本資料のうち,	枠囲みの内容は
営業秘密又は防	「護上の観点から
公開できません	5

東海第二発電所	工事計画審査資料	
資料番号	補足-340-8 改47	
提出年月日	平成 30 年 9 月 26 日	

工事計画に係る補足説明資料

耐震性に関する説明書のうち

補足-340-8

【屋外重要土木構造物の耐震安全性評価について】

【収録内容】

6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価

平成 30 年 9 月

日本原子力発電株式会社

改定履歴

改定	改定日 (提出年月日)	改定内容
改 0	H30. 2. 5	補足-348 改0として提出 ・1.1章, 1.4.1章, 1.4.4~1.4.7章を提出
改1	H30. 2. 15	補足-348 改1として提出 ・1.5章を新規作成し,改0に追加
改2	H30. 2. 19	補足-348 改2として提出 ・改1のうち,1.1章,1.4.4~1.4.7章を修正
改 0	H30. 3. 7	資料番号を修正 補足-340-8 改0 ・「1.4. 屋外重要土木構造物の耐震評価における断面選定 の考え方」のうち、1.4.3 章、1.4.8~1.4.10 章、1.4.12 章を新規作成し、追加
改1	H30. 3. 26	 ・P.3~5に補足説明資料と添付書類との関連を記載 ・1.4.1章,1.4.4章~1.4.7章を修正 ・4章を新規作成し,追加
改2	H30. 4. 6	 ・1.4.2章, 1.4.11章, 1.4.17章を新規作成し, 追加 ・4章を修正 ・12章を新規作成し, 追加
改3	H30. 4. 9	 ・1.3章,2章を新規作成し,追加 ・4.4章を修正
改4	H30. 4. 9	・1.2章,8章,11章を新規作成し,追加
改5	H30. 4. 12	 ・10 章を新規作成し、追加
改 6	H30. 4. 13	 ・1.4.13 章, 1.4.14 章, 1.4.15 章, 1.4.16 章, 1.4.18 章を 新規作成し, 追加 ・1.5 章, 1.6 章を新規作成し, 追加 ・5 章, 6 章, 7 章, 9 章, 14 章, 16 章, 17 章を新規作成し, 追加
改7	H30. 4. 23	 ・10章,11章,17章を修正 ・3章,13章,15章,18章を新規作成し,追加
改 8	H30. 4. 27	・既提出分を一式取り纏めて、再提出
改9	H30. 5. 2	 ・改6のうち、1.6章及び5章を改定 ・改3のうち、4章を改訂
改10	H30. 5. 14	 ・1.7章, 1.8章を新規作成し, 追加
改11	H30. 5. 23	・改0のうち,1.4.10章を改定 ・改7のうち,10章を改定 ・改9のうち,1.6章を改定
改 12	H30. 5. 28	 ・改3のうち,1.4.2章を改定 ・改3のうち,2章を改定
改13	H30. 5. 31	 ・改0のうち、1.4.3章を改定
改 14	H30. 6. 6	・1.9 章を新規作成し,追加 ・1.10 章を新規作成し,追加 ・改7のうち,3章を改定
改 15	H30. 6. 7	・改7 のうち,17 章,18 章を改定 ・改14 のうち,3 章を改定
改 16	H30. 6. 12	・改 14 のうち, 1.10 章を改定
改 17	H30. 6. 18	・改 13 のうち, 1.4.3 章を改定 ・改 3 のうち, 1.4.11 章を改定

