本資料のうち,枠囲みの内容は, 営業秘密あるいは防護上の観点 から公開できません。

東海第二発電所	工事計画審査資料
資料番号	補足-340-2 改 18
提出年月日	平成 30 年 9 月 26 日

工事計画に係る補足説明資料

耐震性に関する説明書のうち

補足-340-2【耐震評価対象の網羅性,既工認との手法の相

違点の整理について】

平成 30 年 8 月

日本原子力発電株式会社

改定履歴

-1	改定日	
改定	(提出年月日)	改定內容
改 0	2018年2月26日	資料番号「補足-342」として提出
改1	2018年3月2日	添付-8(耐震評価における等価繰り返し回数の妥当性確 認)の追加
改 2	2018年3月6日	添付7(既工認との手法の相違(機電分))の追加
改 0	2018年3月22日	 ・資料番号を「補足-342」から「補足-340-2」に変更 ・添付 4-2(建物・構築物,土木構造物及び浸水防護施設の 耐震評価フロー並びに評価対象一覧)の追加 ・添付 7(既工認との手法の相違(建物・構築物分))の追加
改 1	2018年3月26日	 1章,2章のうち建物・構築物及び屋外重要土木構造物に 係る箇所の追加 添付-1,添付 4-1,添付 4-2,添付-7(建物・構築物,土木 構造物)の追加
改 2	2018年4月17日	 1.1.2(2)の記載見直し、補足1(弾性設計用地震動S_dの 等価繰返し回数の設定について)、添付-8(耐震評価にお ける等価繰返し回数の妥当性確認について)の資料見直 し
改 3	2018年5月11日	 添付8の記載の適正化
改 4	2018年5月22日	 本文の記載の適正化 添付-1, 2, 3, 4-1, 7, 7-3 の記載の適正化 添付-2-1, 2-2, 2-6, 2-8, 7-7 の追加及び添付 2-4, 5 の削除
改 5	2018年7月11日	 本文の記載の適正化 添付-6の追加 添付-2-6, 2-8, 7, 7-7の記載の適正化
改 6	2018年7月13日	 Sdの等価繰返し回数を見直したことによる1.1.2(2)の 記載見直し,補足1(弾性設計用地震動Sdの等価繰返し 回数の設定について)を削除,添付-8(耐震評価における 等価繰返し回数の妥当性確認について)の資料見直し
改 7	2018年7月18日	 1.1.2(2)の記載見直し 添付-8(耐震評価における等価繰返し回数の妥当性確認について)の資料見直し
改 8	2018年7月20日	 ・添付-8(耐震評価における等価繰返し回数の妥当性確認について)の資料見直し
改 9	2018年8月1日	 1.1.2及び1.1.3の記載の修正 添付2-8記載の修正及び別紙2の追加 添付7-8の追加
改 10	2018年8月3日	・ 添付 2-8 別紙 1,2 及び添付 7-8 の修正
改11	2018年8月10日	 ・ 添付 2-8 別紙 2 から添付 10 に変更及び記載の修正 ・ 添付 7-8 から添付 11 に変更及び記載の修正
改 12	2018年8月16日	 1.1.2(2)の記載見直し 添付8の資料見直し
改 13	2018年8月17日	 ・本文1.の記載見直し ・添付6の資料の修正
改 14	2018年8月24日	 1.1.2(1)bの記載見直し 添付8の資料見直し
改 15	2018年8月31日	• 1.1.2,1.1.3 の記載見直し • その他記載の見直し

改定	改定日	改定内容
5	(提出年月日)	
改 16	2018年9月6日	 1.1.2(1)の記載見直し 補足1,添付8の資料見直し
改 17	2018年9月20日	・1.1.2(2), 1.4, 1.5, 1.6及び2.2.2.1の記載見直し ・添付1, 添付4-2, 添付7の記載見直し
改 18	2018年9月26日	・1.1.3の記載見直し ・添付 5,6,8,9,10,11の記載追加及び見直し

<u>1. 東海第二発電所における耐震評価について</u>	1
1.1 耐震Sクラス施設の評価(耐震Sクラス設備への波及的影響評価及び非常用	
取水設備含む)	3
<u>1.1.1 基準地震動 S_sによる評価 ······</u>	3
(1) 別表第二を踏まえた対象設備の網羅性について ・・・・・・・・・・・・・・	3
<u>(2)</u> 対象設備の評価部位の網羅性について ······	3
(3)対象設備の評価項目(応力分類)の網羅性について ・・・・・・・・・・・・	9
(4) 対象設備の耐震重要度分類の区分(主要設備等)を踏まえた整理について・・・	•9
(5) 別表第二の対象外である耐震 S クラス施設の耐震安全性評価結果」	10
(6) 地震応答解析が記載されていない設備の扱いについて・・・・・・・・・	<u>10</u>
<u>1.1.2 弾性設計用地震動 S_d</u> による評価 ························	<u>11</u>
<u>(1)</u> 機器・配管系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<u>11</u>
<u>(</u> 2) 建物・構築物······	17
<u>1.1.3</u> 静的地震力による評価 ······	<u>18</u>
1.2 耐震Bクラス施設の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2	24
1.3 耐震Cクラス施設の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2	24
1.4 耐震 S ク ラ ス 設備の間接支持構造物の評価 ・・・・・・・・・・・・・・・・・・ 2	24
1.5 耐震Bクラス設備の間接支持構造物の評価 ・・・・・・・・・・・・・・・・・ 2	25
1.6 耐震Cクラス設備の間接支持構造物の評価 ・・・・・・・・・・・・・・・・・ 2	25
2. 東海第二発電所の既工認との手法の相違点の整理について	26
2.1 既工認との手法の整理一覧 2	26
2.2 相違点及び適用性の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
2.2.1 機器・配管系 ······ ź	26
2.2.1.1 手法の相違点	26
2.2.1.2 手法の変更項目に対する東海第二発電所への適用性 ・・・・・・・・ 2	28
2.2 2 建物・構築物,屋外重要土木構造物	30
2.2.2.1 建物・構築物 ······ ·····························	30
2.2.2.2 屋外重要土木構造物	33
2.2.2.3 浸水防護施設 3	33

【補足説明資料】

補足1弾性設計用地震動Sdの等価繰返し回数の設定について

【添付資料】

- 添付-1 別表第二を踏まえた対象設備の網羅性
- 添付-2 対象設備の評価部位の網羅性
 - 添付2-1 中性子計測ハウジング貫通部及び中性子計測ハウジングの評価省略理由
 - 添付2-2 原子炉圧力容器スタビライザディスクスプリングの評価省略理由
 - 添付2-3 炉心支持板スタッドの評価省略理由
 - 添付2-4 (欠番)
 - 添付2-5 (欠番)
 - 添付2-6 ドライウェルビームシートの評価省略理由
 - 添付2-7 脚材(非常用ガス再循環フィルタトレイン及び非常用ガス処理系フィルタトレイン)の評価省略理由
 - 添付2-8 鉛直方向動的地震力の導入による影響検討について
- 添付-3 対象設備の評価項目(応力分類)の網羅性
- 添付4-1 対象設備の耐震重要度分類の区分(主要設備等)を踏まえた整理
- 添付4-2 建物・構築物及び屋外重要土木構造物の耐震評価フロー並びに評価対象一覧
- 添付-5 別表第二に記載のない耐震Sクラス施設の耐震安全性評価結果
- 添付-6 既設設備(機器・配管系)の静的地震力による評価結果
- 添付-7 既工認との手法の整理一覧
 - |添付7-1-1 原子炉建屋クレーンへの非線形時刻歴応答解析の適用について
 - 添付7-1-2 使用済燃料乾式貯蔵建屋クレーンへの非線形時刻歴応答解析の適用について
 - 添付7-2 ポンプ等の解析モデルの精緻化について
 - 添付7-3 容器等の応力解析へのFEMモデルの適用について
 - 添付7-4 最新知見として得られた減衰定数の採用について
 - 添付7-5 水平方向と鉛直方向の動的地震力の二乗和平方根法による組合せについて
 - 添付7-6 鉛直方向応答解析モデルの追加について
 - 添付7-7 炉心シュラウド等の公式等による評価について
- 添付-8 耐震評価における等価繰返し回数の妥当性確認について

添付-9 工認耐震計算書に地震応答解析が記載されていない設備の扱いについて

- 添付-10 再循環系ポンプの軸固着に対する評価について
- 添付-11 補機類のアンカー定着部の評価について

下線:本日ご提出資料

1. 東海第二発電所における耐震評価について

工事計画認可申請書添付書類「V-2耐震性に関する説明書」(以下「今回工認」とい う。)においては、実用発電用原子炉の設置、運転等に関する規則別表第二に基づく対象 施設のうち、耐震Sクラス施設及び、耐震B、Cクラス施設のうち、耐震Sクラス施設 への波及的影響を及ぼす恐れのある設備について耐震評価結果を示しており、その他の 耐震B、Cクラス施設については耐震評価方針を示している。本資料は、評価対象施設 及び評価項目・部位の網羅性、代表性を示すとともに東海第二発電所における既工認(以 下「既工認」という。)との評価手法の相違点を整理したものである。

本資料においては,東海第二発電所の建設工認及び改造工認を「既工認」,新規制基準 施行後に認可となった工認(川内1・2号機,伊方3号機,高浜1・2号機,高浜3・4号 機,美浜3号機,大飯3・4号機及び玄海3・4号機)を「新規制基準対応工認」と記載 する。

上記以外の工認実績については対象のプラントに加え,建設工認か改造工認であるか を個別に記載する。

申請施設の網羅性に関する確認手順を図1に示す。

【評価手順の説明】

- ① 別表第二に照らした設備の選定
 - ・東海第二発電所の別表第二に該当する施設を抽出した。
 - ・別表第二に該当する施設のうち,耐震Sクラス設備であるものについて,評価対象設備として選定し,添付-1に整理した。
 - ・別表第二に該当する施設のうち,耐震Sクラス施設への波及的影響がある設備(以下「波及的影響設備」という。)及び耐震Sクラス設備の間接支持構造物並びに非常用取水設備についても,評価対象設備として選定し,添付-1に整理した。
- ② 重要度分類表による整理
 - ・①にて選定した設備について,重要度分類表による整理を行った。結果を添付 4 -1に示す。
 - ①にて選定した設備に関連する間接支持構造物及び別表第二対象設備ではないが 耐震Sクラス施設への波及的影響がある設備についても、併せて添付 4-1 に整 理した。その整理結果については添付-1 にフィードバックし、評価対象設備と して整理している。
- ③ 評価の実施
 - ・選定した設備及びそれに関連する設備について,評価部位を添付-2,応力分類を 添付-3に整理し,評価を実施した。
 - ・間接支持構造物については,基準地震動 S s による評価を実施した。
 - ・なお,上記に該当しない別表第二の耐震 B クラス及び耐震 C クラス施設(波及的 影響設備を除く。)については,評価の方針を示した。

図1 申請施設の網羅性に関する確認手順

- 1.1 耐震Sクラス施設の評価(耐震Sクラス施設への波及的影響評価及び非常用取水設備の評価含む)
 - 1.1.1 基準地震動 Ssによる評価

評価の対象設備としては、別表第二の対象設備の分類に基づき、既工認での評価対象設備をベースに対象設備を選定しており、それらに対して、基準地震動 S_sによる評価を実施する。

さらに,波及的影響設備及び非常用取水設備についても,検討すべき地震動(基 準地震動Ss)にて評価を実施する。評価部位については,既工認における評価部 位及び最新プラントである大間1号機の建設工認における評価部位をベースにし て評価部位を選定する。評価の結果については,機器類は設備毎に評価上最も厳 しい部位や設備の代表的な部位を,配管類は系統毎,弁類は型式毎に最も厳しい ものを選定し,記載する。建物・構築物の評価結果は,既工認における評価部位 を全て記載する。

評価対象設備が実用発電用原子炉の設置,運転等に関する規則別表第二に照ら して網羅されていること及びそれらの評価項目が既往の評価等と比べて必要な項 目が網羅されていることの確認を以下のとおり行った。

(1) 別表第二を踏まえた対象設備の網羅性について

別表第二を踏まえた対象設備について,対象設備を整理した結果を添付1に示 す。

ここでは,左欄に記載分類として別表第二の記載項目を示し,今回申請書記載 内容の欄に該当する東海第二発電所の耐震 S クラス設備名称及び波及的影響設備 の名称を記載した。

「-」としている項目については,別表第二の記載項目に設備が該当しないも のなど,備考の欄にその旨を記載した。

以上の整理により,別表第二の記載項目に該当する設備について,今回工認の 記載が網羅されていることを確認した。

(2) 対象設備の評価部位の網羅性について

a. 機器·配管系

機器・配管系における対象設備の評価部位について、今回評価した評価部位 と既工認及び最新プラントである大間1号機の建設工認にて実施していた評 価部位とを比較したものを添付2に示す。

ここでは,既工認における評価部位及び大間1号機の建設工認における評価 部位を左欄に記載しており,それぞれ該当するところに「〇」を示した。

更にその右欄には、今回工認における評価した部位を「○」で示し、評価部 位の選定理由についても併せて記載した。

「今回工認における評価」の欄で「-」で示した部位は、下記①から④に記載の理由により評価を省略し、一番右の欄に該当する番号を記載した。

- ① 構造上,他の部位にて代表評価可能
 - ▶ 中性子計測ハウジング貫通部

1次応力は外荷重による応力と内圧による応力によって算出され、内圧による応力が支配的である。内圧により応力は、制御棒駆動機構ハウジング貫通部よりも構造寸法として内径が小さく内圧による応力が小さいこと、また疲労累積係数については、運転状態Ⅰ、Ⅱにおける疲労累積係数と地震による疲労累積係数によって算出され、運転状態Ⅰ.Ⅱにおける疲労累積係数が支配的である。制御棒駆動機構ハウジング貫通部の方が流体温度変動が生じやすく熱応力が厳しい設計過渡条件が適用されるため、制御棒駆動機構ハウジング貫通部で評価を代表できる(添付2-1)。

▶ ディスクスプリング(原子炉圧力容器スタビライザ)

地震荷重により応力が発生するが,応力が生じる荷重条件は同じであるの に対して,ディスクスプリングよりもロッドのほうが耐震裕度が小さくなる ことからロッドにて評価を代表できる(添付 2-2)。

▶ スタッド(炉心支持板)

炉心支持板の主要な強度部材である補強ビームが最も厳しく,スタッドの 評価は補強ビームの評価で代表できる(添付 2-3)。

▶ 再循環系ポンプ

再循環系ポンプは、その支持構造物とともに再循環系配管によっても支 持されており、再循環系配管からの反力を受ける再循環系ポンプは、内圧 及び地震荷重によって応力が生じる。応力が生じる条件は代表評価部位で ある再循環系配管と同じであり、ポンプの構造上応力が生じやすいのは、 ポンプ吸込部及び吐出部と再循環系配管との接続部であるため、再循環系 配管の応力評価において算出された接続部の応力が再循環系ポンプの材料 の許容応力以下であることを確認することにより、再循環系ポンプの評価 を代表する。

- シートプレート、側板、下板、補強リング等(ドライウェルビームシート) ドライウェルビームシートの評価部位としてシートプレート、側板、下板、 補強リング、各溶接部は地震荷重による主たる応力が生じるが、ドライウェ ルビームシートは別表第二に該当しない設備であることから、原子炉格納容 器シェル部に取り付くビームシートの評価を実施する(添付 2-6)。
- ② 過去の評価実績から他の部位にて代表評価可能
 - ▶ 脚(非常用ガス再循環系フィルタトレイン,非常用ガス処理系フィルタトレイン)

取付ボルト及び基礎ボルトと比較して脚部の断面積が大きいことから,取 付ボルト及び基礎ボルトにて代表可能である(添付 2-7)。

- ③ 過去の評価実績から裕度を十分に有する 対象設備なし
- ④ 該当する部位がない

最新プラントにおいて比較対象とした設備に対して東海第二発電所におい て評価対象がない部位について,代替部位があるもの又は代替部位がないもの に関して,その理由を表 1-1 に整理する。

表 1-1 最新プラントと比べて東海第二発電所において評価対象がない部位の 整理

		代替部位	
		(名称が異なる部位だけのもの	代替部位がな
対象設備	評価対象がない部	を含む)	くとも問題な
	11.	(ない場合は「―」と記載す	い理由
		る)	
原子炉圧力容器	胴板とスカートの	下鏡板とスカートの接合部	—
	接合部		
	下部鏡板	-	構造が異なる
	(球殻部と円錐部		ため
	の接続部)		
	(ナックル部)		
	低圧注水スパージ	_	構造が異なる
	ャブラケット		ため
シュラウドヘッド	リング	-	構造が異なる
			ため
残留熱除去系熱交換器	脚	ラグ,シアラグ	—
	基礎ボルト	取付ボルト	_
ほう酸水注入ポンプ	減速機取付ボルト	—	構造が異なる
			ため
主蒸気管放射線モニタ	取付ボルト	_	構造が異なる
			ため
非常用ディーゼル発電	スカート	脚	-
装置用空気だめ			
非常用ディーゼル発電	スカート	脚	-
装置用燃料油デイタン			
ク			
非常用ディーゼル用発	固定子取付ボルト	直結側軸受台基礎ボルト	—
電機及び高圧炉心スプ	機関側軸受台下部	反直結側軸受台基礎ボルト	
レイ系ディーゼル発電	ベース取付ボルト		
機	機関側軸受ベース		
	取付ボルト		
	軸受台取付ボルト		
高圧炉心スプレイ系デ	スカート	脚	-
ィーゼル発電装置用空			
気だめ			
高圧炉心スプレイ系デ	スカート	脚	-
ィーゼル発電装置燃料			
油デイタンク			

評価部位のうち支持構造物のコンクリート定着部について原子炉圧力容器,原子 炉格納容器,配管類,補機類についてそれぞれ評価を実施した内容について説明す る。

原子炉圧力容器,原子炉格納容器に関しては,支持構造物埋込金物の評価の中で コンクリート定着部の耐震評価を実施する。

また,配管類に関しても埋込金物(ベースプレート及びスタッド)とコンクリート定着部の評価をJEAG4601に基づき実施する。

補機類については,基礎ボルトの耐震評価を行っており,コンクリート定着部は 直接評価していないが,耐震評価に代えて設計上の手法管理にて耐震性を担保して いる。補機類の基礎ボルト及びコンクリート定着部の設計では、基礎ボルトよりも コンクリート定着部の方が高い耐震性を有する設計を基本としている。即ち、ボル トの引張許容値から定めた限界引き抜き力に対して、必要な埋込深さを算定してい ることから、基礎ボルトに着目した耐震評価を行うことでコンクリート定着部の健 全性も確認できる。(添付 11 参照)

なお,鉛直方向の考慮すべき地震力条件について,既工認は静的地震力のみであったが今回工認では動的地震力も考慮するよう変更になっており,鉛直地震力の増大が考えられる。鉛直地震力が1Gを超えた場合に従来評価とは別に新たな評価が必要となる部位がないかを検討した。(添付2-8参照)

耐震 S クラス設備及び地震時の波及的影響防止を考慮すべき設備について分類化 し、各分類について、鉛直地震に対して剛な設備と柔な設備の2つの観点から検討 を実施した。

まず,剛な設備については,鉛直地震力が1Gを超える場合,浮き上がりなどの 挙動が発生する可能性があるため,各建屋床面の鉛直地震力を整理した結果,1Gを 超える床面に設置される設備は原子炉建屋換気系(ダクト)放射線モニタ,制御棒 貯蔵ハンガ,制御棒貯蔵ラックであった。

原子炉建屋換気系(ダクト)放射線モニタ,制御棒貯蔵ハンガ,制御棒貯蔵ラッ クは,構造上浮上りは発生しないため,それに伴う衝撃等は発生しない。

また,自重は下向きに働くことから,地震動についても下向きに考慮する従来の 評価が厳しい条件となるため,従来の評価で問題ない。

次に、柔な設備についても、鉛直地震力が 1Gを超える場合、浮き上がりなどの 挙動について検討が必要になる。柔な設備の場合は、鉛直方向の固有周期に相当す る応答加速度が入力となるため、鉛直地震力が 1Gを超えることが否定できないが、 その場合でも、例えば、落下防止が必要なクレーンには転倒防止金具がついている など、各設備に鉛直上向きに生じる変位を拘束する部材が備わっていることから、 従来から当該部材を評価している設備については従来どおりの評価が可能である。

その他,従来,十分裕度があり主要な評価部位ではないものや,鉛直地震力の影響を受けにくいものについても抽出し,念のため鉛直地震力の増大に伴う影響がないか個別に検討を実施した。

以上の検討を踏まえ,鉛直地震加速度の増大により,一部の設備については浮上 り等の影響が生じる可能性があるが,浮上り等による衝撃荷重を適切に評価してい ること,または衝撃荷重や浮上り等は生じないことを確認した。

b. 建物・構築物

耐震 S クラスの建物・構築物の対象設備について,既工認,最新プラントで ある大間の建設工認,大飯 3,4 号機の新規制基準対応工認及び今回工認の評価 部位の比較を添付 4-2 に示す。建物・構築物は,既工認,大間の建設工認及び 大飯 3,4 号機の新規制基準対応工認にて評価を実施している以下の部位につ いて,すべて評価を行う。 原子炉建屋原子炉棟及び中央制御室遮蔽の耐震壁については原子炉建屋の 一部であり、構造物全体としての変形能力を層レベルで評価し、鉄筋コンクリ ート造耐震壁の最大せん断ひずみが許容限界を超えないことを確認する。

原子炉建屋原子炉棟の屋根トラス及び屋根スラブ,中央制御室遮蔽の天井ス ラブ及び床スラブ,使用済燃料プール,原子炉格納容器底部コンクリートマッ ト並びに原子炉建屋基礎盤については,地震力と地震力以外の荷重を組み合わ せ,その結果発生する応力(又はひずみ)が許容限界を超えないことを確認す る。

また,建物・構築物の基礎地盤の支持性能について,人工岩盤を介して岩盤 に支持する施設においては,基準地震動S。による接地圧が地盤の極限支持力 度に対して妥当な安全余裕を有することを確認する。

c. 屋外重要土木構造物

既工認,最新プラントである大間の建設工認,構造の類似性のある大飯3号 機及び今回の工認の評価部位の比較を添付4-2に示す。屋外重要土木構造物は, 全ての部材(頂版,底版,側壁,隔壁,覆工,鋼製管,鋼管杭等)について評 価を行い,これらが許容限界以下であることを確認する。

なお,耐震評価断面については,構造物の配置,荷重条件,周辺地盤状況及 び土木構造物の形状を考慮し,保守的な断面選定を行う。詳細については,補 足説明資料「屋外重要土木構造物の耐震安全性評価について」で説明する。

d. 浸水防護施設

既工認,最新プラントである大間の建設工認,構造の類似性のある大飯3号 機及び今回の工認の評価部位の比較を添付4-2に示す。浸水防護施設は,各設 備について機能・構造上の特徴を踏まえたうえで必要となる構造部材を評価対 象部位とし,これらが許容限界以下であることを確認する。

なお,防潮堤(鋼製防護壁),防潮堤(鉄筋コンクリート防潮壁),防潮堤(鉄 筋コンクリート防潮壁(放水路エリア),防潮堤(鋼管杭鉄筋コンクリート防潮 壁)及び貯留堰の耐震評価断面については,構造物の配置,荷重条件,周辺地 盤状況及び土木構造物の形状を考慮し,保守的な断面選定を行う。詳細につい ては,補足説明資料「屋外重要土木構造物の耐震安全性評価について」で説明 する。

この結果,既工認等における評価部位を踏まえて評価部位を網羅的に選定してい ることを確認した。 (3) 対象設備の評価項目(応力分類)の網羅性について

対象設備の評価項目(応力分類)の網羅性について添付-3に示す。

ここでは、今回工認に評価結果を記載する設備について、JEAG4601・補 -1984 にて要求されている評価項目を左欄に示しており、その右側に各項目の評 価実施有無を整理し、実施するものを「〇」で示した。さらに、「既工認での実施 の有無」欄は、東海第二発電所はJEAG4601・補-1984 適用以前に建設され たプラントであることから、原子力発電所耐震設計に関する調査報告書及びJE AG4601-1970 等を踏まえた設計をしており、JEAG4601・補-1984 における 許容限界値・応力算出方法とは異なるものもあるが、ここではJEAG4601・補-1984 の評価項目に相当する評価を実施しているものを「〇」で示した。JEAG 4601・補-1984 の評価項目に相当することは、既工認における評価内容(例:1次 応力(引張)等)を踏まえ確認している。

