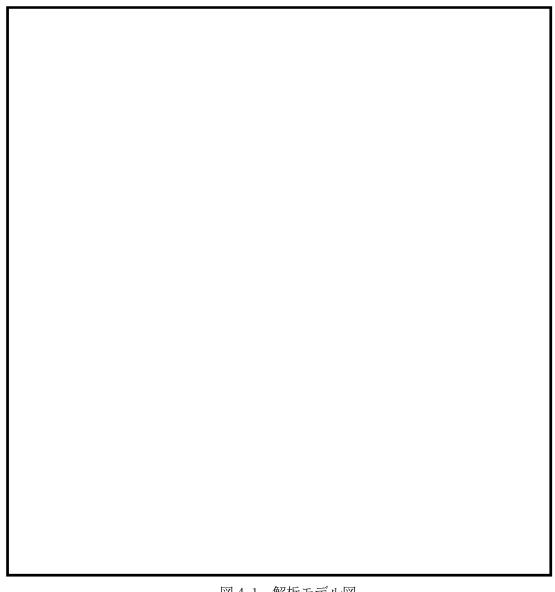


図 4-1 解析モデル図

表 4-4 解析モデルの諸元

項目	単位	入力値
材料	_	
温度条件(雰囲気温度)	${}^{\sim}$	
縦弾性係数	MPa	
ポアソン比	_	
寸法	_	図 4-2
要素数	個	
節点数	個	
質量(収納ラック)	kg	
質量(器具)	kg	

表 4-5 部材の機器要目

機器名称			衛星電話設備用通信機器収納ラック			
				(緊急時対策所)		
±1.€1. II	F ==		→1)	前面用	棚板補強用	
対象要	之 杀		フレーム	フレーム	フレーム	
材料						
断面刑	 多状					
寸法		mm				
断面積	A	mm^2				
断面二次	Ιz	mm^4				
モーメント	Ιy	mm^4				
ねじり定数	J	mm^4				
せん断面積	A _y	mm^2				
せん の関 国情	A z	mm^2				
断面係数	Zy	mm^3				
四 田 尔 剱	Zz	mm^3				

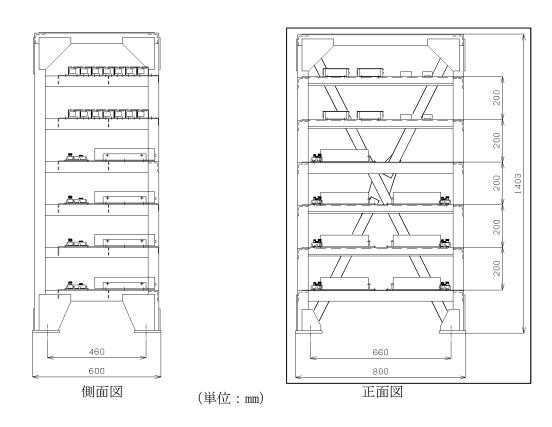


図 4-2 衛星電話設備用通信機器収納ラック (緊急時対策所) 外形図

4.4 固有周期

固有値解析の結果を表 4-6 に示す。

1次モードは水平方向に卓越し、固有周期が 0.05 秒以下であり、剛であることを確認した。また、鉛直方向は 2次モード以降で卓越し、固有周期は 0.05 秒以下であり、剛であることを確認した。

表 4-6 固有值解析結果

モード	固有周期 (s)	卓越方向
1 次		水平

4.5 設計用地震力

「基準地震動 S_s 」による地震力は、添付書類「V-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表 4-7 に示す。

表 4-7 設計用地震力 (重大事故等対処設備)

据付場所	固有周期		基準地震動S。	
及び	(5	$_{\rm S})$	圣 华地,	長到り _s
床面高さ	水平	鉛直	水平方向	鉛直方向
(m)	方向	方向	設計震度	設計震度
EL. 30. 30*1		0.05 以下* ²	C _H =1.34	$C_{V} = 1.01$

注記 *1:基準床レベルを示す。

*2: 固有値解析より 0.05 秒以下であり、剛であることを確認した。

4.6 計算方法

4.6.1 フレームの応力評価

FEM解析の結果から得られるフレーム部分のはり要素の荷重,モーメントを用いて,表 4-8 の式により最大応力を算出する。また,最大応力発生部位を図 4-3 に示す。

表 4-8 応力計算式

応力	1の種類	単位	応力計算式
引張応力 σ _t		MPa	$\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{A}_{\mathrm{t}}}$
せん断応力 τ		MPa	$\frac{\mathbf{F}_{y}}{\mathbf{A}_{y}}$, $\frac{\mathbf{F}_{z}}{\mathbf{A}_{z}}$
圧縮応力 σ 。		MPa	$\frac{\mathrm{F}_{\mathrm{c}}}{\mathrm{A}_{\mathrm{c}}}$
曲げ応力 σ _b		MPa	$\frac{M_y}{Z_y}$, $\frac{M_z}{Z_z}$
4Π Λ 11.	引張+曲げ	_	$rac{\sigma_{\mathrm{t}} + \sigma_{\mathrm{b}}}{f_{\mathrm{t}}} \leq 1$
組合せ	圧縮+曲げ	_	$rac{\sigma_{ m c}}{f_{ m c}} + rac{\sigma_{ m b}}{f_{ m b}} ~ \leq 1$