改定	改定日 (提出年月日)	改定内容
改 18	H30. 6. 20	・改6のうち,1.4.13 章及び1.4.15 章を改定 ・改7のうち,13 章及び14 章を改定
改 19	H30. 6. 25	・改7のうち,11章を改定 ・改15のうち,3章を改定
改 20	H30. 6. 28	 ・改6のうち,1.5章を改定 ・改14のうち,1.9章を改定 ・改19のうち,11章を改定
改 21	H30.7.5	 ・改9のうち、4章及び5章を改定
改 22	H30. 7. 5	・改 12 のうち,2 章を改定 ・改 20 のうち,1.9 章を改定
改 23	H30.7.6	・改6のうち、7章を改定
改 24	НЗО. 7. 9	 ・改6のうち,14章及び16章を改定 ・改11のうち,10章を改定 ・改15のうち,17章及び18章を改定 ・改18のうち,13章及び15章を改定 ・改19のうち,3章を改定 ・改20のうち,11章を改定
改 25	H30.7.9	 ・改4のうち、8章を改定
改 26	H30. 7. 26	・改 10 のうち, 1.7 章を改定 ・改 11 のうち, 1.6 章を改定
改 27	H30.8.1	 ・改6のうち、9章を改定
改 28	H30. 8. 2	・改 11 のうち, 1.4.10 章を改定 ・改 22 のうち, 1.9 章を改定
改 29	H30. 8. 6	・改 21 のうち,4 章及び 5 章を改定 ・改 23 のうち,7 章を改定
改 30	H30.8.6	・改 24 のうち, 16 章を改定
改 31	H30. 8. 13	 ・「1.11 屋外重要土木構造物の耐震評価における追加検討 ケースの選定について」新規作成し、追加 ・改24のうち、10章及び14章を改定
改 32	H30. 8. 13	 ・改6のうち、6章を改定
改 33	H30. 8. 14	・改 18 のうち,15 章を改定 ・改 24 のうち,13 章を改定
改 34	H30.8.16	・改 24 のうち,18 章を改定 ・改 25 のうち,8 章を改定
改 35	H30. 8. 17	・改3のうち,12章を改定 ・改22のうち,2章を改定
改 36	H30. 8. 20	・改 24 のうち, 17 章を改定
改 37	H30. 8. 21	・改 24 のうち,3 章を改定 ・改 30 のうち,16 章を改定

改定	改定日 (提出年月日)	改定内容	
改 38	H30. 8. 21	・改 24 のうち,11 章を改定 ・改 27 のうち,9 章を改定	
改 39	H30. 8. 21	・3 章のうち,「屋外二重管本体の耐震安全性評価」を新規 作成し,追加	
改 40	H30. 8. 23	・改4のうち、1.2章を改定	
改 41	H30. 8. 23	・改 31 のうち, 1.11 章を改定	
改 42	H30. 8. 27	・改 41 のうち, 1.11 章を改定	
改 43	H30. 8. 30	・改1のうち,1.4.5章,1.4.7章を改定 ・改17のうち,1.4.3章を改定 ・改29のうち,参考2,3を新規作成し,追加 ・改42のうち,1.11章を改定(一部抜粋)	
改 44	H30. 9. 6	・改 28 のうち, 1.4.10 章を改定 ・改 35 のうち, 2 章を改定	
改 45	H30. 9. 13	 ・改1のうち,1.4.4章及び1.4.6章を改定 ・改43のうち,1.4.7章を改定 ・改37のうち,3章を改定(参考資料を追加) ・改29のうち,4章を改定(参考資料を追加) 	
改 46	H30. 9. 20	・改 44 のうち, 1.4.10 章及び 2 章を改定	
改 47	H30. 9. 26	 ・改 32 のうち、6 章を改定 	

目	次
н	- 22

Γ

を示す。

i_.._..