なお,評価を省略した項目が一部あるが,それらは既工認から以下の理由により 省略するものであり、今回工認にて新たに省略した項目ではない。

設備の構造上,当該応力が生じる部位がない。

規格基準上,省略が可能。

③ 他の応力分類にて代表可能

この結果, JEAG4601・補-1984 にて要求されている評価項目を網羅的に評価していることを確認した。

(4) 対象設備の耐震重要度分類の区分(主要設備など)を踏まえた整理について

対象設備について,耐震重要度分類ごとに主要設備,補助設備,直接支持構造物, 間接支持構造物,波及的影響を検討すべき設備に区分して整理した結果を添付4-1に示す。

添付 4-1 では,左欄に記載分類として別表第二の記載項目を示し,その右側に 別表第二に該当する東海第二発電所の耐震 S クラス設備を主要設備,補助設備,直 接支持構造物,間接支持構造物,波及的影響を検討すべき設備に分類し,記載した。

添付 4-1 に記載する建物・構築物,屋外重要土木構造物及び浸水防護施設の評価については,添付 4-2 にその詳細を示し,対象施設ごとに表及びフロー図を整理した。

- (5) 別表第二の対象外である耐震Sクラス施設の耐震安全性評価結果 図1の評価手順に従い、別表第二に記載がなく申請対象外と整理された施設の うち耐震Sクラス施設について、技術基準規則への適合性の観点から、これらの 施設についても同様に評価を実施しており、その結果を添付-5に示す。
- (6) 地震応答解析が記載されていない設備の扱いについて

今回工認における耐震計算書においては,基本的に地震応答解析モデル,応 力解析モデル,方法,結果を記載する。しかしながら,炉心支持構造物等につい ては,地震応答解析のモデル,結果を記載しない。地震応答解析が記載されてい ない設備の扱いについて,添付-9に示す。

- 1.1.2 弾性設計用地震動 S d による評価
 - (1) 機器・配管系

機器・配管系の評価対象設備が弾性設計用地震動 S_aに対して概ね弾性状態に あることを確認するために,以下の手順にて評価を実施する。評価手順を図2に 示す。

また,評価は,基準地震動S。による評価の対象設備(波及的影響設備は除く。) の評価部位について,基準地震動S。による発生値と評価基準値(許容応力状態Ⅲ AS)の比較(許容値置き換え)による一次応力評価を基本とする。一次+二次応 力評価は許容応力状態ⅣASとⅢASの評価基準値は同じであり,弾性設計用地震 動Saによる評価の省略を基本とする(詳細はa.に示す)。

原子炉格納容器の弾性設計用地震動S_d評価においては,JEAG4601・補-1984 及びJEAG4601-1987 では運転状態 $\mathbb{N}(L)$ との組合せ及びLOCA後の最 大内圧との組合せを実施する必要がある。運転状態 $\mathbb{N}(L)$ の条件(P_L, M_L)及びLO CA後の最大内圧の条件(P_L*, ML)は,基準地震動S_sと組み合わせる運転状態の条 件(P, L)より厳しくなることから,許容値置き換え評価ではなく,運転状態 $\mathbb{N}(L)$ 又は,LOCA後の最大内圧と弾性設計用地震動S_dを組み合わせた評価を実施 する。なお,原子炉格納容器については,運転状態 $\mathbb{N}(L)$ を設計条件としているこ とから,許容応力状態I*_Aとし,弾性設計用地震動S_dとの組合せにおいて許容応 力状態 \mathbb{I}_A Sを適用する。

また,非常用炉心冷却系ストレーナの弾性設計用地震動Sa評価においては,「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成20年2月27日付け平成20・02・12原院第5号)に規定に 基づき,許容値置き換え評価ではなく,異物荷重を組み合わせた評価を実施する。

ECCS及びそれに関連する系統(以下「ECCS等」という。)の弾性設計用 地震動S_d評価においては,JEAG4601・補-1984及びJEAG4601-1987では, 運転状態IV(L)と組み合わせる必要がある。しかしながら,ECCS等の運転状態 IV(L)の条件(P_L,M_L)は,基準地震動S_sと組み合わすべき,プラントの運転状態 の条件(P,M)(クラス1設備)若しくは,設計上定められた条件(P_D,M_D)に包絡され ることから,許容値置き換え評価を実施する。なお,ECCS等については,運 転状態IV(L)を設計条件としていることから,許容応力状態I*_Aとし,弾性設計用 地震動S_dとの組合せにおいて許容応力状態II_ASを適用する。

(荷重の組合せの詳細は、補足説明資料「地震時荷重と事故時荷重との組合せ について」参照) 【評価手順の説明】

 ① 基準地震動S。による発生値と評価基準値(ⅢAS)の比較 評価対象設備の基準地震動S。による発生値が弾性設計用の評価基準値 (許容応力状態ⅢAS)以下であることを確認する。

弾性設計用地震動S_dは基準地震動S_sの係数倍にて定義していることから,設備の基準地震動S_sによる発生値が,評価基準値(許容応力状態Ⅲ_AS) 以下であれば,弾性設計用地震動S_dによる発生値についても,評価基準値

- (許容応力状態ⅢAS)以下となる。
- ② 弾性設計用地震動S_dによる発生値と評価基準値(Ⅲ_AS)の比較
 ①項にて,評価対象設備の基準地震動S_sによる発生値が,評価基準値(許容応力状態Ⅲ_AS)を上回った部位については,弾性設計用地震動S_dを用いて応力分類を全て評価し,算定した発生値が評価基準値(許容応力状態Ⅲ_AS)以下であることを確認する。

基準地震動S。による評価結果に対する許容値置き換え評価結果又は弾性設計用 地震動S。を用いた評価結果を工認添付書類へ記載 また評価に際してフローの順に関わらずに, ②による評価を実施する場合もある。

図2 機器・配管系の弾性設計用地震動Sd に対する評価手順

a. 弾性設計用地震動 S_dによる評価のうち,一次+二次応力評価の省略について

弾性設計用地震動 S_aによる評価において,一次+二次応力評価が省略可能 である理由について以下に示す。

一次+二次応力評価については、JEAG4601 に規定されている許容応力状態 $W_A S \ge III_A S$ の許容値は同一となる。許容値が同じであれば、弾性設計用地 震動 S a より大きな地震動である基準地震動 S 。で評価した結果の方が厳しい ことは明らかであることから、基準地震動 S 。の評価を実施することで、弾性 設計用地震動 S a による評価は省略可能である。

ただし、支持構造物(ボルト以外)のうち、「支圧」に対しては、許容応力 状態IVASとⅢASで許容値が異なるケース*が存在する。

一次+二次応力評価のうち、「支圧」の評価が必要な設備は、使用済燃料乾 式貯蔵容器支持構造物があるため、「支圧」評価を実施している評価部位につ いて整理したものを表1に示す。表1に示すとおり、許容応力状態ⅣASとⅢ ASで許容値が異なるが、基準地震動S。の発生値はⅢASの許容値を満足して いる。

* 許容応力状態Ⅲ_ASとW_ASではそれぞれの許容値算出において用いるパラメ ータであるF値の設定に差がある。材料次第ではあるが、Ⅲ_ASにおいてF値 はmin(Sy, 0.7Su)だが、W_ASではSyを2割増しした値を用いる規定となって いるため、SyとSuの関係により、最大2割の差が生じることとなる。

評価	対象設備	評価部位	発生値 (M P a)	許容値W _A S (許容値Ⅲ _A S) (MPa)	耐震裕度 (Ⅲ _A S裕度)
使用済	タイプ I	支持台座	36	361 (301)	10. 0 (8. 3)
文持構造物 然料乾式貯	タイプ Ⅱ	支持台座	41	362 (302)	8.8 (7.3)
藏容器	タイプⅢ	支持台座	44	362 (302)	8.2 (6.8)

表1 支持構造物(ボルト以外)の一次+二次の支圧応力

- b. 弾性設計用地震動 S_dによる評価のうち,一次+二次+ピーク応力評価(疲労評価) の省略について
- (a) 基準地震動 S 。と弾性設計用地震動 S 。の一律に設定する等価繰返し回数と許容繰返し回数の関係について

ー次+二次+ピーク応力評価については、地震動により算定した評価用等価繰り返し 回数を用いた疲労評価を行っている。評価用等価繰り返し回数は、JEAG4601-1987の 記載に示すピーク応力法により一律に設定する保守的な値(S_s:160回, S_d:320回), 若しくは設備毎に個別に設定する値を用いている。

以下に基準地震動S。と弾性設計用地震動Sdによる許容繰返し回数及び等価繰返し回数の関係を示す。

【許容繰返し回数(許容限界)】

弾性設計用地震動S_dの地震加速度は基準地震動S_sの地震加速度に対して1/2 程度であることから、一次+二次+ピーク応力(以下「ピーク応力」という。)が1 /2程度になると考えれば、設計疲労線図から求める弾性設計用地震動S_dの許容繰 返し回数としては、基準地震動S_sの許容繰返し回数の5~10倍程度(図3)となる。

【等価繰返し回数(発生値)】

東海第二発電所の弾性設計用地震動S_dは,基準地震動S_sより地震の発生頻度 が多いことを踏まえ2回分を考慮しており,弾性設計用地震動S_dの一律に設定する 等価繰返し回数について算定した結果を保守的に丸めて,320回とする(補足1参 照)。これは,基準地震動S_sの一律に設定する等価繰返し回数の2倍の回数となる が,上記の基準地震動S_sと弾性設計用地震動S_dの許容繰返し回数の増分(5~10 倍程度)より等価繰返し回数の増分(2倍)の方が小さい。

疲労評価では、疲れ累積係数が1.0以下である事を確認する必要がある。

疲れ累積係数 = <mark>等価繰返し回数</mark> ≤ 1.0

前述のとおり、一般的には、基準地震動S。と弾性設計用地震動Saの許容繰返し回数の増分(5~10倍程度)より等価繰返し回数の増分(2倍)の方が小さくなり、基準地 震動Ssを用いた評価の方が疲れ累積係数が大きくなるため、基準地震動Ssの評価で 代表できる。

(b) 今回工認における弾性設計用地震動 S aによる,一次+二次+ピーク応力評価(疲労 評価)の対応方針について

前項(a)に示したとおり,弾性設計用地震動S_dの一律に設定する等価繰返し回数を 320回と設定したが,今回工認においては,弾性設計用地震動S_dの個別に設定する等 価繰返し回数が,基準地震動S_sの一律に設定する等価繰返し回数160回を下回ること が確認できれば、弾性設計用地震動S_dのピーク応力が基準地震動S_sのピーク応力の 1/2程度であることから、弾性設計用地震動S_dによる疲労評価は、基準地震動S_sによ る疲労評価で代表できるものと判断する。

確認の結果,弾性設計用地震動S_dの個別に設定する等価繰返し回数が,基準地震動 S_sの一律に設定する等価繰返し回数160回を上回る設備がある場合には,弾性設計用 地震動S_dの個別に設定する等価繰返し回数又は一律に設定する等価繰返し回数320回 での評価を行う。

図3 設計疲労線図(炭素鋼,低合金鋼及び高張力鋼)におけるピーク応力と許容繰返し 回数との関係

(2) 建物・構築物

耐震 S クラスの建物・構築物の対象設備について,既工認,最新プラントであ る大間の建設工認,大飯 3,4 号機の新規制基準対応工認及び今回工認の評価部位 の比較を添付 4-2 に示す。建物・構築物は,既工認,大間の建設工認及び大飯 3, 4 号機の新規制基準対応工認にて評価を実施している以下の部位について評価を 行う。

原子炉建屋原子炉棟,中央制御室遮蔽,使用済燃料プール,原子炉格納容器底 部コンクリートマット及び原子炉建屋基礎盤については,弾性設計用地震動Sa による地震力又は静的地震力のいずれか大きい方と地震力以外の荷重を組み合わ せ,その結果発生する応力が許容限界を超えないことを確認する。

原子炉建屋原子炉棟及び中央制御室遮蔽の耐震壁については,常時荷重が設計時と同一であること,また,応答に対して支配的となる水平方向の弾性設計用地 震動S_dによる地震力及び静的地震力がいずれも『既工事計画認可申請書第1回 資料Ⅲ-1-4「原子炉建屋の地震応答計算書」(47公第12076号 昭和48年4月9 日認可)』の設計用地震力よりも小さいことから,S_d地震時に対する評価は行わ ない。

また,建物・構築物の基礎地盤の支持性能について,弾性設計用地震動 S_dによる接地圧が地盤の短期許容支持力度に対して妥当な安全余裕を有することを確認する。

17

1.1.3 静的地震力による評価

東海第二発電所の既設設備については,建設工認時は旧建築基準法に基づく静 的震度(C₀)に対する評価を行っていたが,「実用発電用原子炉及びその附属施 設の技術基準に関する規則」(原子力規制委員会)等では,現在の建築基準法に基 づく静的震度(C_i)に対する評価が求められている。このことから,今回工認で は機器・配管系について以下の手順にて,静的震度(C_i)に基づく評価を行う。

(1) 評価手順

静的震度(C_i)に対する評価は、以下の①~④の手順により評価を実施 する。耐震裕度を算出する際の応答加速度は、1.2ZPAを用いる。評価フロー を図4に示す。

【耐震評価における関係性】

- ・3.6C_i及び3.6C₀に対する許容限界 =設計用地震及びS_dに対する許容
 限界
- ・建設時に 3.6C₀による発生値 ≦ 許容限界 を確認済み

【評価手順】

①:建設工認時,耐震評価の入力として用いた静的震度C₀と静的震度C₁
 を比較し,C₀≧C₁となる設備は静的震度C₁による評価を省略する。
 図5に建設時と今回工認震度分布図を示す。

図5 建設時Coと今回工認Ciの震度分布図(原子炉建屋)

②:震度を用いて簡易的に判断することが困難な設備

建屋機器連成解析設備のうち建屋機器連成解析結果にて得られた荷重 を用いて直接評価を実施する設備,配管系及び配管反力を用いる設備に ついては,静的震度による評価省略を簡易的に判断することが難しいこ とから静的震度C_iを用いた評価を実施する。

【フローで NO となる設備例】

原子炉圧力容器,炉心支持構造物,原子炉圧力容器内部構造物(建屋機 器連成解析の荷重を使用する設備)原子炉格納容器,配管系

③:許容応力状態ⅢASの評価に用いる設計震度(以下「設計震度」という。) と静的震度とを比較し,設計震度/静的震度≧必要比率となる設備

設計震度と静的震度とを比較し,設計震度を用いた評価結果における 水平方向と鉛直方向の荷重の組合せ方法に応じた比率(以下「必要比率」 という。)以上であれば,静的震度による評価を省略する。

なお, 震度を用いた荷重の算出は一般的に線形解析を実施しており, 震 度と荷重の関係は線形的な関係になることから, 震度比を用いて静的震 度による評価の省略の判断に用いることは問題ないと考える。

動的地震力による設計震度の水平方向と鉛直方向の荷重の組合せは, SRSS 法又は絶対値和法を適用し,静的震度の水平方向と鉛直方向の荷重 の組合せについては,絶対値和法を適用している。

なお,絶対値和法は水平方向と鉛直方向の最大荷重を絶対値和として 組み合わせる方法であり,水平と鉛直の最大荷重が同時刻に同位相で生 じることを仮定している。このため,実際の荷重以上の荷重が加わる保守 的な組合せである。

設計震度の荷重の組合せにおいて SRSS 法を適用した場合,水平方向及 び鉛直方向の動的震度が静的震度よりも大きくても,水平方向と鉛直方 向の組合せ後では動的地震力の荷重のほうが小さくなる場合がある。

また,水平震度と鉛直震度の荷重に対する応答は異なるため,水平震度 と鉛直震度の組合せが静的震度より大きい場合でも,荷重又は応力とし ては小さくなる場合がある。

このため,設計震度/静的震度の比較は,設計震度による評価において の荷重の組合せ方法に応じて,また水平震度及び鉛直震度の荷重に対す る応答が異なることを踏まえ,以下検討を行う。 ③-1:設計震度による評価において荷重の組合せが絶対値和法の場合 設計震度の絶対値和と静的震度の絶対値和は以下の様に表わされる。

静的震度の絶対値和=Ci + Cv ・・・(1) 設計震度の絶対値和= $C_{HD} + C_{VD}$ ・・・(2)

C_{HD}:設計震度(水平) C_{VD}:設計震度(鉛直) C_i:静的震度(水平) C_v:静的震度(鉛直)(=0.29)

水平震度と鉛直震度の荷重に対する応答が異なることを踏まえ,簡易 的に Ci ≦C_{HD} かつ Cv ≦CvD であれば,水平及び鉛直共に設計震度による荷 重が静的震度による荷重を上回るため,水平方向と鉛直方向の荷重の組 合せに絶対値和法を適用する場合の静的震度評価の省略条件としては, 設計震度の水平及び鉛直震度のそれぞれが静的震度の水平及び鉛直震度 以上とする。 ③-2:設計震度による評価において荷重の組合せが SRSS 法の場合

③-1と同様に、静的震度の絶対値和と設計震度のSRSSは以下の様に 表わされる。

静的震度の絶対値和 = Ci + Cv · · · (1) 設計震度の SRSS = $\sqrt{(C_{HD})^2 + (C_{VD})^2}$ · · · (3) 設計震度の SRSS と静的震度の絶対値和の比は以下の様に表わされる。

$$\frac{\sqrt{(C_{HD})^2 + (C_{VD})^2}}{Ci + Cv} \qquad \cdot \cdot \cdot (4)$$

組合せた震度の比が 1 より大きい場合でも、水平震度と鉛直震度の荷 重に対する応答が異なること、また組合せ方法が異なるため、設計震度に よる応力と静的震度による応力の比が 1 以下となる可能性があることを 踏まえ、水平震度と鉛直震度を分けて評価する。そのために、分母と分子 に絶対値和法による設計震度 *C*_{HD} + *C*_{VD} を乗じると

I:設計震度の絶対値和と静的震度の絶対値和の比

Ⅱ:設計震度の SRSS と絶対値和の震度の比

となる。水平震度と鉛直震度の荷重に対する応答が異なること及び組 合せ方法が異なることを踏まえ,省略条件を以下に記す。

水平震度と鉛直震度の荷重に対する応答が異なることに対しては、③-1と同様に、 $Ci \leq C_{HD}$ かつ $Cv \leq C_{VD}$ を基本とし、それに加えて、組合せ方法の相違に対して裕度を確保する。

Ⅱは設計震度の SRSS と絶対値和の震度の比であり,絶対値和法(分母) の方が SRSS 法(分子)より大きくなるため1以下となる。これが最小と なるのは水平震度C_{HD}と鉛直震度C_{VD}が等しい場合であり,このときのⅡは

 $\frac{\sqrt{(C_{HD})^2 + (C_{HD})^2}}{C_{HD} + C_{HD}} = \frac{\sqrt{2 \cdot (C_{HD})^2}}{2 \cdot C_{HD}} = \frac{C_{HD} \cdot \sqrt{2}}{C_{HD} \cdot 2} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$

となる。

 $I \times II を1以上とするためには、I を<math>\sqrt{2}$ 以上とすれば、 $I \times II$ は必ず1 以上となるため、I を $\sqrt{2}$ 以上とすることとする。

I を $\sqrt{2}$ 以上とするためには、簡易的には、 $C_{HD} \ge \sqrt{2} \cdot C_i$ かつ $C_{VD} \ge \sqrt{2} \cdot C_v$ であれば、I は $\sqrt{2}$ 以上となり、I × II が 1 以上となる。

以上のことから、水平方向と鉛直方向の荷重の組合せに SRSS 法を適用 する場合の静的震度評価の省略条件としては、設計震度の水平及び鉛直 震度のそれぞれが、静的震度の水平及び鉛直震度の 1.42 倍 (≒√2)以上と する。

【フローで YES となる設備例】

③-1:ほう酸水注入系ポンプ(絶対値和法を適用している設備)

·評価方法

 $C_{HD} \ge 3.6C_i$ カック $C_{VD} \ge 1.2C_v$

·計算方法

水平震度:1.67≧1.03(3.6Ci) かつ

鉛直震度:1.44≧0.29(1.2Cv)

水平及び鉛直ともに静的震度より設計震度の方が大きいため,評価を 省略できる。

③-2: 炉心スプレイスパージャ(SRSS 法を適用している設備)

・評価方法

 $C_{HD} \ge 1.42 \times 3.6C_i$ カック $C_{VD} \ge 1.42 \times 1.2C_v$

・計算方法

水平震度: 1.68 ≥ 1.42 × 0.96(3.6Ci) = 1.37 かつ 鉛直震度: 0.77 ≥ 1.42 × 0.29(1.2Cv) = 0.42

静的震度の水平及び鉛直を 1.42 倍した震度より設計震度の方がとも に大きいため,評価を省略できる。

- ④:静的震度(3.6Ci)による評価を実施
 ①~③のフローにて抽出された設備について静的震度(3.6Ci)による評価を実施する。
- (2) 評価結果

評価結果を添付-6に示す。添付-6に示すとおり,すべての機器において, 静的震度に対する耐震安全性を確認している。

※1:簡易的に判断することが困難な機器は,建屋機器連成解析で得られた荷重を用いる 設備,配管系等をいう。

※2:水平方向及び鉛直方向の各々に対して満足することとする。

図4 静的地震力に対する評価フロー

別表第二に記載のない耐震Sクラス施設の耐震安全性評価結果

亚価社象施設	亚研究位	広力公箱	発生値	評価	基準値	畄位	萩価E	日加速度	機能確認済	用位	備老
計Ш月承加电文	라"100 다이꼬.	心力力現	(Ss時)	IVAS	IIIAS	单匹	p+1100/	山速度	加速度	单位	油石
武力電气場比較	雨付ぜれた	引張り	18	210	176	MDo	水平	1.11	2.2	C	
DP1 EXIRIPLE	AX11 AV70 1	せん断	3	161	135	мга	鉛直	0.84	1.0	G	
再 乙烷建掺损 <i>比</i> 积	雨付ぜれた	引張り	26	210	176	MDo	水平	1.11	2.2	C	
ルス-丁 パット曲の数1家 1 P.206	AX11 AV70 1	せん断	5	161	135	мга	鉛直	0.84	1.0	G	
取 舟 止 / 言 〉 \公 土 l ブ 杞 //r 命	雨(井井) 1	引張り	15	210	176	MD.	水平	1.11	3.0	c	
案志时沿心行动术操作盛	月X113 ハハノレ ト	せん断	4	161	135	mra	鉛直	0.84	1.0	G	
-P	雨(井井) 1	引張り	27	210	176	MD.	水平	1.11	3.0	c	
ノロセム計装盤	月X113 ハハノレ ト	せん断	6	161	135	mra	鉛直	0.84	1.0	G	
ケ. レイト、大阪1米 血D	雨(井井) 1	引張り	34	210	176	MD-	水平	1.11	3.0	c	
クービン相機盗	月X113 ハハノレ ト	せん断	6	161	135	mra	鉛直	0.84	1.0	G	
·····································	15/12/01	引張り	22	210	176	100	水平	1.11	2.2	0	
室系直換一至調換风制仰盔	取竹ホルト	せん断	4	161	135	MPa	鉛直	0.84	1.0	G	
그는 꽃 더 가는 친 것이 것 그는 꽃 더 가는 것 것은 것 된 (는 한).	75-71-38 x 3	引張り	16	210	176	100	水平	1.11	3.0		
非常用刀入処理系,非常用刀入值填系操作盛	取竹ホルト	せん断	3	161	135	MPa	鉛直	0.84	1.0	G	
	75-71-38 x 3	引張り	35	210	176	100	水平	1.11	3.0		
フロセス放射線モニタ計装盤	取付ホルト	せん断	9	161	135	MPa	鉛直	0.84	1.0	G	
he was the last like if the case of the	75-71-38 x 3	引張り	18	210	176	100	水平	1.11	2.2		
タービン相機補助継電器盤	取付ホルト	せん断	4	161	135	MPa	鉛直	0.84	1.0	G	
start best b		引張り	45	210	176		水平	1.11	3.0	_	
出力領域モニタ計装盤	取付ホルト	せん断	14	161	135	MPa	鉛直	0.84	1.0	G	
		引張り	36	210	176		水平	1.11	3.0		
原子炉保護系継電器盤	取付ボルト	せん断	9	161	135	MPa	鉛直	0.84	1.0	G	
		引張り	29	210	176		水平	1.11	6.0		
残留熱除去系(B),(C)補助継電器盤	取付ボルト	せん断	6	161	135	MPa	鉛直	0.84	6, 0	G	
		引張り	55	210	176		水平	1, 11	6.0		
原子炉隔離時冷却系継電器盤	取付ボルト	せん断	8	161	135	MPa	鉛直	0.84	6.0	G	
		引張り	55	210	176		水平	1 11	6.0		
原子炉格納容器隔離系継電器盤	取付ボルト	せん断	8	161	135	MPa	鉛直	0.84	6.0	G	
		引張り	29	210	176		水平	1 11	3.0		
高圧炉心スプレイ系継電器盤	取付ボルト	けん断	6	161	135	MPa	松直	0.84	1.0	G	
		引張り	37	210	176		水平	1 11	6.0		
自動減圧系継電器盤	取付ボルト	けん断	7	161	135	MPa	松直	0.84	1.0	G	
		引張り	29	210	176		水亚	1 11	6.0		
低圧炉心スプレイ系,残留熱除去系(A)補助継電器盤	取付ボルト	ナム新	6	161	135	MPa	松古	0.84	6.0	G	
		213年的	30	210	176		水亚	1 11	3.0		
漏えい検出系操作盤	取付ボルト	カルク	7	161	135	MPa	小十	0.84	1.0	G	
		212E N	41	210	176		水亚	1 11	3.0		
プロセス放射線モニタ、起動時領域モニタ操作盤	取付ボルト	カルク	41	161	135	MPa	小十	0.84	1.0	G	
		212E N	65	210	176		水亚	1 11	3.0		
サプレッション・プール温度記録計盤	取付ボルト	计人断	13	161	135	MPa	松古	0.84	1.0	G	
		212E N	10	210	176		北亚	1 11	3.0		
原子炉保護系トリップユニット盤	取付ボルト	コルク	45	161	195	MPa	小十	0.94	1.0	G	
		己蒔り	10	210	100		水亚	1 11	3.0	-	
緊急時炉心冷却系トリップユニット盤	取付ボルト	コルク	45	161	195	MPa	小十	0.94	1.0	G	
		217E N	40	210	176		東田	1 11	2.0		
高圧炉心スプレイ系トリップユニット盤	取付ボルト	カルク	45	161	135	MPa	小十	0.84	1.0	G	
		217E N	96	210	176		如臣	0.04	1.0		
	取付ボルト	コボリ	20 c	161	1/0	1	水平	1.11	2.0		
RCICタービン制御盤		この阿	47	101	141	MPa				G	
	基礎ボルト	コボリ	10	100	141	1	鉛直	0.84	1.0		
		さんゆ	10	129	108		710 117	0.00	2.0		
原子炉遠隔停止操作盤	取付ボルト	コボソ	49	1.01	100	MPa	小牛	0.92	1.0	G	
		せんゆ	12	101	141		如但	0.80	1.0		
	取付ボルト	対策リ	de r	210	1/0	1	水平	1.29	3.0		
SA設備新設盤		せんゆ	5	100	135	MPa				G	
	基礎ボルト	対策り	58	108	147	1	鉛直	0.98	1.0		
1	1	てん町	12	129	113	1				1	1