4.6.2 基礎ボルトの応力評価

FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて、表 4-9 の式により最大応力を算出する。また、最大応力発生部位を図 4-3 に示す。

表 4-9 応力計算式

応力の種類	単位	応力計算式
引張応力 σ _{bt}	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 τ _b	MPa	$\frac{Q_b}{A_b}$

ここで,

基礎ボルトに作用するせん断力 $Q_b = \sqrt{Q_y^2 + Q_z^2}$

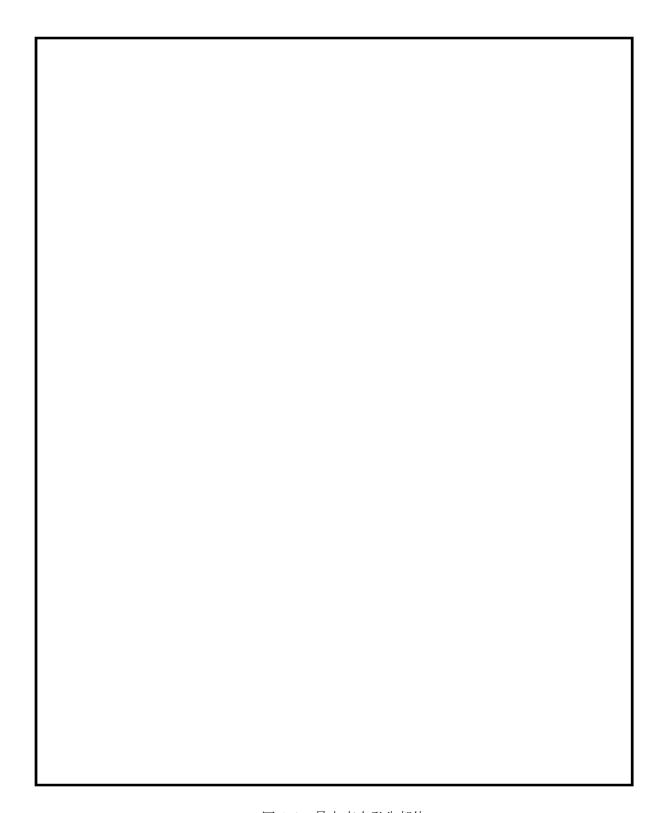


図 4-3 最大応力発生部位

4.7 計算条件

(1)フレーム

(前後+鉛直)

記号	説明	単位	値
F t	フレームに作用する引張力	N	846. 2
F c	フレームに作用する圧縮力	N	2.105×10^3
A _t	引張力が作用するフレームの断面積	mm^2	114. 0
A _c	圧縮力が作用するフレームの断面積	mm^2	564. 4
F y	フレームに作用するY軸方向のせん断力	N	778. 7
A _y	フレームの有効せん断断面積 (Y軸)	mm^2	246. 9
M_{z}	フレームに作用するZ軸周りの曲げモーメント	N•mm	1.674×10^{5}
Z z	フレームのZ軸周りの断面係数	mm^3	3.540×10^3
F*	設計・建設規格 SSB-3121.3に定める値	MPa	246

(左右+鉛直)

記号	説明	単位	値
F t	フレームに作用する引張力	N	864. 0
F c	フレームに作用する圧縮力	N	2.688×10^3
A _t	引張力が作用するフレームの断面積	mm^2	114.0
A _c	圧縮力が作用するフレームの断面積	mm^2	564. 4
F y	フレームに作用するY軸方向のせん断力	N	758. 7
A_y	フレームの有効せん断断面積 (Y軸)	mm^2	246. 9
M_{z}	フレームに作用するZ軸周りの曲げモーメント	N•mm	1.522×10^5
Z z	フレームのZ軸周りの断面係数	mm^3	3.540×10^3
F*	設計・建設規格 SSB-3121.3 に定める値	MPa	246

(2) 基礎ボルト

記号	説明	単位	値
F _b	基礎ボルトに作用する引張力	N	4.399×10^3
Q_b	基礎ボルトに作用するせん断力	N	923. 4
Q y	基礎ボルトに作用するY軸方向のせん断力	N	231.5
Q_z	基礎ボルトに作用するZ軸方向のせん断力	N	893. 9
A _b	基礎ボルトの断面積	mm^2	113. 1
F*	設計・建設規格 SSB-3133 に定める値	MPa	246

4.8 応力の評価

- 4.8.1 フレームの応力評価
 - (1) 4.6.1項で求めた各応力が下表で定めた許容応力以下であること。ただし、許容組合せ応力は $f_{\rm t}$ 以下であること。