]内は,当該箇所を提

出(最新)したときの改訂

- 1. 共通事項
- 1.1 対象設備[改7 H30.4.23]
- 1.2 屋外重要土木構造物の要求性能と要求性能に対する耐震評価内容[改 40 H30.8.23]
- 1.3 安全係数[改3H30.4.9]
- 1.4 屋外重要土木構造部の耐震評価における断面選定の考え方
- 1.4.1 方針[改 3 H30.4.9]
- 1.4.2 取水構造物の断面選定の考え方[改 12 H30.5.28]
- 1.4.3 屋外二重管の断面選定の考え方[改 43 H30.8.30]
- 1.4.4 常設代替高圧電源装置置場及び西側淡水貯水設備の断面選定の考え方[改 45 H30.9.13]
- 1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方[改 43 H30.8.30]
- 1.4.6 常設代替高圧電源装置用カルバート(立坑部)の断面選定の考え方[改 45 H30.9.13]
- 1.4.7 常設代替高圧電源装置用カルバート(カルバート部)の断面選定の考え方[改 45 H30.9.13]
- 1.4.8 代替淡水貯槽の断面選定の考え方[改0H30.3.8]
- 1.4.9 常設低圧代替注水系ポンプ室の断面選定の考え方[改0 H30.3.8]
- 1.4.10 常設低圧代替注水系配管カルバートの断面選定の考え方[改 46 H30.9.20]
- 1.4.11 格納容器圧力逃がし装置用配管カルバートの断面選定の考え方[改 17 H30.6.18]
- 1.4.12 緊急用海水ポンプピットの断面選定の考え方[改0 H30.3.8]
- 1.4.13 緊急用海水取水管の断面選定の考え方[改 18 H30.6.20]
- 1.4.14 SA用海水ピットの断面選定の考え方[改6H30.4.16]
- 1.4.15 海水引込み管の断面選定の考え方[改 18 H30.6.20]
- 1.4.16 SA用海水ピット取水塔の断面選定の考え方[改 6 H30.4.16]
- 1.4.17 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面選定の考え方[改3 H30.4.9]
- 1.4.18 可搬型設備用軽油タンク基礎の断面選定の考え方[改 6 H30.4.16]
- 1.5 地盤物性のばらつきの考慮方法[改 20 H30.6.28]
- 1.6 許容応力度法における許容限界について[改 26 H30.7.26]
- 1.7 ジョイント要素のばね設定について[改 26 H30.7.26]
- 1.8 有効応力解析モデルへの入力地震動の算定方法について[改 10 H30.5.14]
- 1.9 地震応答解析における構造物の減衰定数について[改 28 H30.8.2]
- 1.10 屋外重要土木構造物の地震応答解析結果及び耐震評価結果の記載方針について[改 16 H30.6.15]
- 1.11 屋外重要土木構造物の耐震評価における追加検討ケースの選定について[改 42 H30.8.27] [改 43 H30.8.30(2.5 章抜粋)]

- 2. 取水構造物の耐震安全性評価[改 46 H30.9.20]
- 3. 屋外二重管の耐震安全性評価 [改 45 H30.9.13(屋外二重管基礎)]

[改 39 H30.8.21(屋外二重管本体)]

4. 常設代替高圧電源装置置場及び西側淡水貯水設備の耐震安全性評価[改 45 H30.9.13]

- 5. 常設代替高圧電源装置用カルバート(トンネル部)の耐震安全性評価[改 29 H30.8.6]
- 6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価[改 47 H30.9.26]
- 7. 常設代替高圧電源装置用カルバート (カルバート部)の耐震安全性評価[改 29 H30.8.6]

[改43 H30.8.30(参考2,3追加)]

- 8. 代替淡水貯槽の耐震安全性評価[改 34 H30.8.16]
- 9. 常設低圧代替注水系ポンプ室の耐震安全性評価[改 38 H30.8.21]
- 10. 常設低圧代替注水系配管カルバートの耐震安全性評価[改 31 H30.8.13]
- 11. 格納容器圧力逃がし装置用配管カルバートの耐震安全性評価[改 38 H30.8.21]
- 12. 緊急用海水ポンプピットの耐震安全性評価[改 35 H30.8.17]
- 13. 緊急用海水取水管の耐震安全性評価[改 33 H30.8.14]
- 14. SA用海水ピットの耐震安全性評価[改 31 H30.8.13]
- 15. 海水引込み管の耐震安全性評価[改 33 H30.8.14]
- 16. SA用海水ピット取水塔の耐震安全性評価[改 37 H30.8.21]
- 17. 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価[改 36 H30.8.20]
- 18. 可搬型設備用軽油タンク基礎の耐震安全性評価[改 34 H30.8.16]

6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価

目次

6.	仹	?設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価・・・・・・・・・・・・-6-	-1
	6.	1 評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-3
	6. 3	2 評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-3
	(5.2.1 適用 <mark>基準</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.3
	(5.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-5
	(5.2.3 評価対象断面の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.9
	(5.2.4 評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	(5.2.5 使用材料及び材料定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	(5.2.6 評価構造物諸元······ 6-1	8
	(5.2.7 地下水位	21
	(5.2.8 地震応答解析手法······ 6-2	21
	(5.2.9 解析モデルの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	(5.2.10 減衰定数・・・・・・・・・・・・ 6-3	33
	(5.2.11 荷重の組合せ・・・・・・ 6-3	39
	(5.2.12 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ł5
	6.	3 評価内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	(5.3.1 鉛直断面の設計······ 6-4	<u>1</u> 8
	(5.3.2 水平断面の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
	(5.3.3 版部材の設計・・・・・・ 6-6	30
	(5.3.4 入力地震動の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	(5.3.5 許容限界の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<i>}</i> 7
	6.4	1 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)5
	(5.4.1 地震応答解析結果······ 6-10)5
	(5.4.2 鉛直断面に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	(5.4.3 水平断面に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<i>)</i> 2
	(6.4.4 頂版及びスラブに対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ł9
	(5.4.5 底版に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	(6.4.6 版部材が側壁を固定することによる隅角部の評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<i>)</i> 6