市海笛二戏垂正	日広会ル会ルイ共	(长终355	, 副签玄)	の粘め抽雷	+11- F	ス証価結用
果碑弗	戉 苡 润	(煖岙	・�����ネル	の静的地展	刀によ	る評価結果

										判定③			
						設計	震度	静的	震度		【SRSS法】 些計畫座 (水平) >1 42×3 60;		
		評価対象設備/評価対	象項目	②震度を用いて簡易的に判断することが困難な設備	ホ半・鉛直の 荷重の組合せ	水平	鉛直	3.6Ci	1. 2Cv	設計農度(水平)/ 静的農度(水平) 設計農度(給直)/ 静的農度(給直) の小さい方	は11 表示(1) 1-14-25-3.00-1 設計表現(54) 2-1.42×1.20×:○ それ以外:× 設計表現(54) 2-3.60 iかつ 設計表現(54) 2-3.60 iかつ 設計表現(54) 2-1.20×:○ それ以外:×	(3)静的展復した 対する評価	備考
			炉心シュラウド	0	_	-	-	-	-	-	-	0	-
			シュラウドサポート	0	_	-	-	-	-	_	-	0	-
	15 N	1 N -+- 1-+ 140 ML 11-	上部格子板	0	_	-	-	_	-	-	-	0	-
	炉心	炉心文符構道物	炉心支持板	0	-	-	-	-	-	-	-	0	-
			燃料支持金具	0	-	-	-	-	-	_	_	0	-
			制御棒案内管	0	-	-	-	-	-	-	-	0	-
			胴板	0	-	-	-	-	-	-	-	0	-
			下鏡板	0	_	-	-	-	-	-	-	0	-
			制御棒駆動機構 ハウジング貫通孔	0	_	-	-	-	-	-	-	0	-
			再循環水出口ノズル (N1)	0	_	-	-	-	-	-	-	0	-
			再循環水入口ノズル (N2)	0	-	-	-	-	-	-	_	0	-
			主蒸気ノズル (N3)	0	_	-	-	-	-	_	_	0	-
			給水ノズル (N4)	0	_	-	-	-	-	-	-	0	-
			炉心スプレイノズル (N5)	0	_	-	-	-	-	-	-	0	-
原子炉本体			上鏡スプレイノズル(N6A)	0	_	-	-	-	-	-	-	0	-
			ベントノズル (N7)	0	_	-	-	-	-	-	-	0	-
		原子炉圧力容器本体	ジェットボンプ計測ノズル(N8)	0	_	-	-	-	-	-	-	0	-
	原子炉圧力容器		差圧検出・ほう酸水注入管ノズル(N10)	0	-	-	-	-	-	-	-	0	-
			計測ノズル (N11)	0	_	-	-	-	-	-	-	0	-
			計測ノズル (N12)	0	_	-	-	-	-	-	-	0	-
			ドレンノズル (N15)	0	-	-	-	-	-	-	-	0	-
			計測ノズル (N16)	0	_	-	-	-	-	-	-	0	-
			低圧注水ノズル(N17)	0	_	-	-	-	-	-	-	0	-
			原子炉圧力容器スタビライザブラケット	0	_	-	-	-	-	-	-	0	-
			スチ=ムドライヤサポ=トブラケット	0	_	-	-	-	-	-	-	0	-
			給水スパージャブラケット	0	-	-	-	-	-	-	-	0	-
			炉心スプレイブラケット	0	_	-	-	-	-	-	-	0	-
		原子炉开力容器支持槽造物	原子炉圧力容器スカート	0	_	-	-	-	-	-	-	0	-
		and a second state of the second s	原子炉圧力容器基礎ボルト	0	_	-	-	-	-	-	-	0	-

								判定③					
						設計	·震度	静的	均震度		【SRSS法】		
		評価対象設備/評価対	象項目	②農度を用いて簡易的に判断することが困難な設備	水平・鉛直の 荷重の組合せ	水平	鉛直	3.6Ci	1. 2Cv	設計 (大平) 静的 震度 (水平) 設計 震度 (鉛直) 静的 震度 (鉛直) の小さい方	設計機度(水平) ≥1.42×3.60.1 設計機度(約直) ≥1.42×1.20*:○ それ以外:× 【絶対値和法】 設計機度(水平) ≥3.6Ciかつ 設計機度(鉛直) ≥1.20*:○ それ以外:×	 ④静的震度Ciに 対する評価 	備考
			原子炉圧力容器スタビライザ	0	_	-	-	-	-	-	-	0	-
		原子但正力容易付属構造物	原子炉格納容器スタビライザ	0	_	-	-	-	-	-	-	0	-
		01 1 // 12 27 CENT 1 JOINT 210	制御棒駆動機構ハウジング支持金具	0	-	-	-	-	-	_	-	0	-
			差圧検出・ほう酸水注入管(ティーよりN10ノズ ルまでの外管)	×	SRSS法	0.97	0.74	0.88	0.29	1.10	×	0	-
			蒸気乾燥器	0	-	-	-	-	-	-	-	0	-
	原子炉圧力容器		気水分離器およびスタンドパイプ	0	_	-	-	-	-	-	-	0	-
m → k= + 4+			シュラウドヘッド	0	_	-	-	-	-	-	-	0	-
原子炉本体			ジェットボンプ	×	SRSS法	0.98	0.73	0.88	0.29	1.11	×	0	-
		THE AN ADDRESS OF THE ADDRESS OF THE ADDRESS	給水スパージャ	×	SRSS法	0.97	0.75	0.96	0.29	1.01	×	0	-
		原子炉上刀容器内部構造物	炉心スプレイスパージャ	×	SRSS法	1.68	0.77	0.96	0.29	1.75	0	-	-
			残留熱除去系配管(原子炉圧力容器内部)	×	SRSS法	1.68	0.77	0.96	0.29	1.75	0	-	-
			炉心スプレイ系配管(原子炉圧力容器内部)	×	SRSS法	0.97	0.75	0.96	0.29	1.01	×	0	-
			差圧検出・ほう酸水注入管(原子炉圧力容器内 部)	×	SRSS法	0.97	0.74	0.88	0.29	1.10	×	0	-
			中性子計測案內管	×	SRSS法	0.97	0.74	0.78	0.29	1.24	×	0	-
核燃料物質 の取扱施設 及び貯蔵施 設	使用済燃料貯蔵設 備	使用済燃料貯蔵ラック	使用済燃料貯蔵ラック	×	SRSS法	1.10	0.90	0.96	0.29	1.15	×	-	-
		I	主蒸気逃がし安全弁自動減圧機能用アキュムレ- タ	×	絶対値和法	0.79	0.66	0.88	0.29	0.90	×	0	-
	主蒸気系		主蒸気逃がし安全弁逃がし弁機能用アキュムレ- タ	×	絶対値和法	0.79	0.66	0.88	0.29	0.90	×	0	-
			残留熱除去系熱交換器	×	SRSS法	0.63	0.50	0.63	0.29	1.00	×	0	-
	残留熱除去系		残留熱除去系ポンプ	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
			残留熱除去系ストレ-ナ	×	SRSS法	1.31	1.41	0.58	0.29	2.26	0	-	-
		-	高圧炉心スプレイ系ポンプ	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
原子炉冷却 系統施設	尚圧炉心スノレイ;	ř.	高圧炉心スプレイ系ストレーナ	×	SRSS法	1.31	1.41	0.58	0.29	2.26	0	-	-
		-	低圧炉心スプレイ系ポンプ	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
	16日炉心スノレイ;	त ः	低圧炉心スプレイ系ストレーナ	×	SRSS法	1.31	1.41	0.58	0.29	2.26	0	-	-
		-	原子炉隔離時冷却系ポンプ	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
	原于炉隔雁時冷却。	ň	原子炉隔離時冷却系ポンプ駆動用タービン	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
		-	残留熱除去系海水系ポンプ	×	絶対値和法	1.10	1.03	0.58	0.29	1.90	0	-	-
	残留熱除去系海水系 残留		残留熱除去系海水系ストレーナ	×	絶対値和法	0.81	1.23	0.58	0.29	1.40	0	-	-

										判定③			
						設計	震度	静的	震度		【SRSS法】 聖計需在 (水平) >1.42×3.6Ci		
		評価対象設備/評価対象	황項目	② 膜度を用いて簡易的に判断することが困 難な設備	水平・鉛直の 荷重の組合せ	水平	鉛直	3.6Ci	1. 2Cv	設計赛度(水平)/ 静的震度(水平) 設計票度(鉛直)/ 静的震度(鉛直) の小さい方	Xial Box (小子) = 1:42-3:001 Strate (小子) = 1:42-3:001 それ以外:× 【絶対値和法】 設計震度 (水平) = 3:6Ciかつ 設計震度 (水平) = 3:0Ciかつ 設計震度 (外平) = 3:0Ciかつ それ以外:×	 ④静的震度Ciに 対する評価 	備考
	Set (2014-00-061,01-092,	制鉀棒駆動機構	制御棒駆動機構	0	-	-	-	-	-	-	-	0	-
	1010014014032	制御棒駆動系	制御ユニット	×	SRSS法	0.79	0.62	0.88	0.29	0.90	×	0	-
	ほう酸水注入設備	けら齢水注える	ほう酸水注入系ポンプ	×	絶対値和法	1.67	1.44	1.03	0.29	1.62	0	-	-
		14 JRALAN	ほう酸水貯蔵タンク	×	絶対値和法	1.67	1.44	1.03	0.29	1.62	0	-	-
		起動領域計測装置及び出力領域計	起動領域計装	×	SRSS法	1.43	0.77	0.96	0.29	1.49	0	-	-
		測装置	出力領域計装	×	SRSS法	1.43	0.77	0.96	0.29	1.49	0	-	-
			主蒸気流量	×	絶対値和法	0.64	0.53	0.69	0.29	0.93	×	0	-
			原子炉隔離時冷却系系統流量	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
		原子炉圧力容器本体の入口又は出 口の原子炉冷却材の圧力,温度又 は流量を計測する装置	高圧炉心スプレイ系系統流量	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
			低圧炉心スプレイ系系統流量	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
計測制御系 統施設			残留熱除去系系統流量	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
			原子炉圧力	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
	計測装置	原子炉圧力容器本体内の圧力又は	原子炉水位	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
		水位を計測する装置	原子炉水位(広帯域)	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
			原子炉水位(燃料域)	×	絶対値和法	0.64	0.53	0.69	0.29	0.93	×	0	-
			ドライウェル圧力	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
			サプレッション・チェンバ圧力	×	絶対値和法	0.64	0.53	0.69	0.29	0.93	×	0	-
		原子炉格納容器本体内の圧力、温 度 酸素ガス濃度	サプレッション・プール水温度	×	絶対値和法	0.58	0.59	0.63	0.29	0.92	×	0	-
		ストレステレス (1000) 又は水素ガス濃度を測定する装置	サプレッション・プール水位	×	絶対値和法	0.58	0.59	0.63	0.29	0.92	×	0	
			格納容器內水素濃度	×	絶対値和法	0.79	0.62	0.88	0.29	0.90	×	0	-
			格納容器內酸素濃度	×	絶対値和法	0.79	0.62	0.88	0.29	0.90	×	0	-

										判定③			
						設書	十震度	静的	的震度		【SRSS法】		
		評価対象設備/評価対	象項目	②震度を用いて簡易的に判断することが困 難な設備	水平・鉛直の 荷重の組合せ	水平	鉛直	3.6Ci	1. 2Cv	設計震度(水平) / 静的震度(水平) 設計震度(鉛直) / 静的震度(鉛直) の小さい方	設計震度(水平) ≥1.42×3.601 設計震度(気面) ≥1.42×1.2Cv: ○ それ以外:× [絶対値和法] 設計震度(水平) ≥3.6Ciかつ 設計震度(気面) ≥1.2Cv: ○ それ以外:×	④静的震度Ciに 対する評価	備考
			主蒸気管放射線モニタ	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
	放射線管理用計測		格納容器雰囲気放射線モニタ (D/W)	×	絶対値和法	0.79	0.66	0.88	0.29	0.90	×	0	-
	装置	プロゼスモニタリンク設備	格納容器雰囲気放射線モニタ (S/C)	×	絶対値和法	0.58	0.49	0.63	0.29	0.92	×	0	-
放射線管理			原子炉建屋換気系(ダクト)放射線モニタ	×	絶対値和法	1.23	0.94	1.44	0.29	0.86	×	0	-
施設			中央制御室換気系空気調和機ファン	×	絶対値和法	1.55	1.17	0.88	0.29	1.76	0	-	-
	按与凯德	山山制御守協与ズ	中央制御室換気系フィルタユニット	×	絶対値和法	1.55	1.17	0.88	0.29	1.76	0	-	-
	(英文)。武阳	甲犬前仰主换风术	中央制御室換気系フィルタ系ファン	×	絶対値和法	1.55	1.17	0.88	0.29	1.76	0	-	-
			中央制御室再循環フィルタユニット	×	絶対値和法	1.55	1.17	0.88	0.29	1.76	0	-	-
			ドライウェル円錐部及びサプレッションチェン バ円筒部シェル部及びサンドクッション部	0	-	-	-	-	-	-	-	0	-
	原子炉格納容器	原子炉格納容器本体	ドライウェルビームシート	0	-	-	-	-	-	-	-	0	-
			ドライウェル上部シアラグ及びスタビライザ	0	-	-	-	-	-	-	-	0	-
			ドライウェル下部シアラグ及びダイアフラムフ ロアプラケット	0	-	-	-	-	-	-	-	0	-
			格納容器スプレイヘッダ(ドライウェル側)	0	-	-	-	-	-	-	-	0	-
			格納容器スプレイヘッダ(サプレッションチェ ンバ側)	0	-	-	-	-	-	-	-	0	-
			サプレッションチェンバ底部ライナ	0	-	-	-	-	-	-	-	0	-
			原子力格納容器胴アンカー部	0	-	-	-	-	-	-	-	0	-
		機器搬出入口	機器搬入用ハッチ	0	-	-	-	-	-	-	-	0	-
		エアロック	所員用エアロック	0	-	-	-	-	-	-	-	0	-
			サプレッション・チェンバアクセスハッチ	0	-	-	-	-	-	-	-	0	-
原子炉格納 施設		原子炉格納容器貫通部及び電気配	配管貫通部	0	-	-	-	-	-	-	-	0	-
		線頁通部	電気配線貫通部	0	-	-	-	-	-	-	-	0	-
		ダイヤフラムフロア	ダイヤフラム・フロア	0	-	-	-	-	-	-	-	0	-
		ベント管	ベント管	0	-	-	-	-	-	-	-	0	-
			非常用ガス再循環系排風機	×	絶対値和法	1.67	1.44	1.03	0.29	1.62	0	-	-
			非常用ガス再循環系 フィルタトレイン	×	SRSS法	1.67	1.44	1.03	0.29	1.62	0	-	-
	圧力低減設備その		非常用ガス処理系排風機	×	絶対値和法	1.67	1.44	1.03	0.29	1.62	0	-	-
	他の安全設備	放射性物質濃度制御設備及び可燃 性ガス濃度制御設備並びに格納容	非常用ガス処理系フィルタトレイン	×	SRSS法	1.67	1.44	1.03	0.29	1.62	0	-	-
		器再循環設備	低圧マニホールド	×	絶対値和法	0.70	0.54	0.78	0.29	0.90	×	0	-
			主蒸気隔離弁漏えい抑制系ブロワ	×	絶対値和法	1.55	1.17	0.88	0.29	1.76	0	-	-
			可燃性ガス濃度制御系再結合装置プロワ	×	絶対値和法	1.34	1.01	0.78	0.29	1.72	0	-	-
			可燃性ガス濃度制御系再結合装置	×	絶対値和法	1.34	1.01	0.78	0.29	1.72	0	-	-

						判定③							
評価対象設備/評価対象項目			②酸度を用いて簡易的に判断することが困 離な設備	水平・鉛直の 荷重の組合せ	設計震度		静的震度			【SRSS法】 設計課度 (水平) ≥1.42×3.6Ci	-		
					水平	鉛直	3.6Ci	1. 2Cv	設計赛度(水平)/ 静的震度(水平) 設計赛度(鉛直)/ 静的震度(鉛直) の小さい方	801世史(鉛直)≥1.42×1.2Cv:○ それ以外:× [絶対電和法] 設計震度(水平)≥3.6Ciかつ 設計震度(効直)≥1.2Cv:○ それ以外:×	④静的態度Ciに対する評価	備考	
その地帯発行の 用原子がの 財講義役領	非常用発電装置	非常用ディーゼル発電装置	非常用ディーゼル発電機内燃機関	×	絶対値和法	0.87	0.90	0.58	0.29	1.50	0	-	-
			非常用ディーゼル発電機空気だめ	×	SRSS法	0.87	0.90	0.58	0.29	1.50	0	-	-
			非常用ディーゼル発電機燃料油デイタンク	×	SRSS法	1.10	0.96	0.63	0.29	1.75	0	-	-
			非常用ディーゼル発電機燃料移送ポンプ	×	絶対値和法	0.41	0.36	0.58	0.29	0.71	×	0	-
			軽油貯蔵タンク	×	絶対値和法	0.41	0.36	0.58	0.29	0.71	×	0	-
			非常用ディーゼル発電機	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
			非常用ディーゼル発電機制御盤	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
			非常用ディーゼル発電機用 海水ボンプ	×	絶対値和法	1.10	1.03	0.58	0.29	1.90	0	-	-
			非常用ディーゼル発電機用 海水ストレーナ	×	絶対値和法	0.81	1.23	0.58	0.28	1.40	0	-	-
		高圧炉心スプレイ系ディーゼル発 電装置	高圧炉心スプレイ系ディーゼル発電機内燃機関	×	絶対値和法	0.87	0.90	0.58	0.29	1.50	0	-	-
			高圧炉心スプレイ系ディーゼル発電機空気だめ	×	SRSS法	0.87	0.90	0.58	0.29	1.50	0	-	-
			高圧炉心スプレイ系ディーゼル発電機燃料油デ イタンク	×	SRSS法	1.10	0.96	0.63	0.29	1.75	0	-	-
			高圧炉心スプレイ系ディーゼル発電機燃料移送 ボンプ	×	絶対値和法	0.41	0.36	0.58	0.29	0.71	×	0	-
			高圧炉心スプレイ系ディーゼル発電機	×	絶対値和法	0.46	0.48	0.58	0.29	0.79	×	0	-
			高圧炉心スプレイ系ディーゼル発電機制御盤	×	絶対値和法	0.52	0.48	0.58	0.29	0.90	×	0	-
			高圧炉心スプレイ系ディーゼル発電機用海水ボン プ	×	絶対値和法	1.10	1.03	0.58	0.29	1.90	0	-	-
			高圧炉心スプレイ系ディーゼル発電機用海水スト レーナ	×	絶対値和法	0.81	1.23	0.58	0.29	1.40	0	-	-
	その他の電源装置	電力貯藏装置	非常用無停電電源装置	×	絶対値和法	0.58	0.50	0.63	0.29	0.92	×	0	-
			125V系蓄電池	×	絶対値和法	0.64	0.53	0.69	0.29	0.93	×	0	-
			中性子モニタ用蓄電池	×	絶対値和法	0.58	0.50	0.63	0.29	0.92	×	0	-

耐震評価における等価繰返し回数の妥当性確認について

(目次)

<u>1. はじめに</u>

- 2. JEAG4601 における記載内容
- 3. 東海第二発電所の等価繰返し回数の設定
- 4. 一律に設定する等価繰返し回数の設定
- 5. 一律に設定する等価繰返し回数設定における保守性
- 6. 一律に設定する等価繰返し回数設定における保守性を踏まえた追加検討
- <u>7. まとめ</u>
- 補足1 ピーク応力法における各ピークのサイクル数の求め方
- 補足2 一律に設定する等価繰返し回数の妥当性について
- 補足3 個別に設定する等価繰返し回数について
- 参考1 疲労評価の対象設備
- 参考2 各設備の部位毎のピーク応力
- 参考3 ピーク応力の算定方法について
- 参考4 時刻歴応答波形から直接等価繰返し回数を算定した場合との比較検討
- 参考5 地震時等価繰返し回数算定エビデンス
- 参考6 等価繰返し回数の算定における材料物性のばらつき等の影響検討
- 参考7 多方向入力を対象とした等価繰返し回数算定方法について

1. はじめに

東海第二発電所の今回工認における耐震評価の疲労評価は、JEAG4601-1987(以下 「JEAG4601」という。)の記載手順に従い、等価繰返し回数を用いた評価を行ってい る。疲労評価は、応力振幅と繰返し回数の情報が必要となるため、本来は設備の応力時刻 歴が必要となるが、最大応力値のみを用いて保守側に疲労累積係数を評価できるよう設定 した等価繰返し数を設定することで、評価の簡便化を図っている。東海第二発電所の疲労 評価に用いる等価繰返し回数は、設備ごとに個別に設定した値又は一律に設定した値を用 いている。

なお,既工認の等価繰返し回数は,OBE地震1回当たりの繰返し回数を10回として, プラントライフ中5回発生すると仮定し,余裕をみて6回起きた場合の60回という米国 プラント設計の考え方を踏襲し設定している。

2. JEAG4601における記載内容

JEAG4601の疲労評価の手順に関する記載は、以下のとおりである。(JEAG4601-1987 p574より)

- ・ 疲れ解析は、1次+2次+ピーク圧力より疲れ累積係数を求めて評価するがこの手法には、地震動の等価繰返し回数を用いる方法あるいは機器の時刻歴応答から応力振幅の大きさの頻度分布を直接求める方法がある。
- ・地震動の等価繰返し回数を求める場合にはピーク応力法あるいはエネルギ換算法が用いられている
- ここで「疲れ累積係数」とは、各応力サイクルにおける実際の繰返し回数と繰返しピーク応力に対応する許容繰返し回数との比をすべての応力サイクルについて加えたものをいう。
- 3. 東海第二発電所の等価繰返し回数の設定

東海第二発電所の耐震評価における疲労評価は,JEAG4601 記載の手順のうち,等 価繰返し回数を用いた評価を採用している。等価繰返し回数はピーク応力法により,東海 第二発電所で一律に設定した値を用いている。この値はピーク応力法により算定した等価 繰返し回数を安全側に丸めることによる保守性を有した値としている。なお,一律に設定 した等価繰返し回数を用いるのは原子炉建屋内の設備とする。原子炉建屋以外に設置され る疲労評価が必要な設備は,設備毎に個別に算出した等価繰返し回数を用いる。