		基準地震動S。による 荷重との組合せの場合
許容引張 $f_{ m t}$	応力	F* · 1.5
許容せん断応力 f _s		$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容圧縮応力	$(\lambda \leq \Lambda)$	$\left\{1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^2\right\} \cdot \frac{F^*}{\nu} \cdot 1.5$
$f_{ m c}$	$(\lambda > \Lambda)$	$0.277 \cdot F^* \cdot \left(\frac{\Lambda}{\lambda}\right)^2 \cdot 1.5$
許容曲げ f _b	応力	F* · 1.5

ただし、
$$\lambda = \frac{\ell_k}{i}$$
$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F^*}}$$
$$\nu = 1.5 + \frac{2}{3} \left(\frac{\lambda}{\Lambda}\right)^2$$

(2) 引張力と曲げモーメントを受ける部材の応力は次式を満足すること。

$$rac{\sigma_{\mathrm{t}} + \sigma_{\mathrm{b}}}{f_{\mathrm{t}}} \leq 1$$

(3) 圧縮力と曲げモーメントを受ける部材の応力は次式を満足すること。

$$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}} \le 1$$

4.8.2 基礎ボルトの応力評価

4.6.2項で求めた基礎ボルトの引張応力 $\sigma_{\rm b}$ t は次式より求めた許容引張応力 $f_{\rm t}$ s 以下であること。ただし, $f_{\rm to}$ は下表による。

$$f_{\text{t s}} = \text{Min}[1.4 \cdot f_{\text{to}} - 1.6 \cdot \tau_{\text{b}}, f_{\text{to}}]$$

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 f_{sb} 以下であること。 ただし、 f_{sb} は下表による。

	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m to}$	$\frac{F^*}{2} \cdot 1.5$
許容せん断応力 $f_{ m sb}$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5. 機能維持評価

5.1 電気的機能維持評価方法

衛星電話設備用通信機器収納ラック (緊急時対策所) の電気的機能維持評価について,以下に示す。

衛星電話設備用通信機器収納ラック(緊急時対策所)は、実機の据付状態を模擬した上で、 当該機器が設置される床における設備評価用床応答曲線を包絡する模擬地震波により加振試験 を行う。機能確認済加速度には、加振試験において電気的機能の健全性を確認した加振台の最 大加速度を適用する。

機能確認済加速度を表 5-1 に示す。

	双51 7	戏旧印电前心存	加述及 (
評価部位		方向	機能確認済加速度
	衛星電話設備用	水平	1.84
	通信機器収納ラック (緊急時対策所)	鉛直	1. 67

表 5-1 機能確認済加速度 (×9.8 m/s²)

6. 評価結果

6.1 重大事故等対処設備としての評価結果

衛星電話設備用通信機器収納ラック(緊急時対策所)の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

NT2 補② V-2-6-7-2-6 R3

【衛星電話設備用通信機器収納ラック(緊急時対策所)の耐震性についての計算結果】

- 1. 重大事故等対処設備
- 1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ (m)	固有周期(s)		基準地震動S。		周囲環境温度
			水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	(℃)
衛星電話設備用 通信機器収納ラック (緊急時対策所)	常設/防止 常設/緩和 その他	EL. 30.30*1		0.05以下*2	C _H =1.54	$C_{V} = 1.36$	

注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり、剛であることを確認した。

- 1.2 機器要目
- 4.3 項に示すとおり。
- 1.3 計算数値
- 4.7項に示すとおり。

1.4 結論

24

1.4.1 応力

*****	材料	応力	加速度の方向	基準地震動 S _s		
部材				算出応力	許容応力	
		引張り	前後+上下	$\sigma_t = 8$	£ - 246	
			左右+上下	$\sigma_{\rm t} = 8$	$f_{\rm t} = 246$	
		せん断	前後+上下	$\tau = 4$		
	- Д		左右+上下	$\tau = 3$	$f_{\rm s} = 142$	
		圧縮	前後+上下	$\sigma_{c} = 4$	£ — 120	
			左右+上下	$\sigma_{c} = 5$	$f_{\rm c} = 139$	
		曲げ	前後+上下	$\sigma_b = 48$	£ - 246	
フレーム			左右+上下	$\sigma_b = 43$	$f_{\rm b} = 246$	
		引張+曲げの 組合せ	_	$rac{\sigma_{\mathrm{t}} + \sigma_{\mathrm{b}}}{f_{\mathrm{t}}} \leqq 1$		
			前後+上下	0.20 (無次元)		
			左右+上下	0.19 (無次元)		
		圧縮+曲げの 組合せ		$rac{\sigma_{ m c}}{f_{ m c}} + rac{\sigma_{ m b}}{f_{ m b}} \leqq 1$		
			前後+上下	0.20 (無次元)		
			左右+上下	0.18 (無次元)		
基礎ボルト		引張り		$\sigma_{bt} = 39$	$f_{\rm ts} = 147^*$	
		せん断	_	$\tau_b = 9$	$f_{\rm sb} = 113$	

すべて許容応力以下である。

*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出

1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
衛星電話設備用 通信機器収納ラック (緊急時対策所)	水平方向	0.67	1.84
	鉛直方向	0.61	1.67

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。