6.4.7 基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6-7	16
6.5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	'37
1. 減衰の設定について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-3
2. 側壁・中壁開口部における三次元的挙動に対する影響検討6-	17
2.1 検討方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
2.2 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.2.1 評価ケースの選定・・・・・ 6-	20
2.2.2 曲げ軸力及びせん断に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6-	27

6.1 評価方法

常設代替高圧電源装置用カルバート(立坑部)(以下,「立坑」という。)は、耐震安全上 重要な機器・配管系を間接支持する機能を求められる構造物である。立坑について基準地震動 S。による耐震安全性評価として、構造部材の曲げ、せん断評価及び地盤の支持性能評価を実 施する。

<mark>立坑の地震応答解析においては,地震時の地盤の有効応力の変化に応じた影響を考慮できる</mark> 有効応力解析を実施する。

有効応力解析に用いる液状化強度特性は、敷地の原地盤における代表性及び網羅性を踏まえ た上で保守性を考慮して設定する。

屋外重要土木構造物への地盤変位に対する保守的な配慮として、地盤を強制的に液状化させることを仮定した影響を考慮する。その際は、原地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性)を仮定する。

屋外重要土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として、地盤の 非液状化の影響を考慮する。その際は、原地盤において非液状化の条件を仮定した解析を実施 する。

構造部材の曲げ, せん断評価については地震応答解析に基づく発生応力又は発生せん断力が 許容限界以下であることを確認する。基礎地盤の支持性能評価については, 地震応答解析に基 づく接地圧が許容限界以下であることを確認する。

- 6.2 評価条件
 - 6.2.1 適用<mark>基準</mark>

適用する規格,基準類を以下に示す。

・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)

・コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)

・<mark>道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)日本道路協会,平成 24 年 3</mark> 月)

項目	適用する規格,基準類	備考			
使用材料及び材料定数	 ・コンクリート標準示方書 [構 造性能照査編](2002 年制定) 	_			
荷重及び荷重の組合せ	・コンクリート標準示方書 [構 造性能照査編] (2002 年制定)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討 			
許容限界	 ・コンクリート標準示方書 [構 造性能照査編](2002年制定) ・道路橋示方書(I共通編・IV 下部構造編)・同解説(平成 24年3月) 	 ・曲げに対する照査は、発生 応力が許容限界以下である ことを確認 ・せん断に対する照査は、発 生応力又は発生せん断力が 許容限界以下であることを 確認 			
地震応答解析	• JEAG4601-1987	 ・有限要素法による2次元モ デルを用いた時刻歴非線形 解析 			

表 6.2-1 適用する規格,基準類

6.2.2 耐震安全性評価フロー

図 6.2-1 に立坑の耐震安全性評価フローを示す。

<耐震性評価>

図 6.2-1 立坑の耐震安全性評価フロー

部材評価フローを図 6.2-2 に,部材評価概念図を図 6.2-3 に,各部材評価で照査対象と する鉄筋を図 6.2-4 に示す。また,各部材評価で照査対象とする鉄筋を表 6.2-2 に示す。

a) 2次元有効応力解析からの応答値の抽出

b) 立坑線形はり要素の鉛直断面設計

c) 水平断面の設計(フレーム計算)

頂版及び中床版の設計

d) スラブの設計

図 6.2-3 部材評価概念図

図 6.2-4 各部材評価で照査対象とする鉄筋種別概念図

<u>ま69-9</u> 久部材証価で昭本対免とする鉄笛

X0.2 2 百时内前面C派重内家C,每头加				
部材	照查対象鉄筋	記号	部材評価	備考
	鉛直鉄筋		立坑線形はり要素の鉛直断面設計(曲げ軸力)	
加止民卒	水平鉄筋 —		立坑線形はり要素の鉛直断面設計(せん断力)	
側壁			水平断面の設計(曲げ軸力)	*
	せん断補強筋		水平断面の設計(せん断力)	
広垢	水平鉄筋		底版の設計(曲げモーメント)	
因成	せん断補強筋		底版の設計(せん断力)	
頂版	水平鉄筋		頂版の設計(曲げモーメント)	
	せん断補強筋		頂版の設計 (せん断力)	