一律に設定した値と,設備毎に個別に算出された値の使い分けフローを図1に示す。こ こで,フロー中の疲労評価対象設備は,工認計算書対象とする設備・部位のうち,疲労評 価を実施するものとしている。

工認計算書で対象とする設備・部位は,東海第二発電所の既工認や大間1号機の建設工 認を踏まえ,選定しているものであり,耐震設計として評価すべき設備・部位を網羅して 設定している(詳細は添付-3参照)。

また、疲労評価を実施するものとしては、JEAG4601・補1984に基づき疲労評価が
必要となる設備・部位であり、具体的には以下が対象となる。

- 設計基準対象設備
 - ・クラス1容器,管、ポンプ(JEAG4601 補 1984 における疲労評価不要の条件(クラス1容器については、第1種容器の許容応力表の注 5)に従うものを除く。)
 - ・クラス MC 容器(JEAG4601 補 1984 における疲労評価不要の条件(第2種容 器の許容応力表の注4)に従うものを除く。)
 - ・クラス2,3容器、クラス2、3管、クラス2、その他ポンプ(1次+2次応力評価が許容値を満足するものを除く。)
- 重大事故等対処施設
 - ・重大事故等クラス2容器,管,ポンプ(設計基準対象設備のクラスに準ずる。)

東海第二発電所の等価繰返し回数の設定が保守的な設定であることを確認する際は, 等価繰返し回数設定のパラメータ(ピーク応力,固有周期,対象床面,地震波,減衰定 数,設計疲労線図)に加え,ばらつきによる影響(水平2方向,時刻歴解析による評価 設備,材料物性の影響)に対しても検討する。

^{※1} 疲労評価対象設備については,添付8 参考1参照。このフローによらず個別に設定する 等価繰返し回数を適用する場合がある。

※2 該当する設備は補足3参照。

図1(1) 基準地震動S。における等価繰返し回数設定フロー

- ※1 該当する設備は補足3参照。
- ※2 疲労評価対象設備については,添付8 参考1参照。このフローによらず個別に設定する 等価繰返し回数を適用する場合がある。
 - 図1(2) 弾性設計用地震動Saにおける等価繰返し回数設定フロー

- 4. 一律に設定する価繰返し回数の設定について
 - (1) 算定方法

東海第二発電所のピーク応力法による等価繰返し回数算定方法の手順を,JEAG 4601 に記載されたピーク応力法による算定フロー(図 2,以下「フロー」という)との 対比で説明する。

このフローには分岐があり,建屋時刻歴応答を直接機器の評価に用いる場合と,建屋 応答を床応答曲線として用いる場合が示されている。

左側のフローは,時刻歴応答を用いて設備の応答を求めている場合のフローであり, この場合,等価繰返し回数算出に必要となる設備の荷重時刻歴が算出されることになる ことから,この時刻歴波形を用いて直接等価繰返し回数を算定するものである。

一方,右側のフローは,床応答曲線を用いて機器の応力を算定している場合のフロー であり,改めて機器の固有周期に応じた応答時刻歴を求めているものであり,設備の時 刻歴応答解析を改めて行わず,一質点系モデルにより,応答時刻歴を算定するものであ る。

東海第二発電所の今回工認においては、個別機器ごとの等価繰返し回数の設定を合理 化するため、主要施設が設置される原子炉建屋及び、原子炉格納容器、原子炉圧力容器 等の大型機器に対して、図2に示す右側のフローにより、対象設備一律に適用可能な等 価繰返し回数を設定する^{*1}。基準地震動S_sにおける等価繰返し回数算定のフローを図 3に示す。

等価繰返し回数の検討は、「昭和 55 年度 耐震設計の標準化に関する調査報告書」に 記載されており、当該報告書における算定方法と、今回の算定方法の比較を表1に示す。 なお、設備の繰返し回数を個別に算定する場合においては、個別のピーク応力、固有周 期、減衰定数、設置される床面における等価繰返し回数を算定することになり、算定さ れる等価繰返し回数としては、一律に設定した等価繰返し回数の方がより保守的な算定 となる。(各パラメータに対する検討は5.項参照。)

以下に具体的な手順を示す。①~④の手順はフロー中の番号に対応している。

*1 ただし、一律に設定した等価繰返し回数で許容値を超える(疲労累積係数が1を 超える)場合及び原子炉建屋以外に設置される設備において、疲労評価が必要にな った場合は、個別に等価繰返し回数の設定を行う。

図2 ピーク応力法による算定フロー(JEAG4601-1987に追記)

		昭和 55 年度 耐熱	震設計の標準化	東海第二	二発電所		
		に関する調査報告書	(標準化報告書)	一律に設定する等値	西繰返し回数の設定		
		【手法 1】	【手法2】	原子炉格納容器, 原子炉	原子炉建屋に設置され		
対象設備		原子炉圧力容器スカート	第一種配管	圧力容器等大型機器	た機器・配管系		
算出方法		時刻歴解析より算定され	建屋床応答を入力とし	標準化報告書【手法 2】	同左		
(JEAGのフローの	左右どちらか)	る時刻歴モーメントを用	た1質点系モデルによ	と同じ (JEAG における右			
		いた算出方法 (JEAG にお	る応答時刻歴を用いた	側のフロー)			
		ける左側のフロー)	算出方法(JEAG におけ				
			る右側のフロー)				
回数算出に用いる応	波形	時刻歴モーメント波形	変位応答時刻歴波	標準化報告書【手法 2】	同左		
答時刻歷波				と同じ			
	時刻歴最大値	5種類のピーク応力	代表設備の最大ピーク	$150 \mathrm{kg/mm^2}$ (1471MPa)	同左		
	(設備の最大	(最大 300kg/mm ²)	応力を安全側に設定し	「昭和 55 年度 耐震設			
	ピーク応力)		た $300 kg/mm^2$	計の標準化に関する調			
				査報告書」の検討にて十			
				分とされている値*			
対象建屋・床		代表設備の設置床面	同左	標準化報告書【手法 1】	全ての床面		
				及び【手法2】と同じ			
固有周期		時刻歴解析結果より直接	設備の固有周期でな	標準化報告書【手法 2】	同左		
		算定	く、全固有周期	と同じ			
減衰定数		報告書に言及なし	同左	1.0%, 0.5%	同左		
設計用疲労線図		代表設備材料の線図を使	同左	標準化報告書【手法 1】	同左		
		用		及び【手法2】と同じ			
地盤条件		Vs=500,1000.1500m/s	Vs=1500m/s	東海第二の地盤条件	同左		
				Vs=約 700m/s			

表1 昭和55年度 耐震設計の標準化に関する調査報告書における算定条件と東海第二における一律に設定する等価繰返し回数算定条件との比較

*:設備のピーク応力が 150 kg/mm²(1471MPa)を超える場合は個別に評価を行う。

全設備の固有周期に対する応答加速度時刻歴波形の算定

ピーク応力法による等価繰返し回数を求めるためには,設備の応力時刻歴波が必要と なる。図2のフローでは地震荷重を時刻歴より求める場合(左側のフロー)は時刻歴モ ーメント応答波形又は時刻歴せん断力波形を用いること,及び,応答スペクトルより求 める場合(右側のフロー)は時刻歴変位応答波形を用いることとなっているが,今回工 認の算定では,右側のフローとして時刻歴変位応答波の波形を用いることとしている。

建屋地震応答解析又は建屋-機器連成解析(フローでは「時刻歴地震応答解析」と記載)の結果から算出される変位加速度応答波を用いて,振動数fの1質点系に入力した場合の時刻歴変位応答波形を求める。この時刻歴波形は,固有振動数全てに対して算出する。

時刻歴ピーク応力値の設定

設備に発生するピーク応力の最大値を①で求めた時刻歴波形の最大値とすることで, 応力の時刻歴波を作成する。なお,フローの「時刻歴応答波形の最大値に対応するピー ク応力を仮定」とは,この設備に発生するピーク応力の最大値を①で求めた時刻歴波形 の最大値とすることに対応している。なおピーク応力は,当該床面・固有周期に対応す る設備のピーク応力ではなく,対象設備全てのピーク応力最大値を,時刻歴波の最大値 と仮定しており,また,多質点系モデルの場合,ピーク応力は各モードの重ね合わせの 結果として算定されるものであり,必ずしも波形の最大値がピーク応力の最大値になる とは限らないが,多質点系モデルの場合においても,最大値がピーク応力であると仮定 していることを指している。

ここで,東海第二発電所における地震時等価繰返し回数の設定に用いるピーク応力は, 150 kg/mm² (1471MPa)を用いている。設備のピーク応力が150 kg/mm² (1471MPa)を 超える場合は個別に評価を行う。

③ 各ピーク点の応力に対する許容繰返し回数(Ni)を設計疲労線図より求め、疲れ累積 係数UF(Usage Factor)を求める。

図4に示す設計疲労線図を用い,応力時刻歴波に対して各時刻歴振幅に対する許容繰 返し回数を算定する。

各応力時刻歴波の振幅 σ_i に対する許容繰返し回数 N_i と、ピークのサイクル数 n_i (1 つのピークで1サイクルとする)から、UF を算定する。

$$2UF = \frac{n_0}{N_0} + \frac{n_1}{N_1} + \frac{n_2}{N_2} + \cdots$$

④ UFと,最大ピーク応力に対する許容繰返し回数№の積をとることにより最大ピーク応力に対する等価繰返し回数№を求める。

③で算定した UF と、②より求められる最大ピーク応力に対する許容繰返し回数 № から、下式により、等価繰返し回数 Ne を求める。

 $Ne = UF \times N_0$

図3 基準地震動S。における等価繰返し回数算定フロー

図4 炭素鋼,低合金鋼及び高張力鋼の設計疲労線図 (JSME設計・建設規格より抜粋)

- (2) 算定結果
 - (1) に基づき一律に設定する等価繰返し回数を算定した結果を示す。
 - a. 原子炉格納容器, 原子炉圧力容器等の大型機器

原子炉格納容器,原子炉圧力容器等の大型機器の各質点の水平(NS,EW)及び 鉛直(UD)方向の加速度時刻歴より求めた1質点系の変位応答に対する等価繰返 し回数を表2に示す。一律に設定する等価繰返し回数については,表2の数値を保 守的に丸めた160回を設定する。

b.原子炉建屋に設置された機器・配管系 原子炉建屋の各質点の水平(NS,EW)及び鉛直(UD)方向の加速度時刻歴よ り求めた1質点系の変位応答に対する等価繰返し回数を表3に示す。一律に設定す る等価繰返し回数については、表3の数値を保守的に丸めた160回を設定する。

ここで、多方向入力の等価繰返し回数の算定方法として、各方向の最大値、SRSS、 代数和等の等価繰返し回数を組み合わせる方法が考えられる。これらの中でSRSSや 代数和は過度に保守的な評価となるため(添付8 参考7参照),各方向の最大値を保守 的に丸めた回数を等価繰返し回数とした。

	试车空粉	S	$s_s - D$	1	S	_s – 1	1	S	_s – 1	2	S	$_{s} - 1$	3
	阀农足数	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD
						I	I		I	1	1	1	
-													_
													_
_													_
													-
_													-
													_
_													-
													_
_													
_													_
													-
-													-
													_
_													_
													-
_													-
													-
_													-
													_
-													_
													_
-													-
													-
_													-
													-

表2(1) 原子炉格納容器,原子炉圧力容器等の等価繰返し回数の算定結果

注) 質点No. は水平方向のモデル(図5参照)の番号を示す。

	浦吉宁粉	S	_s — 1 ·	4	S	$_{\rm s} - 2$	1	S	$_{\rm s} - 2$	2	S	_s – 3	1
		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD
	T		1	1	1			1	1	1	1	1	_
_													-
													-
-													-
													-
_													_
													-
_													_
													_
-													-
													-
_													-
													-
_													_
													_
-													-
													-
-													-
													-
_													_
													-
													_
													_
F													-
													-
-													_
													-
			ı					ı	ı				

表2(2) 原子炉格納容器,原子炉圧力容器等の等価繰返し回数の算定結果

注) 質点No. は水平方向のモデル(図5参照)の番号を示す。

	油雪合粉	S	$_{\rm s}-{\rm D}$	1	S	_s – 1	1	S	_s – 1	2	S	_s - 1	3
	减衰定效	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD
原子炉建屋 EL. 46.500 m	h=0.5%	_		I			I	I			I	I	
質点 No. 3	h=1.0%												
原子炉建屋 EL. 38.800 m	h=0.5%	_											_
質点 No.4	h=1.0%												
原子炉建屋 EL. 34.700 m	h=0.5%	_											_
質点 No.5	h=1.0%												
原子炉建屋 EL. 29.000 m	h=0.5%												
質点 No.6	h=1.0%												
原子炉建屋 EL. 20.300 m	h=0.5%	_											_
質点 No.7	h=1.0%												
原子炉建屋 EL. 14.000 m	h=0.5%	_											
質点 No. 8	h=1.0%												
原子炉建屋 EL. 8.200 m	h=0.5%	_											
質点 No. 9	h=1.0%												
原子炉建屋 EL. 2.000 m	h=0.5%												
質点 No. 10	h=1.0%												
原子炉建屋 EL4.000 m	h=0.5%												_
質点 No. 11	h=1.0%			I	I	1	1	1	1	1	1	1	-

表3(1) 原子炉建屋の等価繰返し回数の算定結果

注)質点No.は図7及び図8の番号を示す。

	演員会教	S	_s – 1	4	S	$_{\rm s} - 2$	1	S	_s - 2	2	S	_s – 3	1
	减衰走致	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD
原子炉建屋 EL. 46.500 m	h=0.5%	_		<u>.</u>			<u>.</u>	<u>.</u>					
質点 No. 3	h=1.0%												_
原子炉建屋 EL. 38.800 m	h=0.5%												-
質点 No. 4	h=1.0%												_
原子炉建屋 EL. 34.700 m	h=0.5%	_											_
質点 No. 5	h=1.0%												
原子炉建屋 EL. 29.000 m	h=0.5%												
質点 No.6	h=1.0%												_
原子炉建屋 EL. 20.300 m	h=0.5%	_											_
質点 No.7	h=1.0%												_
原子炉建屋 EL. 14.000 m	h=0.5%	_											_
質点 No. 8	h=1.0%												
原子炉建屋 EL. 8.200 m	h=0.5%												_
質点 No. 9	h=1.0%												
原子炉建屋 EL. 2.000 m	h=0.5%												_
質点 No. 10	h=1.0%												-
原子炉建屋 EL4.000 m	h=0.5%												-
質点 No. 11	h=1.0%			1			1	1	L		I		_

表3(2) 原子炉建屋の等価繰返し回数の算定結果

注)質点No.は図7及び図8の番号を示す。

図5 原子炉格納容器,原子炉圧力容器等の等価繰返し回数の算定位置(水平方向)

図6 原子炉格納容器,原子炉圧力容器等の等価繰返し回数の算定位置(鉛直方向)

図7 原子炉建屋の等価繰返し回数の算定位置(水平方向)

図8 原子炉建屋の等価繰返し回数の算定位置(鉛直方向)

5. 一律に設定する等価繰返し回数設定における保守性

等価繰返し回数の設定におけるパラメータとしては,以下の 6 種類がある。ここでは, それぞれのパラメータに対する包絡性を検討し,一律に設定する等価繰返し回数が保守的 な回数であることを確認する。

①ピーク応力
 ②固有周期
 ③対象床面
 ④地震波
 ⑤減衰定数
 ⑥設計疲労線図

ピーク応力

同じ波形で応力値の大きな波と小さな波があった場合,ピーク応力法で等価繰返し回数 を算出すると,応力値の大きな波の方が回数を大きく算出することになる。

東海第二発電所における一律に設定する等価繰返し回数の設定に用いるピーク応力は, 150 kg/mm²(1471MPa)を用いる。当設定は,「昭和 55 年度耐震設計の標準化に関する調 査報告書」での検討にて,当値まで考慮すれば十分とされた値*¹である。なお,設備のピ ーク応力が 150 kg/mm²(1471MPa)を超える場合は個別に評価を行う。

*1 「昭和 55 年度耐震設計の標準化に関する調査報告書」での整理。

現在用いられている材料において RPV 本体材料であるSQV2A及びSFVV 3の一次+二次応力に対する許容値が最も高く、その値は $3Sm = 56.4 \text{kg/mm}^2 \text{b}$ なる。

応力係数の極大値5とすれば、ピーク応力の値としては片振幅に対して、56.4 ×5÷2=141 kg/mm²となることから、最大ピーク応力としては、150 kg/mm²ま で考慮すれば十分としている。

② 固有周期

今回工認の基準地震動S。の一律に設定する等価繰返し回数の設定においては,設備の固 有周期の有無に係わらず全周期帯での最大の等価繰返し回数としている。実際の設備とし ては,特定の固有周期を有していることから,当該建屋(又は質点)の等価繰返し回数は, 確実にそれ以下の回数となり,保守側の算出となっている。

固有周期(s)

③ 代表床面(質点)における等価繰返し回数の設定

原子炉格納容器,原子炉圧力容器等の大型機器については,「昭和55年度耐震設計の 標準化に関する調査報告書」と同様に代表質点にて等価繰返し回数を設定しており,代 表質点は,クラス1の機器・配管系の設置位置を選定している。また,(2)項の表5で 示した等価繰返し回数は,原子炉建屋に設置された機器・配管系は全ての床面の回数を 算定した上で,最大の回数を記載しており,設備の等価繰返し回数は,確実にそれ以下 の回数となり保守側の算出となっている。

4 地震波

東海第二発電所における地震波としては、 $S_s - D$, 11, 12, 13, 14, 21, 22, 31がある。今回の等価繰返し回数の設定においては、全ての S_s を用いており、設備の等価繰返し回数は、確実にそれ以下の回数となり保守側の算出となっている。

また、S_dにおける一律に設定する等価繰返し回数は、S_sの2倍の回数を用いている。S_dの等価繰返し回数をS_sの等価繰返し回数の2倍の回数とすることが保守的な 設定であることは、1.1.2(2)にて示している。

⑤ 減衰定数

ー律に設定する等価繰返し回数の算定においては、減衰定数は 0.5%及び 1.0%を用いている。表4及び表5に示すとおり減衰定数が小さいほど、等価繰返し回数が多く算定される傾向にあり、機器・配管系に適用される最小の減衰定数は、0.5%であることから、設備の等価繰返し回数は、確実にそれ以下の回数となり保守側の算出となっている。

⑥ 設計疲労線図

疲労評価に用いている設計用疲労線図としては,JSME に記載されている「オーステナ イト系ステンレス鋼及び高ニッケル合金」と「炭素鋼,低合金鋼及び高張力鋼」の2種 類が該当する。 一律に設定する等価繰返し回数の算定は,設計疲労線図は代表設備の設計疲労線図 (炭素鋼,低合金鋼及び高張力鋼)を用いる。「炭素鋼,低合金鋼及び高張力鋼」の設 計用疲労線図を用いるほうが,同じピーク応力とした場合に「オーステナイト系ステン レス鋼及び高ニッケル合金」よりも許容繰返し回数が小さくなり,地震繰返し回数が多 く算定されるため,設備の等価繰返し回数は,確実にそれ以下の回数となり保守側の算 出となっている。

- 6. 一律に設定する等価繰返し回数設定における保守性を踏まえた追加検討
- a. 6 つのパラメータによる等価繰返し回数への影響

5. 項では、6 つのパラメータに対して検討を行った。その結果、一律に設定する等価 繰返し回数は最も厳しい条件を仮定した回数、また「昭和 55 年度耐震設計の標準化に関 する調査報告書」で検討された手法を用いており、等価繰返し回数の設定としては保守性 を有している。

b. 6 つのパラメータ以外による等価繰返し回数への影響

a. 項では、6つのパラメータに対する検討を行ったが、6つのパラメータ以外に等価繰返し回数に影響する要因としては、以下の項目が挙げられる。一律に設定した等価繰返し回数は、保守性は有しており、その設定に問題はないと考えるが、以下の要因に対しても、問題がないことを確認する。

- (a)時刻歴解析を用いている設備(JEAG4601-1987 (P. 576)の左側のフロー)
 についても、1質点系の応答波形を用いて回数を設定(JEAG4601-1987 (P. 576)の右側のフロー)している
- (b) 水平2 方向による影響
- (c) 材料物性の影響
- (a)時刻歴解析を用いている設備への影響

時刻歴解析を行う設備は、JEAG4601の左側のフローを用いることとされている が、今回の等価繰返し回数の算定においてはJEAG4601の右側のフローを用いてい る。時刻歴解析を用いている設備に対して、その時刻歴応答荷重(JEAGの左側の フロー)を用いて等価繰返し回数を算定した結果と、1質点系の応答波形(JEAGの 右側のフロー)を用いて算出した結果の比較を添付8参考4に示す。

設備の時刻歴応答荷重より直接算定した回数は,160回より十分小さく,一律に設定 する等価繰返し回数の設定に問題ないことを確認した。

(b) 水平2方向による影響

疲労評価対象設備における水平1方向及び鉛直方向の地震動に対するピーク応力と、 水平2方向及び鉛直方向の地震動に対するピーク応力を添付8 参考2に纏めた。なお、 水平2方向の考慮は「補足-340-7 【水平2方向及び鉛直方向の適切な組合せに関する 検討について」」における検討結果を踏まえ纏めた。

上部シアラグと格納容器との接合部は水平1方向を考慮した場合と,水平2方向を 考慮した場合が共に150 kg/mm²(1471MPa)を上回っていることから,個別に等価繰 返し回数を設定する(補足3参照)。

その他の設備については,水平2方向による影響を考慮しても,150 kg/mm²(1471MPa) を下回っていることから,一律に設定する等価繰返し回数の設定に影響ないことを確 認した。

(c) 材料物性の影響

原子炉建屋における建屋剛性及び地盤物性のばらつき等を考慮した場合の等価繰返 し回数を算定した結果を添付8 参考6に示す。材料物性のばらつき等を考慮した場合 でも、等価繰返し回数の算定結果への影響は軽微であり、一律に設定する繰返し回数 の160回以下であることを確認した。

7. まとめ

東海第二発電所における等価繰返し回数は一律に設定した値と個別に設定した値を用 いている。本資料において一律に設定した等価繰返し回数が,JEAG4601 に基づき妥 当な設定であり,保守的な設定となっていることを確認した。

なお、一律に設定する等価繰返し回数については、等価繰返し回数算定に影響する6つ のパラメータ(ピーク応力、固有周期、対象床面、地震波、減衰定数、設計疲労線図)を 踏まえても、パラメータ全体として保守的であること、また、それ以外の要因(時刻歴波 形を用いた場合の影響、水平2方向の影響及び材料物性の影響)に対しても検討を行い、 保守的な設定となっていることを確認した。

以上より,今回の東海第二発電所における一律に設定した保守的な値はJEAG4601 に基づき妥当な設定となっている。 ピーク応力法における各ピークのサイクル数の求め方

東海第二発電所におけるピーク応力法のサイクル数は、ピーク法にて求める。

ピーク法は ASTM E1049 にて疲労評価のサイクル数の求め方として規格化されている手法 であり妥当な手法である。なお、ASTM E1049 は疲労評価のサイクル数の求め方として、ピ ーク法以外の手法についても記載があるが、特定の手法を推奨しているものではない。

ピーク法における各ピーク点におけるサイクル数 n については,図1に示すとおり,応 力波形から平均値以上では極大値(正のピーク),平均値以下では極小値(負のピーク)を計 測する方法である。正のピークの最大値と負のピークの最小値により1つのサイクルの波形 とし,次の正と負のピークで1つのサイクルとしてカウントする方法である。この方法では 矢印に示すような微小振幅をカウントしないが,本評価では1質点系応答解析で算定した周 期毎の応答変位時刻歴に基づきカウントを行うため,対象となる波形は特定周期の正弦波時 刻歴となり,矢印に示すような微小振幅が生じることは考えにくい。

次頁以降に,本カウント方法に関する文献説明を示す。

図 4.34 ピーク法による波形計数例

「材料強度学」(社団法人 日本材料学会,平成18年3月15日第2版)より参照 図1サイクル数カウント方法

添付1 (1/2)

添付8 補足3

個別に設定する等価繰返し回数について

1. 適用

本資料は東海第二発電所の今回工認における,耐震計算書の疲労評価で一律に設定する 等価繰返し回数を適用せず,個別に設定する等価繰返し回数を適用する設備に対する,等価 繰返し回数の算定方法を定めたものである。

2. 対象設備

疲労評価が必要となる設備について,添付8本文 図1のフローにて個別に設定する等価 繰返し回数を算定・適用する設備の整理を行っている。フローにて抽出される以下の設備に 対して,個別に設定する等価繰返し回数を算定する。

- 原子炉建屋以外に設置される設備
- ② 発生するピーク応力が 150kg/mm² (1471MPa) を超える設備
- ③ 一律に定める等価繰返し回数を用いた疲労評価が満足しない設備
- ④ S_dに対する疲労評価が必要な設備(*1)
 - *1:S_dに対する疲労評価をS_sの疲労評価で代表させるために、S_dの等価繰返し回数がS_sの一律に設定する等価繰返し回数(160回)を下回ることを確認する。
- 3. 個別に設定する等価繰返し回数算定方針
- 1 前項①~③の等価繰返し回数算定方針
 個別に設定する等価繰返し回数の算定方針について,表1に示す。
- 3.2 ④の等価繰返し回数算定方針

S_dの等価繰返し回数を求める際は、図1のフローに従い算定する。S_d8波/S_s8波の 応答比の算出方法は3.3項に示す。 表1 昭和55年度 耐震設計の標準化に関する調査報告書、一律に設定する等価繰返し回数と個別に設定する等価繰返し回数での算定条件比較 (下線部が一律に設定する等価繰り返し回数との相違点)

		昭和 55 年度 而	討震設計の標準化	東海第二	二発電所		東海第二発電	電所	
		に関する調査報告書	書(標準化報告書)	一律に設定する等	価繰返し回数の設定		個別に設定する等価繰返し	し回数の算定方法	
		【手法1】	【手法2】			原子炉格: 原子炉压力容:	納容器, 器等大型機器	原子炉建屋に 機器・i	:設置された 配管系
対象	設備	原子炉圧力容器 スカート	第一種配管	原子炉格納容器, 原子炉圧力容器等 士刑機器	原子炉建屋に 設置された 機器・配筒系	建屋-機器連成解析でモデ ル化されていない剛な設備	建屋-機器連成解析でモデ ル化されている設備	剛な設備	柔な設備
				八生成奋	1成46 日日不	耐震評価条件: 震度	耐震評価条件: 荷重	耐震評価条件: 震度	耐震評価条件 床応答スペクトル
算出) (J ロー らか)	方法 E A G の フ の左右 ど ち	時刻歴解析より算定 される時刻歴モーメ ントを用いた算出方 法(JEAG における左 側のフロー)	建屋床応答を入力と した1質点系モデル による応答時刻歴を 用いた算出方法 (JEAGにおける右側 のフロー)	標準化報告書【手法 2】と同じ (JEAG にお ける右側のフロー)	同左	標準化報告書【手法 2】と同 じ (JEAG における右側のフ ロー)	標準化報告書【手法 1】と 同じ(JEAG における左側の フロー)	標準化報告書【手法 2】 と同じ (JEAG における 右側のフロー)	同左
回算にい応答	波形	時刻歴モーメント波 形	変位応答時刻歷波	標準化報告書【手法 2】と同じ	同左	標準化報告書【手法2】と同 じ。以下を用いる。 ・変位応答時刻歴波	標準化報告書【手法1】と 同じ。以下を用いる。 ・時刻歴せん断力波形、 ・時刻歴モーメント波形 ・時刻歴軸力波形	標準化報告書【手法 2】 と同じ。以下を用いる。 ・変位応答時刻歴波	同左
時刻歴波	時刻歴最 大値(設 備の最大 ピーク応 力)	5 種類のピーク応力 (最大 300kg/mm ²)	代表設備の最大ピー ク応力を安全側に設 定した 300kg/mm ²	150kg/mm ² (1471MPa) 「昭和 55 年度 耐震 設計の標準化に関す る調査報告書」の検 討にて十分とされて いる値	同左	150kg/mm ² (1471MPa) 「昭和 55 年度 耐震設計の 標準化に関する調査報告 書」の検討にて十分とされ ている値 ^(注1)	同左	150kg/mm ² (1471MPa) 「昭和 55 年度 耐震設 計の標準化に関する調 査報告書」の検討にて 十分とされている値 <u>(注</u> 1)	同左
対象	津屋・床	代表設備の設置床面	同左	標準化報告書【手法 1】及び【手法2】と同 じ	全ての床面	評価対象設備の 設置床面	同左	評価対象設備の 設置床面	同左
固有	周期	時刻歴解析結果より 直接算定	設備の固有周期でな く,全固有周期	標準化報告書【手法 2】と同じ	同左	設備の固有周期(時刻歴解 <u>析結果より応答増幅を考慮</u> しない条件(固有周期 0.05s))で算定。	標準化報告書【手法1】と 同じ。時刻歴解析結果より 直接算定。	<u>設備の固有周期(剛の</u> <u>ため0.05s)で算定。</u>	標準化報告書【手法 2】 と同じ。設備の固有周 期でなく,全固有周期 (注3)。
減衰	定数	報告書に言及なし	同左	1.0%, 0.5%	同左	<u>評価対象設備の減衰</u>	時刻歴解析結果より直接 算定するため、減衰の設定 は不要。(時刻歴解析モデ ルで設定されている)	<u>評価対象設備の減衰</u>	同左
設計	用疲労線図	代表設備材料の線図 を使用	同左	標準化報告書【手法 1】及び【手法2】と同 じ	同左	標準化報告書【手法 1】及び 【手法 2】と同じ <u>(注2)</u>	同左	標準化報告書【手法 1】 及び【手法 2】と同じ <u>(注</u> 2)	同左
地盤	条件	Vs= 500,1000.1500m/s	Vs=1500m/s	東海第二の地盤条件 Vs=約 700m/s	同左	東海第二の地盤条件 Vs=約 700m/s	同左	東海第二の地盤条件 Vs=約 700m/s	同左

<u>注1:</u>S_sに対してピーク応力を 150kg/mm²(1471MPa)と設定する。<u>S_dのピーク応力は図1に基づき設定する。</u>

設備のピーク応力が解析条件として設定したピーク応力値を超える場合は設備のピーク応力にて評価を行う。

<u>注2:等価繰返し回数低減のため、必要に応じて個別に設定する設備の使用材料の設計用疲労線図を用いる。</u>

注3:必要に応じて設備の1次固有周期より短周期側の等価繰返し回数の最大値を用いる。

図1 S_dの等価繰返し回数算定手順

3.3 S_s8波/S_d8波の応答比の算出方法

S_sでの一律に設定する等価繰返し回数の算定に適用しているピーク応力は 150kg/mm²(1471MPa)を適用している。S_dでのピーク応力はS_sとS_dの応答比で発生すると仮 定し, 150kg/mm²(1471MPa)に応答比を乗じることにより求める。

応答比は、各標高(建屋モデルの質点)におけるS_s8波とS_d8波それぞれの最大値の比から求める。

【手順1】各標高でのSs8波とSd8波の応答比を算定し、最大値を求める

標	5	S _s 応	答	5	Sa応行	答	比率	応答比
高	S _s -D1		S _s -31	S _d -D1		S _d -31	Max(S d 8 波)/Max(S 8 波)	最大値
А	CH _{Ss} -D1A		CH _{Ss-31A}	CH _{Sd} -D1A		$\mathrm{CH}_{\mathrm{Sd}\text{-}31\mathrm{A}}$	$Max(CH_{Sd\text{-}D1A} \sim CH_{Ss\text{-}31A})/Max(CH_{Ss\text{-}D1A} \sim CH_{Ss\text{-}31A})$	> R _A
В	CH _{Ss} -D _{1B}		CH _{Ss-31B}	CH _{Sd} -D _{1B}		CH _{Sd-31B}	$Max(CH_{Sd\text{-}D1A} \sim CH_{Ss\text{-}31A})/Max(CH_{Ss\text{-}D1A} \sim CH_{Ss\text{-}31A})$	R_B
С	CH _{Ss} -D _{1C}		CH _{Ss-31C}	CH _{Sd} -D _{1C}		CH _{Sd-31C}	$Max(CH_{Sd \cdot D1A} \sim CH_{Ss \cdot 31A})/Max(CH_{Ss \cdot D1A} \sim CH_{Ss \cdot 31A})$	Rc
D	CH _{Ss} -D _{1D}		CH _{Ss-31D}	CH _{Sd} -D _{1D}		CH _{Sd-31D}	$Max(CH_{Sd\text{-}D1A} \sim CH_{Ss\text{-}31A})/Max(CH_{Ss\text{-}D1A} \sim CH_{Ss\text{-}31A})$	$R_{\rm D}$
Е	CHSs-D1E		CH _{Ss-31E}	CH _{Sd} -D _{1E}		CHsd-31E	$Max(CH_{Sd\text{-}D1A} \sim CH_{Ss\text{-}31A})/Max(CH_{Ss\text{-}D1A} \sim CH_{Ss\text{-}31A})$	RE

【手順2】各標高の応答比最大値からS_dのピーク応力を設定する。

図2 加速度時刻歴波形の最大値の例 (原子炉建屋 EL.46.50m S_s-D1(UD)とS_d-D1(UD))

4. 個別に定める等価繰返し回数算定結果

3項の方針に基づき算定した等価繰返し回数を保守的に丸めて設定した等価繰返し回数 (以下「評価用等価繰返し回数」という。)を以下に示す。なお,表4-4~表4-25の質 点番号は添付8本文 図5,図6に対応する。

4.1 ①原子炉建屋以外に設置される設備

該当する設備無し。

4. 2 ②発生するピーク応力が 150kg/mm² (1471MPa) を超える設備

該当する設備は上部シアラグと格納容器との接合部があり、ピーク応力は 1918MPa となっている。

算定した等価繰返し回数と、その値を保守的に丸めて設定した設備の等価繰返し回数(評価用等価繰返し回数)を表4-1に示す。

表4-1 発生するピーク応力が150kg/mm²(1471MPa)を超える設備の等価繰返し回数

設備	評価	考慮する	算定結果	算定した等価	評価用等価	備考
		耐震条件		繰返し回数	繰返し回数	
上部シアラグ と格納容器と の接合部	S s	荷重	表4-4		40	当該部に発生する応力の内,ばね 反力による応力が支配的であるた め,ばね反力の時刻歴波にて算定 し,等価繰返し回数を設定。

4.3 ③一律に設定する等価繰返し回数を用いた疲労評価が満足しない設備

該当する設備は,主蒸気系配管(MS-A),原子炉冷却材浄化系配管がある。そのため,算定 した等価繰返し回数と,その値を保守的に丸めて設定した設備の等価繰返し回数(評価用等 価繰返し回数)を表4-2に示す。

表4-2 一律に設定する等価繰返し回数を用いた疲労評価が満足しない設備の等価繰返し回数

設備	評価	考慮する	算定結果	算	〔定した等(刵	評価用等価	備考
		耐震条件		Å	繰返し回数	ζ	繰返し回数	
主蒸気系配管 (MS-A)	S _s	FRS	表4-5				110	
原子炉冷却材 浄化系配管 (CU-PD-9)	S _s	FRS	表4-5				110	

4. 4 ④Saに対する疲労評価が必要な設備

算定した等価繰返し回数と、その値を保守的に丸めて設定した設備の等価繰返し回数(評価用等価繰返し回数)を表4-3に示す。

	表 4 - 3	Saに対する	疲労評価が必要	な設備の等	価繰返し回	∃数
--	---------	--------	---------	-------	-------	----

設備	評価	考慮する耐 震条件	算定結果	算 繰	〔定した等 返し回数	価 * 1	評価用等価 繰返し回数	備考
原子炉圧力容器 胴板 原子炉圧力容器 下部鏡 板 	S _d S _d	震度,荷重 震度,荷重 震度 荷重	表4-6				160	
制御棒駆動機構ハウジン グ貫通部	S _d	震度,荷重	表4-7				160	
再循環水出口ノズル (N1)	S _d	配管反力 (FRS)	表4-8				160	
再循環水入口ノズル (N 2)	S _d	配管反力 (FRS, 震度)	表4-9				160	
主蒸気ノズル(N3)	S _d	配管反力 (FRS)	表4-10				160	
給水ノズル(N 4)	S _d	配管反力 (FRS, 震度)	表4-11				160	
炉心スプレイノズル (N 5)	S _d	配管反力 (FRS, 震度)	表 4 - 1 2				160	
上鏡スプレイノズル (N 6)	S _d	配管反力 (FRS)	表4-13				160	
ベントノズル (N7)	S _d	配管反力 (FRS)	表4-14				160	
ジェットポンプ計測管貫 通部ノズル(N 8)	S _d	配管反力 (FRS)	表4-15				160	
差圧検出・ほう酸水注入 管ノズル(N10)	S _d	配管反力 (FRS, 震度)	表4-16				160	
計装ノズル (N11)	S _d	配管反力 (FRS)	表4-17				160	
計装ノズル(N16)	S _d	配管反力 (FRS)	表4-18				160	
計装ノズル(N12)	S _d	配管反力 (FRS)	表4-19				160	
ドレンノズル(N15)	S _d	配管反力 (FRS)	表4-20				160	
低圧注水ノズル (N 1 7)	S _d	配管反力 (FRS, 震度)	表 4 - 2 1				160	
上部シアラグと格納容器 との接合部	S _d	荷重	表 4 - 2 2				80	
原子炉格納容器 機器搬 入用ハッチ	S _d	F R S, 震度,荷重	表4-23				160	
制御棒駆動機構	S _d	震度,荷重	表4-24				160	
非常用ディーゼル発電機 燃料油デイタンク	S _d	震度	表4-25				160	
配管(疲労評価が必要な 個所)	S _d	FRS	表 4 - 2 6				160	CU-PD-9, MS-A は除く
配管(CU-PD-9)	S _d	FRS	表4-27				110	
配管(MS-A)	S _d	FRS	表4-28				110	

*1:()内は算定したSd1回分の回数。

表4-4 上部シアラグと格納容器との接合部(S_s) 等価繰返し回数算定結果(ばね反力)

	減衰	ſ	ピーク応フ	与*	1 質点系の							4	等価繰	反し回数	汝(ばれ	ュ反力)							
質点番号	(0/)		(MPa)		固有周期	設計用疲労線図	S _s –	D 1	S _s –	-11	S _s –	-12	S _s –	-13	S _s –	-14	S _s -	-21	S _s -	-22	S _s -	-31	最大回数
	(%)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	i	İ	i	i	i i						i			i	İ	i	İ	i	i	i	i	İ	
					ļ																		

*:耐震計算により求めたピーク応力。

表4-5 主蒸気系配管(S_s),原子炉冷却材浄化系配管(S_s) 等価繰返し回数算定結果(FRS)

Image Image <t< th=""><th>質点番号</th><th>油草</th><th>Ŀ</th><th>ピーク応</th><th>力</th><th>1 質点系の</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>等</th><th>面繰返</th><th>えし回</th><th>数(]</th><th>FRS</th><th>5)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>■₽</th></t<>	質点番号	油草	Ŀ	ピーク応	力	1 質点系の											等	面繰返	えし回	数(]	FRS	5)										■₽
CM NS EW UD NS EW UD <t< td=""><td>[]内は鉛</td><td>(0)</td><td></td><td>(MPa)</td><td></td><td>固有周期</td><td>設計用疲労線図</td><td>S</td><td>s — [</td><td>) 1</td><td>S</td><td>_s — 1</td><td>1</td><td>S</td><td>_s - 1</td><td>2</td><td>S</td><td>_s - 1</td><td>3</td><td>S</td><td>_s – 1</td><td>4</td><td>S</td><td>$_{\rm s} - 2$</td><td>1</td><td>S</td><td>_s - 2</td><td>2 2</td><td>S</td><td>_s – 3</td><td>1</td><td>取八回粉</td></t<>	[]内は鉛	(0)		(MPa)		固有周期	設計用疲労線図	S	s — [) 1	S	_s — 1	1	S	_s - 1	2	S	_s - 1	3	S	_s – 1	4	S	$_{\rm s} - 2$	1	S	_s - 2	2 2	S	_s – 3	1	取八回粉
	直質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹剱
					I			I	I	I	I		1				I									I			I			
		1 1	11		1	1		I	1	1	1	1	1	L			I	1				1 1		I	1	1	1	1	1	I	LI	

表4-6(1) 胴板(S_d),下部鏡板(S_d),原子炉圧力容器スカート(S_d) 等価繰返し回数算定結果(震度)

質点番号	<u></u>	Ŀ	ニーク応	5力*	1 質点系の					等価繰返し	回数(震度)		-		н.
[]内は鉛直	减衰 (%)		(MPa))	固有周期	設計用疲労線図	$S_d - D_1$	$S_d - 1 1$	$S_d - 1 2$	$S_{d} = 1 3$	$S_d - 1 4$	$S_d - 2 1$	$S_{d} = 22$	S _d -31	最大 回数
質点番号	(/0/	NS	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	
	1	· ·	ľ		1 1		1	1	1	1	1	1	1		
-															_
_															_
-															-
_															_
-															_
_															_
-															-
	1						I	1	1	I	I	1	I	I	

	法主	۲°	ーク応	力*	1 質点系の								等価繰	返し回募	数 (せ)	ん断力)							
質点番号	(吸衣		(MPa)		固有周期	設計用疲労線図	S _d -	-D1	S _d -	-11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	-21	S _d -	-22	S _d -	-31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
							•	÷				•	•				•						
																							-
 -																							-
																							-
																							-
	上かしふう	• 	ا 4_1_0_2	╕╓╧╸╧╸	1		1	1				1	1			1	1	1	1	I			

表4-6(2) 胴板(S_d),下部鏡板(S_d),原子炉圧力容器スカート(S_d) 等価繰返し回数算定結果(せん断力)

*: SsとSdの応答比から求めたピーク応力。

表4-6(3) 胴板(S_d),下部鏡板(S_d),原子炉圧力容器スカート(S_d) 等価繰返し回数算定結果(モーメント)

	活言	۲	ーク応	力*	1 質点系の							<u> A</u>	等価繰り	豆し回数	な (モー	・メント)	
質点番号	(1)()()()()()()()()()()()()()()()()()()		(MPa)		固有周期	設計用疲労線図	S _d -	-D1	S _d -	-11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	-21
	(%)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	I		I	I	1		1		I		I	I	1	1		I	I	Γ
1																		

S _d -	-22	S _d -	-31	最大回数
NS	EW	NS	EW	
				_
				_
	1	l		

質点番号	法古	۲°	ーク応知	力*	1 質点系の					等価繰返し	」回数(軸力)				目、土
[]内は鉛直	/ (%)		(MPa)		固有周期	設計用疲労線図	$S_d - D_1$	$S_{d} - 1 1$	$S_d - 1 2$	$S_{d} - 1 3$	$S_{d} - 1 4$	$S_{d} - 21$	$S_{d} - 22$	$S_{d} - 31$	取八
質点番号	(/0)	NS	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	凹奴
	1	I	I	1 1	I			I		Ι	1	1			
_															_
-															_
_															_
															_
_															_
_															_
_															_
															_
-															_
		a 15.57 7	<u> </u>					<u> </u>		<u> </u>					<u> </u>

表4-6(4) 胴板(S_d),下部鏡板(S_d),原子炉圧力容器スカート(S_d) 等価繰返し回数算定結果(軸力)

*:SsとSdの応答比から求めたピーク応力。

表4-7(1) 制御棒駆動機構ハウジング貫通部(S_d) 等価繰返し回数算定結果(震度)

质占来旦		F	一力亡	+*	1 厨占玄の					笙 価編版]	同粉 (雪┏)				
貝瓜笛方	減衰	L	ッ い い	//	1頁尽示の					守岡保区し					-
[]内は鉛直	(%)		(MPa)		固有周期	設計用疲労線図	$S_d - D_1$	$S_{d} - 1 1$	$S_{d} - 1 2$	$S_{d} - 1 3$	$S_{d} - 1 4$	$S_{d} - 21$	$S_{d} - 22$	$S_{d} - 31$	最大回数
質点番号	(/0)	NS	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	
		l	I		1		I	I	I	1	I	I	I	I	I
-															_
L															_
															_
															_
F															-
		1	1		1	l	1	1		1	1			1	

減衰	Ę	ニーク応	.力*	1 質点系の							:	等価繰済	返し回数	友(せん	レ断力)								
質点番号	(观衣		(MPa)		固有周期	設計用疲労線図	S _d -	-D1	S _d -	-11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	-21	S _d -	-22	S _d -	-31	取八
	(70)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	凹剱
		ļ.	1	1	(1	Т	()	Г Т		Γ	T	Ţ			ſ	T					T	
Ì																							ţ
																							ļ
																							ļ
																							J
																							ļ
																							1
																							ł
																							ļ
																							ļ
																							1

表4-7(2) 制御棒駆動機構ハウジング貫通部(S_d) 等価繰返し回数算定結果(せん断力)

	演型	۲	ーク応	力*	1 質点系の							쑠	至価繰返	こし回数	(モー	メント)							
質点番号	(%)		(MPa)	-	固有周期	設計用疲労線図	S _d -	-D 1	S _d -	-11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	21	S _d -	-22	S _d -	-31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	1		Ι	Ι	l l		Ι				Ι	Ι	Ι	Ι	Ι								
_																							+
_																							_
_																							-
_																							
																							_
_																							
			1	1			ī				1	1		1	I								
*・ ちょとちょのば	気気にない	う求めた	トレーノ	り広力。			1				1	1	1	1	1					1			

表4-7(3) 制御棒駆動機構ハウジング貫通部(S_d) 等価繰返し回数算定結果(モーメント)

表4-7(4) 制御棒駆動機構ハウジング貫通部(S_d) 等価繰返し回数算定結果(軸力)

質点番号	消草	Ę	ーク応ス	力*	1 質点系の					等価繰返	し回数(軸力)				
[]内は鉛直	/ () ()		(MPa)		固有周期	設計用疲労線図	$S_{d} - D_{1}$	$S_{d} - 1 1$	$S_d - 1 2$	$S_{d} - 1 3$	$S_{d} - 1 4$	$S_d - 21$	$S_{d} - 22$	$S_{d} - 31$	最大回数
質点番号	(/0)	NS	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	
	i	i	İ		i	1	İ	Ì		i					
															Ī
	I	1	1	1	1	1	1	1	I	1	I	I	I	1	
* . 5 . 25.05	と父をか	に求め	たピーム	7 15 力		•		•							

*: $S_s \ge S_d O 応答比から求めたピーク応力。$
表4-8 再循環水出口ノズル(N1)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	洋市	Ę	ーク応力	<u>ታ</u> *	1 質点系の											等任	 面繰返	記回	数(]	FRS)										■十
[]内は鉛直	(M)及		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}-\Gamma$) 1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S	$_{\rm d} - 1$	4	S ,	$_{\rm d} - 2$	1	S	$_{\rm d} - 2$	2	S _d	- 3	1	取八回粉
質点番号	(/0)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	回奴
l i		i	İ	İ	i i		i	i	l				I	ļ		l		I	İ	İ	İ	i		İ	l	l		İ	i	İ	

*: S_sとS_dの応答比から求めたピーク応力。

表4-9 再循環水入口ノズル(N2)(S_d) 等価繰返し回数算定結果(FRS, 震度)

質点番号	演革	Ŀ	ピーク応え	力*	1 質点系の							<u>k</u>	筝 価繰	返し回	回数((FRS	,震度	E)								上 十
[]内は鉛直	()()		(MPa)		固有周期	設計用疲労線図	$S_d - D$)1	S _d -	-11	S _d	1 - 1 2	S .	-1	3	S _d -	-14	S	$_{\rm d} - 2$	1	S _d	-22	2	S_d	-31	取八回粉
質点番号	(/0)	NS	EW	UD	(s)		NS EW	UD	NS E	W UD	NS	EW UD	NS	EW	UD	NS I	EW UD	NS	EW	UD	NS	EW	UD	NS	EW UD	回奴
	1	1		1						Ľ		ļ					<u>I</u>				·				l	
																										_
																										_
																										_
_																										-
																										_
	ł		ł				+		 									+				_				

*:SsとSdの応答比から求めたピーク応力。

表4-10 主蒸気ノズル(N3)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	洋草	ł	ピーク応	力*	1 質点系の											等值	田繰返	えし回	数(I	FRS)										昌十
[]内は鉛直	(0/)		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}-{\rm D}$	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	$_{1} - 1$	3	S .	1 - 1	4	S .	1 - 2	1	S_{d}	-2	2	S .	d — 3	1	取八回粉
質点番号	(%)	NS	EW	UD	(_S)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹剱
			1											1 1			I			I	I	I	1	I	I	I	I	l	1	I	
	1	1 1	1		1			I	I	I	I	1 1	I	1 1					. I			1	1	I		1	1	1	1	I	

表4-11 給水ノズル(N4)(S_d) 等価繰返し回数算定結果(FRS, 震度)