注記 *: 側壁における水平方向の鉄筋の設計について、各2次元鉛直断面モデル(2次元有効応力解析モデル)による各側壁の面内方向のせん断力に対するせん断力照査で設計する水平鉄筋(面内方向のせん断補強筋)と、水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対する曲げ軸力照査で設計する水平鉄筋(主鉄筋)は、同じ方向の鉄筋であり、両設計で算定される必要水平鉄筋量を足し合わせた合計必要水平鉄筋量以上を同側壁の面内方向に配置する。これと共に、水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対するせん断力照査で設計するせん断補強筋を同側壁の面外方向に配置する。

直交する2つの2次元鉛直断面モデル(2次元有効応力解析モデル)により求めら れる各側壁の面内方向のせん断力と面外方向の最大荷重に基づき,4辺の側壁全てに

6 - 8

ついて,上記の設計計算により,面内方向の合計必要水平鉄筋量(面内方向の必要せ ん断補強筋量と必要主鉄筋量を足し合わせた合計必要水平鉄筋量)以上を各側壁の面 内方向に配置し,面外方向の必要せん断補強筋量以上を各側壁の面外方向に配置す る。

6.2.3 評価対象断面の方向

立坑の位置を図 6.2-5 に示す。

立坑は幅 12.5 m (南北方向), 16.5 m (東西方向)の箱形構造物であることから,加 振方向の側壁又は中壁を耐震壁として考慮することができる。よって,強軸断面方向及び 弱軸断面方向の区別が明確でない構造物であるため,評価対象断面は立坑南北方向及び東 西方向の二方向とする。

図 6.2-5(2) 立坑の平面配置図(拡大図)

表 6.2-3 立坑の評価対象断面の方向の選定

6.2.4 評価対象断面の選定

図 6.2-6 及び図 6.2-7 に立坑の平面図及び断面図を示す。

立坑は,電気ケーブル,軽油移送配管及び水配管を支持する4層2連カルバート状の鉄筋コンクリート構造物であり,南北方向約12.5 m,東西方向約16.5 m,高さ39.3 mである。

立坑は箱形構造物であり,強軸断面方向及び弱軸断面方向の区別が明確でない構造物で あるため,評価対象断面は立坑南北方向及び東西方向の2断面を対象とする。

立坑は, 立坑中心位置において、各構造部材と等価な剛性を有する線形はり要素により モデル化する。

図 6.2-6 立坑の平面図

図 6.2-7(2) 立坑の断面図(東西方向断面)

6.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は、適用基準類を基に設定する。構造物の使用材料を表 6.2 -4に、材料物性値を表 6.2-5に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」において設定している 物性値を用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考 慮できるモデル化とする。地盤の物性値を表 6.2-6 に示す。

表 6.2-4 使用材料

材料	諸元	
コンクリート	設計基準強度 40N/mm ²	
鉄筋	SD345, SD490	

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	24.5	3. 1×10^4	0.2

表 6.2-5 材料物性值

				原地盤									
	パラメータ		埋戻土			第四系(液状化検討	対象層)			豊浦標準砂		
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1		
物理	密度 () は地下水位以浅	ρ	g/cm^3	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958	
特性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702	
	ポアソン比	$\nu_{\rm CD}$	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333	
変形特性	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6	
	基準初期せん断剛性 ()は地下水位以浅	$G_{\rm ma}$	kN/m^2	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975	
	最大履歴減衰率	h_{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0. 287	
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0	
特性	内部摩擦角	ϕ_{CD}	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30	
	液状化パラメータ	$\phi_{\rm p}$	—	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28	
液	液状化パラメータ S ₁		—	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005	
状化	液状化パラメータ	W_1	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06	
化特性	液状化パラメータ	P_1	_	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57	
	液状化パラメータ	P_2	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80	
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44	

表 6.2-6(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 6.2-6(2) 地盤の解析用物性値一覧(非液状化層)