質点番号	減責	Ŀ	ニーク応ス	<u>ታ</u> *	1 質点系の					•				等価額	繰返	し回数	(FF	RS,	震度)									<u></u>
[]内は鉛直	(%)		(MPa)		固有周期	設計用疲労線図	S	_d — I	D 1	$S_{d}-$	1 1	S	$_{\rm d} - 1$	2 5	S _d –	-13	S	$_{\rm d} - 1$	4	S_d	-21	S	$_{\rm d}-2$	2	S _d	-31		、 绗
質点番号	(/0)	NS	EW	UD	(s)		NS	EW	UD	NS EW	UD	NS	EW	UD NS	S E	EW UD	NS	EW	UD	NS	EW U	D NS	EW	UD	NS	EW UI) 回安	X
	1	İ	I		1		l		1	1 1	1	l	i i	i	l	i i	l	l	1	İ	I	Ì	1 1	İ			I	
-																												
	1	I	l		1		1	I	1	1 1	1	1	1 1	ĺ	1		1	1	1	I	I	I	1 1	I	1		ĺ	
·									1									1					1 1					_

*: SsとSdの応答比から求めたピーク応力。

表4-12 炉心スプレイノズル(N5)(Sd) 等価繰返し回数算定結果(FRS, 震度)

減衰	ł	ピーク応 (MD-)	力	1 質点系の	記計田広兴始回			S	1 1	C 1	等	· 価繰返	えし回数	数(1	FRS,	震度)	C	0	1 0			6	0.1	最大
(%)	NS	(MPa)	UD	回有向 则 (s)	設計用疲労祿凶	NS FW		Sd- NS FW		S _d -1 NS FW		NS I	-13 FW 11	ID	$S_d - 1$ NS FW	. 4 ID	NS d	1 — 2 FW	I S	FW		NS F		回数
	110	L"	00	(5)		110 11	00	110 L#	00	115 L"	СD	110			110 E#	СD	110			1."	CD			
																								_
1	1	1		1 1		1 1	1		1	1 1		ı	1	I			1	1	I	1		1	1	
	減衰 (%)	減衰 (%) NS	減衰 ピーク応 (MPa) (%) NS	減衰 ピーク応力 (MPa) (%) NS EW UD	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 (s) NS EW UD (s)	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 (%) NS EW UD (s) NS EW	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - D 1 NS EW UD (s) NS EW UD	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - D 1 S d - NS EW UD (s) NS EW UD NS EW	減衰 ビーク応力 1 質点系の 設計用疲労線図 S d - 1 1 (%) NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図 S d - 1 1 S d - 1 1 S d - 1 1 NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD	減廃 (%) ビーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図 S d - 1 1 S d - 1 2 NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS	減廃 (%) ビーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図 S d - 1 1 S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1 2 S d - 1	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD	減衰 (%) ピーク応力 (MPa) 1 質点系の 固有周期 (s) 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD	減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 (%) NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS	減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 4 NS EW UD (s) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW <td>減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 <</td> <td>減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 4 S d - 2 (%) NS EW UD (S) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW</td> <td>if if if if if if if if if if if if if i</td> <td>j $U^{-} - fch^{-}$ 1 ff fictor Bafala Battala Battala S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S</td> <td>jjgg U = 0 / b K / (MPa) 1 g f f f f f f f f f f f f f f f f f f</td> <td>iggg (%)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggaso$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)$iggasoo$ (MPa)<math>iggasooo(MPa)<math>iggasooo(MPa)<math>iggasooo<br< math=""></br<></math></math></math></td> <td>ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife</td>	減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 S d - 1 4 <	減衰 (%) ビーク応力 (MPa) 1 質点系の 固有周期 設計用疲労線図 S d - 1 1 S d - 1 2 S d - 1 3 S d - 1 4 S d - 2 (%) NS EW UD (S) NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW UD NS EW	if if if if if if if if if if if if if i	j $U^{-} - fch^{-}$ 1 ff fictor Bafala Battala Battala S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 1 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S a - 2 I S	jjgg U = 0 / b K / (MPa) 1 g f f f f f f f f f f f f f f f f f f	iggg (%) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggaso$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasoo$ (MPa) $iggasooo(MPa)iggasooo(MPa)iggasooo$	ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife ife

*1:SsとSdの応答比から求めたピーク応力。

*2:耐震計算から求めたピーク応力。

*3:ノズル反力を算定する配管の1次固有周期は高圧炉心スプレイ配管:0.108s,低圧炉心スプレイ配管:0.112sであり,配管の1次固有周期より短周期側での最大値。

表4-13 上鏡スプレイノズル(N6)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	注中	۲	ーク応力	J*	1 質点系の										等価緕	返し回	回数(FRS	5)										昌 十
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S _d -	D 1	S	_d - 1	1	S	$_{\rm d} - 1$	2	S _d -	13	S	$_{\rm d} - 1$	4	S .	$_{\rm d} - 2$	1	S .	$_{\rm d} - 2$	2	S	_d — 3	1	取 入 回粉
質点番号	(%)	NS	EW	UD	(_S)		NS E	W UI) NS	EW	UD	NS	EW	UD	NS EV	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹剱
			I	I				I	I	1	I	1		I	1	1	1	1 1	I			I			I			1	
		1	1	1	1 1		1 1	1	1	1	1	1			1	1	1					1			I			1	

表4-14 ベントノズル(N7)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	演革	I	ピーク応	力*	1 質点系の											等值	田繰返	夏し回	数(F	RS)										卓 十
[]内は鉛直	(吸衣		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – Γ	01	S	_d – 1	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S _d	-14	Ł	S _d –	21		S _d — 2	22	S	$_{\rm d} - 3$	1	取八回粉
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD N	S E	W UD	NS	EW	UD	NS	EW	UD	凹剱
	1	1			1		ļ				1	1		1				1			I		I		1	1			I	
	1	I						1	1	1	I	I		1	I	1		I					1	I	I	1		1 1		

*:SsとSdの応答比から求めたピーク応力。

表4-15 ジェットポンプ計測管貫通部ノズル(N8)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	演員	ŀ	ピーク応	力*	1 質点系の											等任	田繰返	えし回	数(]	FRS	5)										■十
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}-{\rm D}$	1	S	_d — 1	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S ,	$_{\rm d} - 1$	4	S	_d — 2	1	S	_d - 2	2	S	_d — 3	1	取八回粉
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹剱
												ĺ									1			1	1	1	1	1			
	1		1		I		I	1	I	L	I		l	1 1		I		I	1 1		1 1		L	1	1	1	1	1	L 1	l	1

*:SsとSdの応答比から求めたピーク応力。

表4-16 差圧検出・ほう酸水注入管ノズル(N10)(S_d) 等価繰返し回数算定結果(震度,FRS)

質点番号 []内は鉛直	減衰	Ŀ	ピーク応 (MPa)	力*	1 質点系の 固有周期	設計用疲労線図	S _d -	D 1	S _d - 1	. 1	S _d -	4 1 2	等価繰 S	返し回数 d ー 1 3	(震度 S	達, FRS _d -14	S)	_d - 2	2 1	S d	1 - 2	2	S _d -3	3 1	最大
質点番号	(%)	NS	EW	UD	(s)		NS E	W UD	NS EW	UD	NS EV	V UD	NS	EW UD	NS	EW UI) NS	EW	UD	NS	EW	UD	NS EW	UD	回致
	Ι	I					1 [I	1 1	I	1	Į	I		I		I	I	1 1	ΙΙΙ	Ι		Ι	ΤΤ	
_																									_
_																									
	1	1	1	1			1 1		1 1	1	1				1	1 1		1		L I	1		1		
*: 耐震計算に	より求る	りたピ	ーク応力	を保守	的に設定した	值。																			

表4-17 計装ノズル(N11)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	法主	۲°	ーク応力	J ^{*1}	1 質点系の									4	等価繰	返し	回数	(F	R S))											
[]内は鉛直	(0)		(MPa)		固有周期	設計用疲労線図	S	$S_d - D$	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S _d	- 1	3	S _d	$_{1} - 1$	4	S	_d — 2	21	S	_d — 2	2 2	S	_d — 3	1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1 1		I	I	I	1	1	I	I	I	I	I	1	I	1 1	I	I		1				I	1	I	I	1	I	I		
	1 1		1	1	1	1	1	1	1	1	1	I	1	I	1 1	1	1		1				I	1	1	1	1	1	I		

*1:SsとSaの応答比から求めたピーク応力。

*2:ノズル反力を算定する配管の1次固有周期はMS-91-1:0.020s, MS-80-1:0.018sのため, 0.05sにおける等価繰返し回数。

表4-18 計装ノズル(N16)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	演員	۲°	ーク応ナ	5*1	1 質点系の									等価	繰返	し回数	(F	RS)										
[]内は鉛直	/ (0/)		(MPa)		固有周期	設計用疲労線図	;	$S_d - D_1$	L	S	d - 1	1	S d	-12	Š	$S_{d} - 1$	3	S .	$_{d} - 1 4$	Š	$S_{d} - 2$	21	S	$_{\rm d} - 2$	2	S _d	-31	톼	是大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW UD	NS	S EW	UD	NS	EW U	D NS	S EW	UD	NS	EW	UD	NS	EW U	D	
			l							I					1		İ	l											
	1		1	1	1			1		1	[1	I	1			I				1	1		I	1			
*1 . 5 . 6 . 0	D広な比	からず	めたピー	-カ広力																									

*1: $S_s \ge S_d$ の応答比から求めたピーク応力。

*2:ノズル反力を算定する配管の1次固有周期はMS-89-1:0.049s, MS-81-1:0.052s, MS-82-1:0.049s, MS-90-1:0.054sのため、0.054sより短周期側での最大値。

表4-19 計装ノズル(N12)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	注言	1	ピーク応	力*	1 質点系の											等值	西繰返	こし回	数(F	FRS)										見上
[]内は鉛直	/ (1/)		(MPa)		固有周期	設計用疲労線図	S	_d — Г) 1	S	_d — 1	1	S ,	₁ – 1	2	S	$_{\rm d} - 1$	3	S _d	-1	4	S	$_{\rm d} - 2$	1	S a	₁ -2	2	S	_d — 3	1	取入
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹剱
									1				1		1						ļ	1	ľ		,	1	,				
	1	1					1	1	1		I	1 1								I	1		l	I		I	1		II		
*・ 耐雪計質か	にまめす	t= μ°	カウカ																												

		-	(('- u /	1 Hall (1914) C 0																										
質点番号	注古	1	ピーク応	5力*	1 質点系の											等任	面繰返	記回	数(]	FRS)										■十
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S a	_d — D) 1	S	_d — 1	. 1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S	$_{\rm d} - 1$	4	S .	$_{\rm d} - 2$	1	S d	±-2	2	S	_d — 3	1	取八回粉
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	凹釵
		I	I	I	I				I	1		1				I	1				I	I		I		I			1	I	
		I	l	1	ļ				I	1		1	I			I										1					
*: S _S とS _d の	応答比	から求	めたピー	ーク応力	0																										

質点番号	241-15	ł	ピーク応知	力	1 質点系の									쑠	爭価繰	返し	回数	(FR	S,詹	震度)									見上
[]内は鉛直	/ ((MPa)		固有周期	設計用疲労線図	S	_d — [D 1	S _d	-11	S	$S_{d} - 1$	2	S	_d - 1	3	S .	$_{\rm d} - 1$	4	S d	$_{\rm d} - 2$	1	S _d -	2 2	S	S _d — :	31	取入
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW UI) NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS E	W U	D NS	EW	UD	凹剱
	Ì	l	i i		i .		İ	Ì	i i	Ì	İ	i	Î	Ì	l	Ì		Ì	Ì	Ì	Ì		l	İ	Ì	İ	Ì	Ť	i i
T																													
T																													
	1	1	1 1		1		1	1	1 1	I	I	1	I	1	I	I		1		1	1		I	1 1	1	i.	I	1	1 1

表4-21 低圧注水ノズル(N17)(S_d) 等価繰返し回数算定結果(FRS, 震度)

*1:SsとSdの応答比から求めたピーク応力。

*2:耐震計算から求めたピーク応力。

表4-22 上部シアラグと格納容器との接合部(S_d) 等価繰返し回数算定結果(ばね反力)

	法古	۱	ピーク応知	力*	1 質点系の							2	等価繰	返し回数	汝(ばオ	ュ反力)							
質点番号	/ (M 农		(MPa)		固有周期	設計用疲労線図	S _d -	-D1	S _d -	-11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	-21	S _d -	-22	S _d -	31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	Τ	I	1		I			I	I	l	I	I	I	I				I		1			
	1	1	1		1		1	I	I	I	1	1	1	1	I	1 1		1	I	1	1		
*: 耐震計算によ	り求めた	ミピーク	応力。																				

表4-23(1) 原子炉格納容器 機器搬入用ハッチ(Sd) 等価繰返し回数算定結果(せん断力)

	がす	۲°	ーク応ナ	J*	1 質点系の							等	至価繰り	反し回教	数(せ	ん断力)						
質点番号	/ (%)		(MPa)		固有周期	設計用疲労線図	S _d -	D 1	S _d -	11	S _d -	-12	S _d -	-13	S _d -	-14	S _d -	2 1	S _d -	-22	S _d -	-31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	1 1		Ι		1 1		I	1			1	I		I	1	1	T	l	I	I	Τ	Τ	
-																							_
_																							_
															•								

	法言	ŀ	ピーク応ス	力*	1 質点系の							等	価繰返	し回数	(モー	メント)						
質点番号	/ / / / / / / / / / / / / / / / / / /		(MPa)		固有周期	設計用疲労線図	S _d -	D 1	S _d -	11	S _d -	-12	S _d -	13	S _d -	-14	S _d -	-21	S _d -	-22	S _d -	-31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
					1											I		I	I	I		1	
_																							_
_																							_
_																							_
				1	1 1		1									1		1		1		I	I

表4-23(2) 原子炉格納容器 機器搬入用ハッチ(Sd) 等価繰返し回数算定結果(モーメント)

*:SsとSdの応答比から求めたピーク応力。

表4-23(3) 原子炉格納容器 機器搬入用ハッチ(Sd) 等価繰返し回数算定結果(軸力)

質点番号	注中	Ę	ーク応ス	力*	1 質点系の					等価繰返し[回数(軸力)				
[]内は鉛直	(观衣		(MPa)		固有周期	設計用疲労線図	$S_d - D_1$	$S_{d} - 1 1$	$S_{d} - 1 2$	$S_{d} - 1 3$	$S_{d} - 1 4$	$S_{d} - 21$	$S_d - 2 2$	$S_{d} - 31$	最大回数
質点番号	(/0)	NS	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	
				I				Ι			Ι				
-															-
_															-

*: S_sとS_dの応答比から求めたピーク応力。

表4-23(4) 原子炉格納容器 機器搬入用ハッチ(Sd) 等価繰返し回数算定結果(震度, FRS)

 質点番号 []内は鉛直 	減衰 (%)	NC	ピーク応 (MPa)	力	1 質点系の 固有周期	設計用疲労線図	S	d — I	D 1	S	_d — 1	1	S	1 — 1	等佃 2	G繰返し S d ー 1	回数 3	(震度, S _d	F R - 1 4	S)	$S_d - 2_1$	S _d -	-22	S	S _d — 3	1	最大 回数
	1	10						L"						2."			00						2" 01			00	
	1		I	l	1			1			I	1 1				l									1		

*1:SsとSdの応答比から求めたピーク応力。

*2:耐震計算から求めたピーク応力。

質点番号		۲°–	・ク応ナ	<u>ታ</u> *	1 質点系の					等価繰返し	」回数(震度)				
[]内は鉛直	/ (0 <u>/</u>)	(MPa)		固有周期	設計用疲労線図	$S_d - D_1$	$S_{d} - 1 1$	$S_{d} - 1 2$	S _d -13	$S_{d} - 14$	$S_{d} - 21$	$S_{d} - 22$	S _d -31	最大回数
質点番号	(%)	NS I	EW	UD	(s)		UD	UD	UD	UD	UD	UD	UD	UD	
	I	I	I		I		Ι		Ι	Ι	Ι	Ι	Ι	I	I
															_
-															-
-															_
															_
															_
															_
-															-
															_
_															_
															_
-															_
-															-
															_
_															_
															_
-															-
															_
F															-
															_
	I	l	I		I		1		1	1	1	I	1	1	I

表4-24(1) 制御棒駆動機構(S_d) 等価繰返し回数算定結果(震度)

*: S_sとS_dの応答比から求めたピーク応力。

	法主	Ŀ	ピーク応プ	J*	1 質点系の							等	『価繰返し	」回数	(モーメント)						
質点番号	(%)		(MPa)		固有周期	設計用疲労線図	S _d -	-D 1	S _d -	-11	S _d -	12	$S_{d} - 1$	13	$S_{d} - 1 4$	S _d -	-21	S _d –	22	S _d -	31	最大回数
	(/0)	NS	EW	UD	(s)		NS	EW	NS	EW	NS	EW	NS	EW	NS EW	NS	EW	NS	EW	NS	EW	
			I		Ι		l								I	l	l		l			
_																						_
-																						
-																						_
-																						_
-																						
-																						
-																						
		L	I		I I		1		I							1	1	I				
*: S s と S d の尻	芯答比かり	ら求めた	ピークル	芯力。																		

表4-24(2) 制御棒駆動機構(S_d) 等価繰返し回数算定結果(モーメント)

表4-25 非常用ディーゼル発電機燃料油デイタンク(Sa) 等価繰返し回数算定結果(震度)

質点番号	油土	Ľ	ーク応	力*	1 質点系の										等価約	操返し	回数	(震度))											
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	_d - 1	1	S .	$_{1}-1$	2	S _d -	-13	S	d —	14	S	_d — 2	2 1	S	$_{\rm d} - 2$	2	S a	-3	1 1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS H	EW U	D NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	I I 				l					-	_		-					1												
	1 1		1	1	1	I	I	1	I	I	L	1			1 1	I	1	I	1	1	1	I	I	1	I	1 1				

*:耐震計算により求めたピーク応力。

表 4 - 2 6 (1)	配管(MS-B, MS-C, MS-	D)(S _d) 等価繰返	し回数算定結果(FRS)	

質点番号	注止	۲	ーク応	力*	1 質点系の											等	価繰i	反し回	数(]	FRS	5)										
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}-{\rm D}$	1	S	$_{\rm d} - 1$	1	S d	$_{1} - 1$	2	S	_d — 1	3	S	$_{\rm d} - 1$	4	S	_d - 2	2 1	S	_d - 2	2 2	S	_d — 3	8 1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1 1		1	I				1	I	I	I	I	1 1		I	I	I	I	1		I	I	1	1	I	1	Ī	1	I	I	1
		L	1	1	1		L	1	1	1	1	I			1	ı	1	1	1		I	1	1	1	1	1	i	I	1	1	I

*:SsとSdの応答比から求めたピーク応力。

表4-26(2) 配管(CU-R-7)(S_d) 等価繰返し回数算定結果(FRS)

		• •	, (u/ •		, <u>, , , , , , , , , , , , , , , , , , </u>																			
質点番号	注中	Ľ	ーク応	力*	1 質点系の											等	価繰り	豆し回	数(]	FRS	5)				
[]内は鉛直	(1)()()()()()()()()()()()()()()()()()()		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S	$_{\rm d} - 1$	4	S	$_{\rm d} - 2$	1	S
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS
					•																				

表4-26(3) 配管(FDW-1,2,3,4,9, FDW-5,6,7,8,11)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	油吉	Ł	ーク応知	力*	1 質点系の											等	価繰近	로し回	数(I	R S)									
[]内は鉛直	/ (1)		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S a	1 - 1	4	S a	-2	1	S	$_{\rm d} - 2$	2	S	$_{\rm d} - 3 1$	最大回数
質点番号	(%)	NS	EW	UD	(_S)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW UD	
	I		I	I	1		I	1	I	I	1				I	I	1	I		I	I	I			I	I				
	1		I		ļ			1							1		1								I					
*:S _s とS _d の応	、答比か	ら求め	たピーク	,応力。								·								· · ·									I	·

表4-26(4) 配管(HPCS-1)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	派士	Ľ	ーク応	力*	1 質点系の										等	価繰	反し回	数(I	FRS)										
[]内は鉛直	- (0/)		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S a	i — 1	1	S	$_{\rm H} - 1 2$	S	S _d − 1	. 3	S	d — 1	4	S	_d — 2	2 1	S .	₁ — 2	2	S	_d — 3	1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	I			T	1		I				ī			ľ	I	1	1		ſ			1				T	1	, ,		
	I	I	1	1			I			1 1	I			I	I	I	I		I			1	I	1 1		I	I		I	
*: S _S とS _d の応	「答比か	ら求め	たピーク	7応力。																										

最大回数	1	_d — 3	S	2	$_{\rm d} - 2$	S
	UD	EW	NS	UD	EW	5
		I	I	I	I	

質点番号	演算	Ł	ーク応知	力*	1 質点系の											等	価繰り	豆し回	数(]	FRS)										
[]内は鉛直	(1)()()()()()()()()()()()()()()()()()()		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	_d – 1	3	S	$_{\rm d} - 1$	4	S	$_{\rm d} - 2$	1	S	_d - 2	2 2	S	_d — 3	1	最大回数
質点番号	(/0)	NS	EW	UD	(_S)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1		I	I	l		I			I	I		I				I	I	I			I		I	I	I	I	I	ſ		
	1		<u> </u>	1	Į			1		1	I		1				1	1	I	I			I	I	I	1	1	I	<u>.</u>		
* • 5 - 25 .05	大気比か	にまめ	たドーク	広力										<u> </u>																	

表4-26(5) 配管(HPCS-4,5, LPCS-2,3, RHR-70)(S_d) 等価繰返し回数算定結果(FRS)

*: SsとSdの応答比から求めたピーク応力。

表4-26(6) 配管(LPCS-1, RHR-PD-29, RHR-PD-35, RHR-PD-36)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	洋井	Ľ	ーク応	力*	1 質点系の										等位	面繰返	えし回	数(1	FRS	5)										
[]内は鉛直	(1)()()		(MPa)		設計用疲労線図	S	_d -D1	S	_d —	11	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S	$_{d} - 1$	4	S	_d - 2	1	S	_d - 2	2 2	S	_d -31		最大回数	
質点番号	(70)	NS	EW	UD	(_S)		NS	EW U) NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	JD	
	I	1	I	I			I	1 1	I	1	1	1							I		I	ļ	I	I	I	I	I	1 1	1	
	1	1	1	1	1 1		i.	1 1		1	1			l						l	i	i	1	1	ı	1	1	1 1		

表4-26(7) 配管(PLR-PD-1, PLR-PD-2)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	注章	ヒ	ーク応知	力*	1 質点系の											等	価繰返	īし回	数(]	FRS	5)										
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$	1	S	_d — 1	2	S	$S_{d} - 1$	3	S	_d - 1	4	S	-2	1	S	$_{\rm d} - 2$	2	S	_d — 3	1	最大回数
質点番号	(/0)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
			I	I			1	1	I	I		I			I	1	1							I	I	I		I			
	1 1		I	1	1		1	1	1	1		1		1	1	1	1	1	I	1	11			1	1	1				I	
*: S s と S d の応	「答比から	ら求め	モピーク	'応力。																											

表4-26(8) 配管(RCIC-19,20,29)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	定中	Ľ	ーク応	力*	1 質点系の										等	「価繰	返し回]数(]	FRS)										
[]内は鉛直	/ (0/)		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$	1	S	$_{\rm d} - 1 \ 2$	S	З _d —	13	S	_d – 1	4	S	$_{\rm d} - 2$	2 1	S d	-2	2	S	_d - 3	1	最大回数
質点番号	(%)	NS	EW	UD	(_S)		NS	EW	UD	NS	EW	UD	NS	EW UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1	1	1		1 1				1					1	1		1	1					1							
	i	I	i	1	1 1		1	1 1	1		L 1		1		1	1	1	1				L	1	1 1		I	1	I I	1	
*: S _s とS _d の応	「答比か	ら求め	たピーク	7応力。																										

表 4 - 2 6 (9) 配管 (RCIC-24-1) (S_d) 等価繰返し回数算定結果 (FRS)

質点番号	法古	Ŀ	ーク応	力*	1 質点系の										等	価繰り	豆し回	数(F	RS)										
[]内は鉛直	/ ()		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$ 1	L	S _d -	1 2	S	_d - 1	3	S_{d}	-1	4	S	_d - 2	21	S.	$S_d - S_d$	22	S	_d - 3	1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
		<u>.</u>							•	*						*			*				*	•		*	*			
	1	1	1	1	1		1	I	1	1	1 1		1 1	1	1	1	1 1				1	1						1		
*: 耐震計算によ	い求め	たピーク	ク応力を	保守的に	こ設定した値。																									

表4-26(10) 配管(RCIC-24-2)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	注山	Ŀ	ーク応	力*	1 質点系の											等位	西繰边	えし回	数(I	FRS)										
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S .	$_{\rm d} - 1$	1	S	$_{\rm d} - 1$	2	S	$_{\rm d} - 1$	3	S ,	₁ – 1	4	S	_d - 2	1	S	_d - 2	2 2	S	_d -31		最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	I		l	I				1 1	I	1	I		1 1	I				I	1 1	I						l		I		1	
	1	I	1	1	1		1		1	1								ı		I		ı	ı	1	1	1	1	1		1	

*:SsとSdの応答比から求めたピーク応力。

表4-26(11) 配管(RHR-34, 37, 38, 39, 50)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	油草	Ľ	ーク応ス	力*	1 質点系の											等任	価繰返	えし回義	数(I	FRS)										
[]内は鉛直	(1)()()()()()()()()()()()()()()()()()()		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S	$_{\rm d} - 1$ 1	1	S_d	-1	2	S	$_{\rm d} - 1$	3	S .	$_{1}-1$	4	S	$_{\rm d} - 2$	1	S .	-2	2	S .	_d – 3	1	最大回数
質点番号	(%)	NS	EW	UD	(_S)		NS	EW	UD	NS	EW	UD I	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1	i	1	I			i	i	i	1	1	1	i	i	i		I		i	i	i		i i		1 1			1	i	i	
	1	I	1	1			1	1	1										1	1										1	
*: S s と S d の応	「答比か	ら求め	たピーク	応力。																								·			

表4-26(12) 配管(RHR-40,41,42,89)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	定中	Ŀ	ーク応	力*	1 質点系の											等	価繰り	豆し回	数(]	FRS	3)				
[]内は鉛直	/		(MPa)		固有周期	設計用疲労線図	S	_d — Г	01	S	_d - 1	1	S	$_{\rm d} - 1$	2	S	_d - 1	3	S	$_{\rm d} - 1$	4	S	$_{\rm d} - 2$	2 1	Ş
質点番号	(/0)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS
	I		I	1	I	1	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1
	1	1	1	1	1	1	1	1	1	I	I	1	1	1	1	1	I	1	1	1	1	1	1	1	
				 	1	I	I	I	I	I	I	I	1	I	1	I	I	I	1	I	1	I	I	1	

S	$_{\rm d} - 2$	2	S	_d — 3	最大回数	
5	EW	UD	NS	EW	UD	
					L	1

表4-27 配管(CU-PD-9)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	質点番号 減衰	Ľ	ーク応ス	力*	1 質点系の										等	価繰返	えし回教	数(F	FRS)										
[]内は鉛直	(0/)		(MPa)		固有周期	設計用疲労線図	S	$_{\rm d}$ – D	1	S _d ·	-11	S	_d - 1	2	S	$_{\rm d} - 1$	3	S d	$_{1}-1$	4	S	$_{\rm d} - 2$	1	S _d	-2	2	S	_d — 3	1	最大回数
質点番号	(%)	NS	EW	UD	(s)		NS	EW	UD	NS	EW UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	
	1	I	I	ſ	1		1			I	I	i	1	1	I		ļ	I	I	1				1 1	ľ		1			
	ļ	l.	1	1						ļ						<u>+</u>								<u> </u>						

*:耐震計算により求めたピーク応力。

表4-28 配管(MS-A)(S_d) 等価繰返し回数算定結果(FRS)

質点番号	ピーク応		ーク応力	5*1	1 質点系の		等価繰返し回数(FRS)																							
[]内は鉛直	/ (0/)		(MPa)		固有周期	設計用疲労線図	S	$S_{d} - D_{1}$	L	S	$_{d} - 1$ 1	-	S _d	-12	Ś	S _d —	13	S	$_{\rm d} - 1$	4	S	$_{\rm d} - 2$	1	S .	₁ - 2	2	S _d	-31	最大回	数
質点番号	(70)	NS	EW	UD	(s)		NS	EW	UD	NS	EW	UD	NS	EW UI) NS	S EW	W UD	NS	EW	UD	NS	EW	UD	NS	EW	UD	NS	EW U)	
	1	I	I	I			I			I		I		I	I	I				l	l						I	I	I	٦
	1	I	1	1	1	L	I	1 1		I		1		I	1	1	1	l	1	I	I			1	L			I	I	
★1 · 耐雪計管/2	・トカポ	めたピー	- カウカ																											

*1:耐震計算により求めたピーク応力。

*2:配管(MS-A)の1次固有周期は0.095sであり、1次固有周期より短周期側での最大値。

添付8 参考3

ピーク応力の算定方法について

ここでは、代表設備(主蒸気系配管(配管解析モデル MS-B))のピーク応力の算定方法 について説明する。

(1) 地震時のピーク応力算定方法

地震時のピーク応力算定フローを図1に、算定方法を以下に示す。

図1 地震時のピーク応力算定フロー

①地震応答解析によるモーメント算出

MS-Bに生じるモーメントの算定に当たっては、MS-Bの地震応答解析(3次元はりモデルを用いたスペクトルモーダル解析)を実施する。

この地震応答解析から得られたモーメントを表1に示す。

					()	• mm)
		[t. *		モーメント		算出に
分類	部位	万回↑	МХ	МҮ	MZ	使用
		Х-Ү				0
慣性力	土官	Y-Z				
	1	Х-Ү				0
	分岐管	Y-Z				
	\	Х-Ү				
	王官	Y-Z				0
相対炎位	1	Х-Ү				
	分岐管	Y-Z		L		0

表1 地震応答解析から得られたモーメント

* X: EW 方向, Y: UD 方向, Z: NS 方向

②ピーク応力の算定

表1に示す設計荷重から、ピーク応力を算定する。

表1に示すモーメントにより算出した地震によるピーク応力(*Sp*)は、下式を用いて算定する。(JEAG4601・補-1984 許容応力編 2.2.1)

ここから、繰返しピーク応力 (SI)は、下式を用いて算出する。

 $S \models Ke \times Sp/2 =$ (MPa)

縦弾性係数による温度補正(302℃)した後の繰返しピーク応力(Sl')を以下に示す。

Sl'= (MPa)

なお、上記で使用している記号は以下の通り。

Sp : ピーク応力

K2,C2 : 応力係数(設計・建設規格 2005/2007 PPB・3813)

Mbs :表1より算出した分岐管のモーメント(モーメントの各方向を SRSS)

Mrs :表1より算出した主管のモーメント(モーメントの各方向を SRSS)

Zb : 分岐管の断面係数

Zr : 主管の断面係数

SI: :繰返しピーク応力(温度補正前)

- *Sl'*:繰返しピーク応力(温度補正後)
- *Ke* : JEAG4601・補-1984 許容応力編 2.2.1 により計算した値

添付8 参考5

地震時等価繰返し回数算定エビデンス

1. はじめに

本資料は、ピーク法を考慮したピーク応力法の地震等価繰返し回数の算定についてまとめたものである。

ピーク法を考慮したピーク応力法による等価繰返し回数の算定方法について,各ステップの詳細な説明を示す。

2. ピーク法を考慮したピーク応力法による等価繰返し回数の算定方法

・ステップ1

加速度時刻歴波形から1質点系応答解析により,各周期応答変位を算定する。算定した応 答変位時刻歴波形から平均値m以上では極大値(正のピーク),平均値m以下では極小値(負 のピーク)を計測し,正のピークの最大値と負のピークの最小値により1つのサイクルの波 形とし,次の正と負のピークで1つのサイクルとしてカウントする。

地震による疲労評価に適用する等価繰り返し回数算定においては、地震荷重が交番荷重 であり、設計で適用する地震力と対応させるため、本評価では平均値を0とし、0値を基準 とした片振幅としてカウントする。

図 4.34 ビーク法による波形計数例

「材料強度学」(社団法人 日本材料学会,平成18年3月15日第2版)より参照

・ステップ2

抽出したピーク点の応力に対する許容繰返し回数(N_i)を設計疲労線図より求め,ピーク 点の疲れ累積係数 UF(Usage Factor)を求める。

○UFの算定式

 $2\mathbf{UF} = \frac{n_0}{N_0} + \frac{n_1}{N_1} + \frac{n_2}{N_2} \cdots$

ここで、n_i:各ピークのサイクル数(1つのピークで1サイクルとする) N_i:各ピークに対する許容繰返し回数

・ステップ3

最大ピーク応力に対応する許容繰返し回数(N_0)を設計疲労線図より求め、UF に乗じることで、最大ピーク応力に対する等価繰返し回数(N_e)を求める。

○最大ピーク応力に対する等価繰返し回数(N_e)

 $N_e = UF \times N_0$

3. 等価繰返し回数算定エビデンス

以降では、下表に示す原子炉建屋 EL 46.500m の S_s - D 1 の等価繰返し回数の算定エビ デンスを示す。

		ピージ	ウ応力:147	1MPa
標高	地震動	(150kg/mm²))	
		NS 方向	EW 方向	UD 方向
原子炉建屋				
EL46. 500m	$S_s - D_1$			
22107 000m				

表1 原子炉建屋 EL 46.500mのS_s-D1の等価繰返し回数

原子炉建屋 EL 46.500m のS_s−D1の加速度時刻歴波形を図 3-1~図 3-3 に示す。本時刻 歴から1質点系応答解析により、各周期応答変位を算定する。

図 3-2 加速度時刻歷波形 (EW 方向)

応答変位時刻歴波形に対し最大ピーク応力を 1471MPa として、ピーク応力法により周期 毎の等価繰返し回数(N_e)を算定した。

各周期毎の等価繰返し回数結果を図 3-4~図 3-6 に示す。表-1 の等価繰返し回数は各周期の等価繰返し回数の最大値である。

図 3-4 等価繰返し回数(NS 方向)

等価繰返し回数算定プログラムについて
 等価繰返し回数算定に用いたプログラムの概要及び検証結果を添付1に示す。

1. はじめに

本資料は、等価繰返し回数算定において使用した計算機プログラム(解析コード) S A S について説明するものである。

コード名 Seismic Analysis System (SAS) 項目 使用目的 等価繰返し回数の算定 開発機関 日立GEニュークリア・エナジー株式会社 開発時期 2016年(初版開発時期 2009年) 使用したバージョン Ver6.1.0 SAS(以下,「本解析コード」という。)は,耐震設計に使用する コードの概要 条件を作成することを目的に、 地震波時刻歴データの波形書式の変換機 能, 地震波時刻歴データから床応答スペクトルを計算する機能, 応答分 布図や振動モード図の作成機能など,耐震解析プログラムを統合したシ ステムである。このうち指定された方法で等価繰返し回数を算定する機 能を使用する。 【検証(Verification)】 本解析コードの検証の内容は以下のとおりである。 ・本解析コードで算定した等価繰返し回数と手計算で、計算した値が一 検証 致することを確認している。 (Verification) ・本解析コードの運用環境について、動作環境を満足する計算機にイン 及び ストールして用いていることを確認している。 妥 当 性 確 認 (Validation) 【妥当性確認(Validation)】 本解析コードの妥当性確認の内容は、以下のとおりである。 ・算定方法はJEAG4601-1987記載の設計用繰返し回数の設定(ピーク応 力法)のフローに従っており、妥当性に問題はない。

2. 解析コードの概要

3. 解析コード(SAS)における等価繰返し回数算定機能の検証

3.1 概要

本工事計画認可申請書において使用した解析コード「SAS」を用いて得られた計算結 果の妥当性を確認し、本解析コードの検証を行うものである。算定方法はJEAG4601-1987 記載の設計用繰返し回数の設定(ピーク応力法)のフローに従うものとし、本解析コード を用いた、等価繰返し回数算定のフローを下記に示す。

図1 等価繰返し回数算定フロー(ピーク応力法)

- 3.2 解析コードの検証
 - (1) 検証の概要

解析コード「SAS」による計算結果の妥当性の確認には、手計算により算出した 等価繰返し回数を用いる。

「SAS」と手計算により算出した等価繰返し回数の比較をすることにより,解析 コードの検証を行った。

(2) 検証ケース

図2を入力地震波として、「SAS」を用いて計算する。等価繰返し回数算定におい て、図1に示す等価繰返し回数算定フロー(ピーク応力法)の①,②の計算を行ってい るが、①の時刻歴加速度応答波形による1質点系の時刻歴応答解析は、添付書類「V -5-62 計算機プログラム(解析コード)の概要・Seismic Analysis System(SAS)」 の設計用床応答曲線作成機能と同モジュールを使用している。時刻歴加速度応答波形 による1質点系の時刻歴応答解析後の処理は②と同じであるため、本検証では、②の 計算結果と手計算により算出した等価繰返し回数の比較を行う。

図2 検証ケース 入力地震波

(3) 算定条件

JEAG4601-1987 記載の等価繰返し回数算定フロー(ピーク応力法)のうち時刻歴波形 に対する等価繰返し回数を算定する。算定条件は以下とする。

許容繰返し回数	繰返しピーク応力強さ
10 回	410 kg/mm² (4021 MPa)
100 回	150.0 kg/mm² (1471 MPa)
1000 回	59.0 kg/mm² (579 MPa)
10000 回	27.0 kg/mm² (265 MPa)
100000 回	15.0 kg/mm² (148 MPa)
1000000 回	8.8 kg/mm² (87 MPa)

表1 設計疲労線図 材料データ

(4) 計算結果の比較

「SAS」及び手計算で計算した等価繰返し回数を表2に示す。

No	項日	毛計質内容	「SAS」 に
110.	·× L	1 11 144 174	よる計算結果
1	最大ピーク応力の仮定	150 kg/mm² (1471 MPa)	150 kg/mm ²
			(1471 MPa)
2	最大ピーク応力の	$N_{0} = 100 \Box$	*
	許容繰返し回数 №の算定		
3	最大ピーク応力に対する 時刻歴応答ピーク値σ _i の応力算定	$\sigma_{1} = 150 \text{ kg/mm}^{2} (1471 \text{ MPa})$ $\sigma_{2} = 100 \text{ kg/mm}^{2} (981 \text{ MPa})$ $\sigma_{3} = 150 \text{ kg/mm}^{2} (1471 \text{ MPa})$ $\sigma_{4} = 50 \text{ kg/mm}^{2} (491 \text{ MPa})$ $\sigma_{5} = 150 \text{ kg/mm}^{2} (1471 \text{ MPa})$ $\sigma_{6} = 25 \text{ kg/mm}^{2} (246 \text{ MPa})$ ※ 荷重振幅 3 kN を最大ピーク応 力に規格化	*
4	応力に対する 許容繰返し回数 N _i の算定	N ₁ =100 回,N ₂ =272 回,N ₃ =100 回 N ₄ =1628 回,N ₅ =100 回,N ₆ =13519 回	*
5	Usage Factor Fの算出	$F = (1/100 + 1/272 + 1/100 + 1/1628 + 1/100 + 1/13519) \times 1/2 = 0.017182$	*
6	最大ピーク応力に対する 等価繰返し回数 N _e の算定	N _e = 100×0.017182 = 1.7182= <u>2 回</u> <u>※小数部を切上げ</u>	2回

表2 「SAS」及び手計算の計算結果

*:プログラムによる自動計算。

(5) 検証結果

表2に示す等価繰返し回数の比較結果のとおり,両者は一致しており,「SAS」を 用いて得られた計算結果の妥当性を確認した。

添付-9

工認耐震計算書に地震応答解析が記載されていない設備の扱いについて

1. はじめに

今回工認における耐震計算書においては,基本的に地震応答解析,応力解析のモデ ル,方法,結果を記載している。しかしながら,一部の設備(炉心支持構造物等)に ついては,地震応答解析のモデル,結果を記載していない。地震応答解析が記載され ていない設備について説明する。

 耐震計算書に地震応答解析が記載されていない設備について 各耐震計算書に地震応答解析が記載されていない設備について,整理した結果を表 1に示す。 表1 各耐震計算書に地震応答解析が記載されていない設備の整理(1/2)

設備	部位	応答解析	応答解析結果を 記載している計算書
原子炉圧力容器 本体	胴板,下部鏡板 制御棒駆動機構ハウジング貫通部 原子炉圧力容器スカート 原子炉圧力容器基礎ボルト 原子炉圧力容器 スタビライザブラケット スチームドライヤ サポートブラケット	建屋機器 連成解析	V-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造 物並びに原子炉格納容器及び原子炉本体の 基礎の地震応答計算書
	給水スパージャブラケット	炉内配管の3次元 はりモデル解析	V-2-3-4-4-6 給水スパージャの耐震性についての計算書
	炉心スプレイブラケット	炉内配管の3次元 はりモデル解析	V-2-3-4-4-9 高圧及び低圧炉心スプレイ配管(原子炉圧 力容器内部)の耐震性についての計算書
原子炉圧力容器 付属構造物	原子炉圧力容器スタビライザ 原子炉格納容器スタビライザ 制御棒駆動機構ハウジング 支持金具	建屋機器	V-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造
原子炉圧力容器 内部構造物	蒸気乾燥器 気水分離器及びスタンドパイプ シュラウドヘッド	連成解析	物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書

表1 各耐震計算書に地震応答解析が記載されていない設備の整理(2/2)

設備	部位	応答解析	応答解析結果を 記載している計算書			
炉心支持構造物 制御棒	炉心シュラウド シュラウドサポート 上部格子板 炉心支持板 中央燃料支持金具 周辺燃料支持金具 制御棒案内管 制御棒	 建屋機器 速成解析	V-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造 物並びに原子炉格納容器及び原子炉本体の 共可ないまたものである			
制御棒駆動装置	制御棒駆動機構		基礎の地震応答計算書			
	原子炉格納容器本体 上部シアラグ及びスタビライザ 下部シアラグ及びダイヤフラム ブラケット 原子炉格納容器胴アンカー部					
原子炉格納容器	サプレッション・チェンバ 底部ライナ	原子炉格納容器底 部コンクリートマ ットのひずみ	V-2-9-2-2 原子炉格納容器底部コンクリートマットの 耐震性についての計算書			
	配管貫通部	配管の3次元 はりモデル解析	 (X-31) V-2-5-5-1-3 管の耐震性についての計算書 (高圧炉心スプレイ系) (X-34) V-2-5-5-2-3 管の耐震性についての計算書 (低圧炉心スプレイ系) 			
圧力低減設備	ダイヤフラム・フロア		V-2-3-2			
間接支持構造物	原子炉本体の基礎	建屋機器	炉心、原子炉圧力容器及び原子炉内部構造			
波及的影響を 考慮すべき設備	原子炉遮蔽	連成解析	物亚びに原子炉格納容器及び原子炉本体の 基礎の地震応答計算書			

再循環系ポンプの軸固着に対する評価について

1. 概要

クラス1ポンプである再循環系ポンプ(以下「PLRポンプ」という。)については, JEAG4601・補-1984 にて動的機能維持の要求はないが,地震により軸固着を生じないこ とを確認するよう求められている。このため、軸固着が生じず、PLRポンプの回転機 能が維持可能であることを確認した。以下に評価内容を示す。

2. PLRポンプ及びモータ軸受の軸固着の検討方針

PLRポンプ及びモータ軸受の軸固着の検討としては,JEAG4601・補-1984,JEAG4601-1991 追補版に記載の動的機能評価維持評価のうち,回転機能の維持を確認すればよく, 軸受部の損傷がなければ回転機能は維持されるため,軸受評価を実施する。

3. PLRポンプ及びモータ軸受構造

PLRポンプ及びモータ軸受の構造概要図を図1に支持構造物及び地震応答解析モ デルを図2に示す。

図1 PLRポンプ及びモータ構造概要図

図2 PLRポンプ及びモータの支持構造図及び地震応答解析モデル

- 4. モータスラスト軸受評価
- 4.1 評価方針

軸受評価は、スラスト軸受の許容荷重と、地震時にPLRポンプに発生する鉛直方 向荷重の比較にて実施する。すなわち「許容荷重 > 発生する鉛直方向荷重」であれ ばモータスラスト軸受の健全性は確保される。

4.2 モータ軸受の構造概要

PLRポンプモータ軸受の構造図を図3に示す。上部軸受は,スラスト軸受(上向き),スラスト軸受(下向き)及び上部ガイド軸受から構成されており,下部軸受は下部ガイド軸受にて構成されている。上部軸受は回転子部の上部シャフトカラーを上下で挟むようにスラスト軸受(上向き)とスラスト軸受(下向き)が設置されており, それぞれの軸受は上部軸受支持構造物で支えられている。また,スラスト軸受(上向き)とスラスト軸受(下向き)はレベリングプレート及びベースリングにて位置調整されている。上部ガイド軸受は12本の取付ボルトにて上部軸受支持構造物で支えられている。

上部ガイド軸受と同様に下部ガイド軸受は8本の取付ボルトにて下部軸受支持構造 物で支えられている。

図3 PLRポンプモータ軸受構造図

4.3 許容荷重

許容荷重については,軸受構造物上の許容荷重と油膜形成上の許容荷重を比較する ことで求める。

a. 軸受構造上の許容荷重

軸受構造物については軸受を構成する各部品について、上向き及び下向きスラス ト荷重に対する許容荷重を算出する。当該モータにおいては、構成部品のうちで最 も低い許容荷重を有する箇所はレベリングプレートであり、軸受が動作を継続でき る最大の荷重を軸受構造物の許容荷重としている。

b. 油膜形成上の許容荷重

油膜形成上の許容荷重は軸受油膜特性(油膜厚さと軸受荷重の関係)と最小油膜 厚さより求めている。 定格運転時にPLRポンプモータの上部シャフトカラーと軸受間に油膜が維持 される荷重を油膜形成上の許容荷重とする。地震力が発生した際の機能性評価のた め,油膜厚さは通常運転時の値は使用せず軸受が接触しない厚さを最小油膜厚さと して評価する(図4参照)。また,油膜形成上の軸受荷重は回転速度に依存するため, 回転速度による影響を考慮する。

c. 軸受の許容値

それぞれの軸受に対する許容値を表1に示す。

表1 軸受の許容値

種別	軸受構造上の 許容荷重	油膜形成上の 許容荷重	許容値	
スラスト軸受				
(上向き)				
スラスト軸受				
(下向き)		1		

- 4.4 発生荷重について
- 4.4.1 鉛直上向き

PLRポンプ軸には,再循環系の圧力等によるスラスト力が上向きに作用している。鉛直上向きの発生荷重については上向きに作用するスラスト力と鉛直加速度により発生する荷重を下式により算出する。また,上向きに作用するスラスト力には下向きに発生するスラスト流体力は考慮しない。

なお,評価で用いる加速度は原子炉再循環系配管の地震応答解析モデルにおける 各PLRポンプ及びモータの質点に生じる鉛直加速度のうち最大の値を用いる。

「発生荷重」=「内圧等によるスラスト力」+「軸の質量」×「鉛直方向地震加速度-重力加速度」

<算出方法>

- 以下の式により算出する。
 - $A_1 = B_1 + C \times (D g)$
 - A1: 鉛直上向き方向発生荷重
 - B₁:内圧等によるスラスト力(上向き)(スラスト流体力除く)
 - C:回転子の質量
 - D:鉛直方向地震加速度
 - **q** : 重力加速度(=9.80665[m/s²])
 - ここで東海第二については以下の値となる
 - B₁: [kN]

※PLRポンプ通常運転中はPLR圧力によるスラスト力が上向きに作用しているため,モータスラスト軸受(上向き)にてスラスト力を保持している。

C : [ton]

D:37 [m/s²] (PLRポンプモータの質点に生じる最大加速度であるB号機の値)

4.4.2 鉛直下向き

「4.4.1 鉛直上向き」と同様に,鉛直下向きに対して評価を行う。鉛直下向きの評価にあたっては,下向きに発生するスラスト流体力を考慮する。

「発生荷重」=「軸の質量」×「鉛直方向地震加速度+重力加速度」-「内圧等によるスラスト力」

<算出方法>

A₂=C×(D+g)-B₂ A₂: 鉛直下向き方向発生荷重 B₂: 内圧等によるスラスト力(上向き)(スラスト流体力含む)(=[[kN]) C:回転子の質量(=[______ton]) D: 鉛直方向地震加速度(= 37 [m/s²]) g:重力加速度(=9.80665[m/s²]) A₂= であるため鉛直下向き方向発生荷重はA₂=[kN]となる。

107

4.5 評価結果

評価結果を表2に示す。評価の結果,冷却材ポンプのスラスト軸受部に発生する荷 重は許容荷重を下回るため,PLRポンプのスラスト軸受の健全性は確保される。

種	另门	発生荷重	許容荷重	
フラフト軸の	上向き			
ヘノヘト軸文	下向き			

表 2 評価結果
- 5. PLRポンプ及びモータのラジアル軸受健全性評価
 - 5.1 評価方針

PLRポンプ及びモータのラジアル軸受の健全性評価について示す。評価方法は 4項のスラスト軸受と同様、ラジアル方向の許容値と発生する水平方向荷重を比較 することで行う。

また、ラジアル軸受としては、PLRモータに二つ、PLRポンプに一つある。

5.2 構造概要

PLRポンプの軸受構造を図5に示す。PLRポンプ軸受(ラジアル軸受)は水中 軸受であり,主軸と軸受の間に水膜を形成することで,ポンプの回転機能を維持して いる。PLRポンプ軸受は,静止構造物であるケーシングカバーに8本の軸受取付ボ ルトにて取付けられている。また,PLRポンプモータのラジアル軸受については図 3に示す通りである。