			原地盤								
	パラメータ				第四系(非	液状化層)	新第三系				
				Ac	D2c-3	1m	D1c-1*1	Km	161		
物理性	密度 () は地下水位以浅		g/cm ³	1.65	1.77	1.47 (1.43)		1.72-1.03 \times 10 ⁻⁴ · z	2.04 (1.84)		
特性	間隙比	е	_	1.59	1.09	2.8	Ι	1.16	0.82		
変形特性	ポアソン比	$\nu_{\rm CD}$	-	0.10	0.22	0.14	I	0.16+0.00025 · z	0.33		
	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m^2	480	696	249 (223)	_	<i>티</i>	98		
	基準初期せん断剛性 () は地下水位以浅	G_{ma}	kN/m^2	121829	285223	38926 (35783)		動的変形特性に基づき z(標高)毎に物性値を 設定	180000		
	最大履歴減衰率	h _{max}		0.200	0.186	0.151	-		0.24		
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	_	0.358-0.00603 · z	0.02		
特 性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	_	23.2+0.0990• z	35		

 性
 100-700-700
 200-700
 200-700
 200-700

 注記
 *1:施設の耐震評価に影響を与えるものではないことから、解析用物性値として本表には記載しない。

区分	設定深度				密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波
	TP (m)	適用消	架度 T	P(m)	ρ		CCD	φ _{cb}	速度Vs	せん断剛性 Gma	弾性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp
番号	7.				(g/cm3)	νcd	(kN/m²)	(°)	(m/s)	(kN/m^2)	(kN/m²)	(kN/m^2)	mG. mK	hmax(-)	νd	(m/s)
1	10	9.5	~	10.5	1 72	0.16	208	24.2	425	310 675	353 317	504	0.0	0.105	0.464	1 640
1	10	5.5		10.5	1.72	0.10	250	04.1	420	310,013	355, 317	504	0.0	0.105	0.404	1,040
2	9	8.5	~	9.5	1.72	0.16	304	24.1	426	312, 139	354,982	504	0.0	0.105	0.464	1,644
3	8	7.5	\sim	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1, 648
4	7	6.5	\sim	7.5	1.72	0.16	316	23.9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651
5	6	5.5	\sim	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651
6	5	4.5	\sim	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655
7	4	3.5	\sim	4.5	1.72	0.16	334	23.6	430	318, 028	361,679	504	0.0	0.106	0.463	1,638
8	3	2.5	\sim	3.5	1.72	0.16	340	23.5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642
9	2	1.5	\sim	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642
10	1	0.5	\sim	1.5	1.72	0.16	352	23.3	432	320, 993	365,051	504	0.0	0, 107	0,463	1,646
11	0	-0.5	~	0.5	1.72	0.16	358	23.2	433	322 481	366 743	504	0.0	0.107	0.463	1 650
12	-1	-1.5	~	-0.5	1.72	0.16	364	23.1	434	323 972	368 439	504	0.0	0.108	0.463	1,653
12	-	0.5		1.5	1.72	0.10	270	00.0	405	205 467	270, 120	504	0.0	0.100	0.463	1,000
13	-2	-2.5		-1.5	1.72	0.10	310	23.0	435	325, 407	370, 139	504	0.0	0.108	0.465	1,007
14	-3	-3, 5	\sim	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657
15	-4	-4.5	\sim	-3.5	1.72	0.16	382	22.8	436	326, 965	371,843	504	0.0	0.108	0.463	1,661
16	-5	-5.5	\sim	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644
17	-6	-6.5	\sim	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648
18	-7	-7.5	\sim	-6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648
19	-8	-8.5	~	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652
20	-9	-9.5	\sim	-8.5	1.72	0.16	412	22.3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656
21	-10	-11	\sim	-9.5	1.72	0.16	418	22.2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659
22	-12	-13	~	-11	1.72	0.16	430	22.0	442	336,026	382, 147	504	0.0	0.110	0.462	1,663
23	-14	-15	\sim	-13	1.72	0.16	442	21.8	444	339, 074	385, 614	504	0.0	0.111	0.462	1, 671
24	-16	-17	~	-15	1.72	0.16	454	21.6	445	340,603	387 352	504	0.0	0.111	0.461	1 654
25	_10	-10	~	-17	1.72	0.16	467	21.0	447	242 671	200, 842	504	0.0	0.112	0.461	1,669
20	20	15		10	1.72	0.10	401	01.0	441	245,011	390, 842	504	0.0	0.112	0.461	1,002
26	-20	-21		-19	1.72	0.10	419	21.2	440	343, 211	392, 393	504	0.0	0.112	0.461	1,005
27	-22	-23	\sim	-21	1.72	0.15	491	21.0	450	348, 300	381,471	498	0.0	0.112	0.461	1,673
28	-24	-25	\sim	-23	1.72	0.15	503	20.8	452	351, 403	384, 870	498	0.0	0.113	0.461	1,680
29	-26	-27	\sim	-25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664
30	-28	-29	\sim	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672
31	-30	-31	\sim	-29	1.72	0.15	539	20.2	456	357, 650	391,712	498	0.0	0.114	0.460	1,675
32	-32	-33	\sim	-31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683
33	-34	-35	\sim	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667
34	-36	-37	\sim	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675
35	-38	-39	\sim	-37	1.72	0.15	587	19.4	462	367, 124	402,088	498	0.0	0.116	0.459	1,678
36	-40	-41	\sim	-39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0,116	0,459	1,685
37	-42	-43	\sim	-41	1.72	0.15	611	19.0	465	371,907	407, 327	498	0.0	0, 117	0,459	1,689
38	-44	-45	\sim	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678
30	-46	-47	~	-45	1 72	0.15	635	18.6	468	376 721	412 599	498	0.0	0.117	0.458	1 681
40	-49	-40	~	-47	1.72	0.15	647	10.0	470	270.049	416, 124	409	0.0	0.119	0.459	1,001
40	40	45		41	1.72	0.15	041	10.4	470	315, 540	410, 134	450	0.0	0.110	0.458	1,000
41	-50	-51	~	-49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0.458	1,696
42	-52	-53	~	-51	1.73	0.15	672	18.1	473	387,051	423, 913	498	0.0	0.118	0.458	1,699
43	-54	-55	~	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1, 688
44	-56	-57	\sim	-55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692
45	-58	-59	\sim	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699
46	-60	-61	\sim	-59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702
47	-62	-63	\sim	-61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709
48	-64	-65	~	-63	1.73	0.14	744	16.9	482	401, 921	424, 250	492	0.0	0.120	0.456	1,695
49	-66	-67	\sim	-65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702
50	-68	-69	\sim	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705
51	-70	-71	\sim	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712
52	-72	-73	~	-71	1, 73	0,14	792	16.1	489	413.679	436, 661	492	0.0	0, 121	0,456	1,719
53	-74	-75	~	-73	1. 73	0.14	804	15.9	490	415 373	438, 449	492	0.0	0, 122	0.455	1, 705
54	-76	-77	~	-75	1 72	0.14	816	15.7	409	418 771	442 036	402	0.0	0.122	0.455	1 719
54	_70	-70		_77	1.10	0.14	010	15.7	402	420 475	442 005	100	0.0	0.122	0.400	1, 114
55	-18	-18	~	-11	1. /3	0.14	028	10.0	493	420, 475	440,830	492	0.0	0.122	0.455	1, /10
56	-80	-81	~	-79	1.73	0.14	840	15.3	495	423, 893	447,443	492	0.0	0.122	0.455	1,723
57	-82	-85	~	-81	1.73	0.14	852	15.1	496	425, 608	449, 253	492	0.0	0.123	0.455	1,726
58	-88	-90	\sim	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726
59	-92	-95	\sim	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736
60	-98	-101	\sim	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736
61	-104	-108	~	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733
62	-112	-115	~	-108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1,737
63	-118	-122	\sim	-115	1.73	0.13	1,070	11.5	524	475, 016	483, 575	486	0.0	0.127	0.451	1,754
64	-126	-130	\sim	-122	1.73	0.13	1, 118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1, 758

表 6.2-6(3) 地盤の解析用物性値一覧(新第三系 Km 層)

	パラメータ			地盤改良
物理	密度 () は地下水位以浅	ρ	g/cm ³	2.18 (2.00)
将191	間隙比	е	-	0.75
	ポアソン比	ν _{CD}	-	0.26
変形	基準平均有効主応力 ()は地下水位以浅	σ' _{ma}	kN/m²	1 (1)
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m^2	822662 (756184)
	最大履歷減衰率	h _{max}	_	0.152
強度	粘着力	C _{CD}	kN/m^2	1500
特性	内部摩擦角	ϕ_{CD}	度	0
	変相角	$\phi_{ m p}$	度	-
Vite .		S_1	-	_
状化	液状化パラメータ	w ₁	-	_
特		p_1	-	-
1注		p_2	-	-
		c1	_	-