図5 PLRポンプ軸受構造図

5.3 許容値について

4.2 項のスラスト軸受と同様の考え方によりPLRポンプ軸受及びポンプモータ 軸受の許容値としては、以下の2つの考え方に基づいて設定している。

【PLRポンプ】

- 軸受水膜形成上の許容荷重
 PLRポンプ軸受と軸受間の水膜が維持される(主軸と軸受が接触しない)許
 容荷重として設定するもの。
- ② 軸受構造上の許容応力

PLRポンプ軸受の構造上の許容応力として,軸受を締結している軸受取付ボ ルトの許容応力として設定するもの。

- 【PLRポンプモータ】
 - ・軸受油膜形成上の許容荷重
 PLRポンプモータ軸受と軸受間の油膜が維持される(主軸と軸受が接触しない)許容荷重として設定するもの。
 - 2 軸受構造上の許容荷重

PLRポンプモータ軸受の構造上の許容荷重として,軸受を締結している軸受 取付ボルトの許容荷重として設定するもの。

PLRポンプ軸受の許容値を表3にPLRポンプモータの許容値を表4に示す。

種別	軸受構造上の 許容応力	水膜形成上の 許容荷重
ラジアル軸受 (水中軸受)		

表3 PLRポンプ軸受の許容値

表 4	ΡL	Rポン	゚プモー	-タ軸受(の許容値
~ ~					

種別	軸受構造上の 許容荷重	油膜形成上の 許容荷重	許容値	
ラジアル軸受 (上部ガイド軸受)				
ラジアル軸受 (下部ガイド軸受)		<u> </u>		

5.4 発生荷重について

ラジアル方向の評価にあたっては、回転による半径方向荷重(ラジアル流体力)を 考慮する。また、水中軸受に作用する発生荷重は、図6に示すPLRポンプ及びモー タの回転体系の荷重のつり合い解析にて求める。

「発生荷重」=「ラジアル流体力」+「地震荷重」

地震時の発生加速度は原子炉冷却材再循環系の耐震性についての計算書のうち添 付書類「V-2-5-2-1-1 管の耐震性についての計算書」にて得られる再循環系ポンプ 及びモータ位置の水平の最大応答加速度(下表参照)を使用する。

記号の説明

記号	記号名称	記号	記号名称
W _{R1}	モータ回転子質量	R _{B3}	ポンプ水中軸受部反力
W _{R2}	ポンプ回転子質量(羽根車除く)	S _{Hm}	モータ部水平地震加速度
W _{R3}	羽根車質量	S_{Pm}	ポンプ部水平地震加速度
R _{B1}	モータ上部ガイド軸受部反力	F _R	ラジアル流体力
R _{B2}	モータ下部ガイド軸受部反力	$L_{R1} \sim L_{R6}$	各寸法

図6 回転体の荷重のつり合い解析モデル

上記モデルによる荷重のつり合い解析を行い各軸受部の反力 RB1 (モータ上部ラジ アル軸受), RB2 (モータ下部ラジアル軸受), RB3 (ポンプ軸受) を回転数比 Nx=(n/no) に対して求め,これを軸受の発生荷重としている。100%回転時の解析結果を表5に示 す。

軸受名称	発生荷重(Ss時)
上部ガイド軸受		
下部ガイド軸受		
水中軸受		

表5 軸受に生じる荷重(100%回転時)

5.5 評価結果

PLRポンプ軸受の評価結果を表6に、PLRポンプモータ軸受の評価結果を表 7に示す。評価の結果、PLRポンプ及びモータのラジアル軸受部に発生する荷重は 許容値を下回るため、PLRポンプのラジアル軸受の健全性は確保される。

種別	発生値	許容値
ラジアル軸受 (水膜形成上)		
ラジアル軸受 (軸受構造物)		

表5 PLRポンプ軸受評価結果

表6 PLRポンプモータ軸受の評価結果

	種別	発生荷重		許容荷重	
ラミ (上部	ジアル軸受 ガイド軸受)				
ラミ (下部	ジアル軸受 ガイド軸受)		-	_	

4項及び5項の評価で考慮した各発生荷重について,表7「PLR軸受に作用する荷 重」にまとめる。 なお,コーストダウン運転時はPLR回転数が低下することから,水膜(油膜)形成 上の許容荷重は低下する傾向になる。

コーストダウンにより回転数が低下すると,許容荷重が下がるため,定格運転の約50%の回転数(約5秒)で許容荷重が発生荷重を下回り,地震時に軸と軸受の接触が生じる可能性がある。

地震によりPLRポンプ2台トリップが発生した際には、ポンプ回転軸と軸受の接触が 生じる可能性がある約5秒よりも前に、原子炉水位高(レベル8)によるタービントリッ プにより原子炉がスクラムし原子炉出力が低下するため、下図に示すように MCPR は初期 値を下回ることはなく、炉心の熱的余裕が失われるようなことにはならないと考えられる。

さらに地震時には地震加速度大により原子炉がスクラムする場合には、より早く原子炉 出力が低下することからも、ポンプ回転軸と軸受の接触が生じる可能性により熱的余裕が 失われることにはならないと考えられる。

東海第二発電所 「原子炉冷却材流量の喪失」の解析図

なお,仮に発生荷重>許容荷重となって軸と軸受の片当たりを想定する場合でも,PL Rポンプ主軸と軸受内面は異種材料であるとともに,PLRポンプ回転数低下により軸固 着の要因となる接触による摩擦を考慮しても軸固着が発生することはないと言え,また, 構造強度上の許容荷重は満足していることから,変形により軸固着が生じることはない。

表7 PLR軸受に作用する荷重

N	PLRポンプ	軸受に発生する荷重	荷重を	考慮する荷重	
NO.	分類	発生する荷重	受ける軸受	の方向	11 22 武 97
1	内圧による荷重	 PLR系統内圧により発生するスラスト カ(上向き) 	スラスト軸受 (上向き,下向き)	鉛直上向き	運転中,軸受に定常的に作用する荷重であることから 考慮している。
2	死荷重	ロータ自重(下向き)	スラスト軸受 (上向き,下向き)	鉛直下向き	運転中,軸受に定常的に作用する荷重であることから 考慮している。
3		機械の振動による荷 重	ラジアル軸受	考慮しない	ロータの危険速度は定格回転速度よりも十分に高く, 静止部材に対する相対振動は十分小さいことから考 慮しない。
4	4 5 機械的荷重 5	ラジアル流体力	ラジアル軸受	水平方向	運転中,軸受に定常的に作用する荷重であることから 考慮する。
5			スラスト軸受 (上向き)	考慮しない	スラスト流体力は,以下の2つの荷重が発生する。 ①ポンプヘッドによる荷重(鉛直下向き) ②羽根車の吸込口から出口に向かって水流が方向変
6		スラスト流体力	スラスト軸受 (下向き)	考慮する	化することによる荷重(鉛直上向き) それぞれを足し合わせたスラスト流体力は鉛直下 向きの荷重となるため,保守的な評価として,スラス ト軸受(上向き)に対しては考慮せず,スラスト軸受 (下向き)に対しては考慮する。

補機類のアンカー定着部の評価について

1. 概要

既工認における補機類の基礎ボルト及びコンクリートの定着部の設計は、コンクリート部の評価断面積はボルト又はスリーブの表面積として、ボルトの引抜き力よりもコク リートの定着力が大きくなるような、必要な埋込深さを算定していた。

現行規格におけるコンクリート部の評価断面積とした場合,既工認における基礎ボル ト及びコンクリート定着部の設計は基礎ボルトよりもコンクリート定着部の方が高い 耐震性を有する設計となることから,基礎ボルトに着目した耐震評価を行うことでコン クリート定着部の健全性も確認できる。

このため,以下では,ボルト配置が円形の高圧炉心スプレイ系ポンプ及び矩形の非常 用ガス処理系フィルタトレインを例に基礎ボルトとコンクリート定着部の許容荷重の 比較を示す。

2. 既工認と今回工認での定着部評価の相違

既工認におけるコンクリート部の評価は,東海第二は JEAG4601・補-1984 適用以前に 建設されたプラントであることから,当時の鋼構造設計規準に基づく付着評価を実施し ていた。

付着評価の評価断面はボルト又はスリーブ表面積としており, JEAG4601-1991 追補版 に定められる評価断面よりも厳しい断面である。

具体的には,表1に示すとおり,既工認の評価断面は,単独ボルトの条件では JEAG4601-1991 追補版と比べ小さく,JEAG4601-1991 追補版の評価断面に変えた場合の 裕度は既工認におけるボルトの裕度より,コンクリートの裕度の方が大きくなる。

ボルトの引張許容値から定めた限界引抜き力に対して,JEAG4601-1991 追補版と同様 のコンクリート許容せん断応力度及びせん断力算定断面積(コーン状破壊を想定)によ る引抜き耐力が上回るような,必要埋込深さとなり,基礎ボルトに着目した耐震評価を 行うことでコンクリート定着部の健全性も確認できる。

表1 コンクリート定着部の評価

	今回工認	(参考)	既工認	
適用規格	JEAG4601-1991 追補版 JEAG4601-1984		鋼構造設計規準	
評価内容	コンクリートの押抜き力(シアコーン)に より生じるせん断応力評価	コンクリートの押抜き力(パンチングシ ア)により生じるせん断応力評価	コンクリートへの付着評価	
			D' d 算定モデル	
評価手法	せん断力算定断面積 (コーン状破断面) = π (大半径) ² - π (小半径) ² = $\pi \left(\frac{D}{2} + d\right)^2 - \pi \left(\frac{D}{2}\right)^2$	 せん断力算定断面積 (パンチングシア形状) =高さ×円周長さ = d · π · (D + d) = π · d · (D + d) 	せん断力算定断面積 (ボルト,スリーブ表面) =高さ×円周長さ = d・π・D' =π・d・D'	
	=π·d·(D+d) d:埋込深さ D:埋込板直径	d:埋込深さ D:埋込板直径	d:埋込深さ D':スリーブ又はボルト直径	

3. 評価例

- 3.1 高圧炉心スプレイ系ポンプ
- 3.1.1 高圧炉心スプレイ系ポンプの基礎ボルト配置
 高圧炉心スプレイ系ポンプの基礎ボルト配置を以下に示す。

3.1.2 高圧炉心スプレイ系ポンプの定着部評価

【引張荷重】

基礎ボルトが引張荷重を受ける場合のコンクリートの評価は JEAG4601-1991 追補版より

p≤p_a=min(p_{a1}, p_{a2})
ここに

$$p_{a1}=0.31 \cdot K_1 \cdot A_c \cdot \sqrt{F_c}$$

 $p_{a2}=K_2 \cdot \alpha_c \cdot A_0 \cdot Fc$
p : 基礎ボルト1本当たりの引張荷重(N)
p_a : 基礎ボルト1本当たりのコンクリート部の許容引張荷重(N)
p_{a1} : コンクリート躯体がコーン状破壊する場合の基礎ボルト1本当たり
の許容引張荷重(N)
p_{a2} : 基礎ボルト頭部に接するコンクリート部が支圧破壊する場合の基礎
ボルト1本当たりの許容引張荷重(N)
K₁ : コーン状破壊する場合の引張耐力の低減係数(IV_ASの0.6とする)
K₂ : 支圧破壊する場合の引張耐力の低減係数(IV_ASの0.75とする)
Fc : コンクリートの設計基準強度(N/m²): 22.1N/mm²
Ac : コンクリートのコーン状破壊面の有効投影面積(m²)
 α_c : 支圧面積(m²)
 $A_0 = l^2 - \frac{\pi}{4} \times d^2 = = = 52239.172$
よって,
p_{a1} =0.31×0.6× √22.1 = 1386532 = 1.38×10⁶[N]
p_{a2} = min(1.38×10⁶, 4.77×10⁶) = 1.38×10⁶[N]
yLLLS, 基礎ボルト1本当たりのコンクリート部の許容引張荷重は

1.38×10⁶[N]である。

一方, 基礎ボルト(M64:SS400)の許容応力 210MPa から求まる基礎ボルト1本 あたりの引張許容荷重は,

$$\frac{\pi}{4} \times 64^2 \times 210 = 675568.1 = 6.76 \times 10^5 [N]$$

である。

基礎ボルトの引張許容荷重6.76×10⁵[N]と比較して、コンクリート部の許容引張 荷重は13.8×10⁵[N]であり、コンクリート部の許容引張荷重が十分大きい。 【せん断荷重】

ح

基礎ボルトがせん断荷重を受ける場合のコンクリートの評価は, JEAG-4601 1991 追補版より

q≤q_a=min (q_{a1}, q_{a2})
こに
$$q_{a1}=0.5 \cdot K_3 \cdot Ab \cdot \sqrt{Ec \cdot Fc}$$

 $q_{a2}=0.31 \cdot K_4 \cdot Ac_1 \cdot \sqrt{Fc}$
q : 基礎ボルト1本当たりのせん断荷重 (N)
 q_a : 基礎ボルト1本当たりのコンクリート部の許容せん断荷重 (N)
 q_{a1} : 基礎ボルト2基礎ボルト周辺のコンクリートが圧壊して破壊(複合破
废) する場合の基礎ボルト1本当たりの許容せん断荷重 (N)
 $q_{a2}: \sim 0 倒 コンクリートが破壊する場合の基礎ボルト1本当たりの許容せん断荷重 (N) K_3 : 複合破壊の場合のせん断耐力の低減係数 (W_A Sの0.8とする)
 K_4 : $\sim 0 倒 コンクリート破壊の場合のせん断耐力の低減係数$
(W_A Sの0.6とする)
Ab : 基礎ボルトの谷径断面積 (スタッドの場合は軸部断面積) (nm²)
(M64:2.597×10³nm²)
Ec : $コンクリートのヤング \approx (N/nm2): 20600N/nm2$
Fc : $コンクリートの設計基準強度 (N/nm2): 22.1N/nm2Ac1 : $= 2 \cdot 2 - 1 - 1 - 1 - 2 \cdot 1 - 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 1 - 2 \cdot 1 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 - 2 \cdot 1 \cdot 1 - 2 \cdot 1 -$$$

 $q_{a1} = 0.5 \times 0.8 \times 2.597 \times 10^3 \times \sqrt{20600 \times 22.1} = 700909 = 7.00 \times 10^5 [N]$

=1317261.96 mm²

 $q_{a2} = 0.31 \times 0.6 \times 1317261.96 \times \sqrt{22.1} = 1151811 = 11.5 \times 10^{5} [N]$

 $q_a = \min(7.00 \times 10^5, 11.5 \times 10^5) = 7.00 \times 10^5[N]$

以上より、コンクリート部の許容せん断荷重は7.00×10⁵[N]である。

一方, 基礎ボルト(M64:SS400)の許容応力160MPa から求まる基礎ボルトの1本あ たりのせん断許容荷重は,

$$\frac{\pi}{4} \times 64^2 \times 160 = 514718.5 = 5.15 \times 10^5 [N]$$

である。

基礎ボルトのせん断許容荷重5.15×10⁵[N]と比較して、コンクリート部の許容せん断荷重は7.00×10⁵[N]であり、コンクリート部の許容せん断荷重が十分大きい。

【組合せ荷重】

基礎ボルトが引張, せん断の組合せ荷重を受ける場合のコンクリートの評価は, JEAG-4601-1991 追補版より

$$\left(\frac{p}{p_a}\right)^2 + \left(\frac{q}{q_a}\right)^2 \le 1$$

ここに

- p_a:引張荷重のみに対する基礎ボルト1本当たりのコンクリート部の許容引張荷重(N) = min(p_{a1}, p_{a2})
- qa: せん断荷重のみに対する基礎ボルト1本当たりのコンクリート部の
 許容せん断荷重(N) = min(qa1, qa2)
- p :基礎ボルト1本当たりの引張荷重(N)
- q :基礎ボルト1本当たりのせん断荷重 (N)

仮にpに対して,基礎ボルト1本当たりの引張許容荷重を,またqに対して基礎ボルト1本当たりのせん断許容荷重を用いて保守的に計算すると,

$$\left(\frac{6.76 \times 10^5}{13.8 \times 10^5}\right)^2 + \left(\frac{5.15 \times 10^5}{7.00 \times 10^5}\right)^2 = 0.79 < 1$$

となり,組合せ荷重評価に対しても,基礎ボルトよりコンクリート部の方が十分余裕 がある。

- 3.2 非常用ガス処理系フィルタトレイン
 - 3.2.1 非常用ガス処理系フィルタトレインの基礎ボルト配置 非常用ガス処理系フィルタトレインの基礎ボルト配置を以下に示す。

3.2.2 非常用ガス処理系フィルタトレインの定着部評価

【引張荷重】

基礎ボルトが引張荷重を受ける場合のコンクリートの評価は JEAG4601-1991 追補版より

$$p \leq p_a = \min(p_{a1}, p_{a2})$$

 $p_{a1}=0.31 \cdot K_1 \cdot A_c \sqrt{F_c}$

 $p_{a2} = K_2 \cdot \alpha_c \cdot A_0 \cdot Fc$

- p : 基礎ボルト1本当たりの引張荷重 (N)
- pa : 基礎ボルト1本当たりのコンクリート部の許容引張荷重(N)
- pa1 : コンクリート躯体がコーン状破壊する場合の基礎ボルト1本当たりの許容引張荷重(N)
- pa2 : 基礎ボルト頭部に接するコンクリート部が支圧破壊する場合の基礎 ボルト1本当たりの許容引張荷重(N)
- K₁:コーン状破壊する場合の引張耐力の低減係数(W_ASの0.6とする)
- K₂:支圧破壊する場合の引張耐力の低減係数(IV_ASの0.75とする)

- Ac : コンクリートのコーン状破壊面の有効投影面積 (mm²)
- α。:支圧面積と有効投影面積から定まる定数(= √Ac/A₀ かつ 10 以下)
- A₀ : 支圧面積 (mm²)

$$A_0 = \frac{\pi}{4} \times (100^2 - 20^2) = 7540 \ mm^2$$

$$\alpha = \sqrt{\frac{2.517 \times 10^5}{7540}} = 5.77$$

よって,

 $\begin{array}{l} p_{a1} = 0.31 \times 0.6 \times 2.517 \times 10^5 \times \sqrt{22.1} = 220086 \rightleftharpoons 2.20 \times 10^5 [N] \\ p_{a2} = 0.75 \times 5.77 \times 7540 \times 22.1 = 721108 \rightleftharpoons 7.21 \times 10^5 [N] \\ p_{a} = \min(2.20 \times 10^5, \ 7.21 \times 10^5) = 2.20 \times 10^5 [N] \end{array}$

以上より、コンクリート部の許容引張荷重は2.20×10⁵[N]である。

一方, 基礎ボルト(M20:SS400)の許容応力 210MPa から求まる基礎ボルトの1 本あたりの引張許容荷重は,

$$\frac{\pi}{4} \times 20^2 \times 210 = 65973.5 = 6.60 \times 10^4 [N]$$

である。

基礎ボルトの引張許容荷重6.60×10⁴[N]と比較して、コンクリート部の許容引張 荷重は22.0×10⁴[N]であり、コンクリート部の許容引張荷重が十分大きい。 【せん断荷重】

基礎ボルトがせん断荷重を受ける場合のコンクリートの評価は, JEAG-4601 1991 追補版より

$$q \le q_a = \min(q_{a1}, q_{a2})$$

ここに
 $q_{a1} = 0.5 \cdot K_3 \cdot Ab \cdot \sqrt{E_c \cdot F_c}$
 $q_{a2} = 0.31 \cdot K_4 \cdot Ac_1 \cdot \sqrt{F_c}$
 $q : 基礎ボルト1本当たりのせん断荷重(N)$
 $q_a : 基礎ボルト1本当たりのコンクリート部の許容せん断荷重(N)$
 $q_{a1} : 基礎ボルト2 基礎ボルト周辺のコンクリートが圧壊して破壊(複合破
壞) する場合の基礎ボルト1本当たりの許容せん断荷重(N)
 $q_{a2} : \sim 0$ 側コンクリートが破壊する場合の基礎ボルト1本当たりの許容せ
ん断荷重(N)
 $K_3 : 複合破壊の場合のせん断耐力の低減係数(W_AS 00.8 とする)$
 $K_4 : \sim 0$ 側コンクリート破壊の場合のせん断耐力の低減係数
 $(W_AS 00.6 と t 3)$
Ab : 基礎ボルトの谷径断面積(スタッドの場合は軸部断面積)(nm²)
 $(M20: 235mm2)$
Ec : コンクリートのヤング率(N/nm²): 20600N/nm²
Fc : コンクリートのコーン状破壊面の有効投影面積(mm²)
 $Ac_1 : = \pi 250^2 = 98174.77$
よって、$

$$\begin{array}{l} q_{a1} &= 0.5 \times 0.8 \times 235 \times \sqrt{20600 \times 22.1} = 63424 \rightleftharpoons 6.34 \times 10^4 [N] \\ q_{a2} &= 0.31 \times 0.6 \times 98174.77 \times \sqrt{22.1} = 85843 \rightleftharpoons 8.58 \times 10^4 [N] \\ q_a &= \min \left(6.34 \times 10^4, \ 8.58 \times 10^4 \right) = 6.34 \times 10^4 [N] \end{array}$$

以上より, 基礎ボルト1本当たりのコンクリート部の許容せん断荷重は 6.34×10⁴[N] である。

一方, 基礎ボルト(M20: SS400)の許容応力 160MPa から求まる基礎ボルト1 本当た りのせん断許容荷重は,

$$\frac{\pi}{4} \times 20^2 \times 160 = 50265.5 = 5.03 \times 10^4 [N]$$

である。

基礎ボルトのせん断許容荷重5.03×10⁴[N]と比較して、コンクリート部の許容せん断荷重は6.34×10⁴[N]であり、コンクリート部の許容せん断荷重が十分大きい。

【組合せ荷重】

基礎ボルトが引張, せん断の組合せ荷重を受ける場合のコンクリートの評価は, JEAG-4601-1991 追補版より

$$\left(\frac{p}{p_a}\right)^2 + \left(\frac{q}{q_a}\right)^2 \le 1$$

ここに

- p_a:引張荷重のみに対する基礎ボルト1本当たりのコンクリート部の許容引張荷重(N) = min(p_{a1}, p_{a2})
- qa: せん断荷重のみに対する基礎ボルト1本当たりのコンクリート部の
 許容せん断荷重(N) = min(qa1, qa2)
- p :基礎ボルト1本当たりの引張荷重(N)
- q :基礎ボルト1本当たりのせん断荷重 (N)

仮にpに対して,基礎ボルト1本当たりの引張許容荷重を,またqに対して基礎ボルト1本当たりのせん断許容荷重を用いて保守的に計算すると,

$$\left(\frac{6.60\times10^4}{22.0\times10^4}\right)^2 + \left(\frac{5.03\times10^4}{6.34\times10^4}\right)^2 \coloneqq 0.72 < 1$$

となり,組合せ荷重評価に対しても,基礎ボルトよりコンクリート部の方が十分余裕 がある。

4. 評価結果まとめ

「3. 評価例」の評価のまとめを表 4-1,2 に示す。基礎ボルトよりもコンクリート 定着部の方が高い耐震性を有する設計となっている。

基礎ボルト1 本当たりの許 容荷重及びコ ンクリートの	基礎ボルトの 引張許容荷重 p (N)	コンクリート 部の許容引張 荷重 pa (N)	基礎ボルトのせ ん断許容荷重 q (N)	コンクリート部の 許容せん断荷重 qa (N)
許容荷重	$6.76 imes 10^5$	$13.8 imes 10^5$	$5.15 imes 10^5$	$7.00 imes 10^{5}$
引張・せん断 評価	p≤pa	a OK	q <q< td=""><td>a OK</td></q<>	a OK
組合せ評価	$\left(\frac{p}{p_a}\right)^2 + \left(\frac{q}{q_a}\right)^2 \le 1 \text{OK}$			

表 4-1 高圧炉心スプレイポンプの評価結果

表 4-2 非常用ガス処理系フィルタトレインの評価結果

基礎ボルト1 本当たりの許 容荷重及びコ ンクリートの	基礎ボルトの 引張許容荷重 p (N)	コンクリート 部の許容引張 荷重 pa (N)	基礎ボルトのせ ん断許容荷重 q (N)	コンクリート部の 許容せん断荷重 qa (N)
許容荷重	$6.60 imes 10^{4}$	$22.0 imes 10^4$	$5.03 imes 10^4$	$6.34 imes 10^4$
引張・せん断 評価	p≤pa	a OK	q <q< td=""><td>a OK</td></q<>	a OK
組合せ評価		$\left(\frac{p}{p_a}\right)^2 + \left($	$\left(\frac{q}{q_a}\right)^2 \leq 1$ OK	