表 6.2-6(4) 地盤の解析用物性値一覧(地盤改良)

6.2.6 評価構造物諸元

許容応力度法による照査を行う立坑の評価構造物諸元を表 6.2-7 に示す。

	台	上様	材料			
本[[(六	部材幅	部材高	コンクリート		操作电子	
百13 <u>17</u> .			f' _{ck}	鉄筋	機肥安水	
	(m)	(m)	(N/mm^2)			
鉛直断面	16 500	12 500	40	SD400		
(南北方向 B1F)	10. 500	12. 500	40	50490		
鉛直断面	16 500	12 500	40	SD400		
(南北方向 B2F)	10. 500	12. 500	40	3D490		
鉛直断面	16 500	12 500	40	SD400		
(南北方向 B3F)	10. 500	12. 500	40	3D490		
鉛直断面	16 500	12 500	40	SD400		
(南北方向 B4F)	10. 500	12. 500	40	3D490		
鉛直断面						
(南北方向	16.500	12.500	40	SD490		
B4F トンネル部)						
鉛直断面	16 500	12 500	40	SD400	耐震安全上重要な機	
(南北方向ピット部)	10. 500	12. 500	40	50490	器・配管系を間接支	
鉛直断面	12 500	16 500	40	SD400	持する機能の健全性	
(東西方向 B1F)	12. 500	10. 500	40	50490	を確保	
鉛直断面	12 500	16 500	40	SD490		
(東西方向 B2F)	12. 500	10. 500	40	50490		
鉛直断面	12 500	16 500	40	SD400		
(東西方向 B3F)	12. 500	10. 500	40	3D490		
鉛直断面	12 500	16 500	40	SD400		
(東西方向 B4F)	12. 500	10. 500	40	3D490		
鉛直断面						
(東西方向 B4F	12.500	16.500	40	SD490		
トンネル部)						
鉛直断面	12 500	16 500	40	SD400		
(東西方向ピット部)	12. 000	10. 000	40	30490		

表 6.2-7(1) 評価部位とその仕様

	仕	:様	材料				
立忆行	部材幅	部材高	コンクリート		^挑 能 田 小		
티미			f' _{ck}	鉄筋			
	(m)	(m)	(N/mm^2)				
таща	1 000	0.000	40	SD345			
」 貝瓜	1.000	2.000	40	SD490			
フニブ (D1P)	1 000	0.000	40	SD345			
X / J (BIF)	1.000	2.000	40	SD490			
	1 000	0.000	40	SD345			
$X \mathcal{I} \mathcal{I} (B2F)$	1.000	2.000	40	SD490			
	1 000		40	SD345			
$X \mathcal{I} \mathcal{I}$ (B3F)	1.000	2.000	40	SD490			
	1 000		10	SD345			
スフワ (B4F)	1.000	1.000	40	SD490			
	1 000	0.000	40	SD345			
医放	1.000	3.000	40	SD490			
	1 000	0.000	10	SD345	耐震安全上重 五次地間 五次地間 二次地間 二和地間 二和地間 二和地間 二和地間		
水平町面(BIF)	1.000	3.000	40	SD490	安な機奋・配		
	1 000	0.000	40	SD345	官糸を间接文		
水平町面(B2F)	1.000	3.000	40	SD490	持する機能の 健全性を確保		
	1 000	0.000	10	SD345			
水平町面(B3F)	1.000	3.000	40	SD490			
	1 000	0.000	40	SD345			
水平町(B4F)	1.000	3.000	40	SD490			
水平断面	1 000	0.000	10	SD345			
(B4F トンネル部)	1.000	3.000	40	SD490			
	1 000	0.000	40	SD345			
水平町面(ヒット部)	1.000	3.000	40	SD490			
水平断面	1 000	1 500	10	SD345			
(中壁 部材高1500 mm)	1.000	1.500	40	SD490			
水平断面	1 000	1 000	40	SD345			
(中壁 部材高1000 mm)	1.000	1.000	40	SD490			

表 6.2-7(2) 評価部位とその仕様

6.2.7 地下水位

地下水位は地表面として設定する。

6.2.8 地震応答解析手法

立坑の地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法を用い て、基準地震動S。に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間 積分の時刻歴応答解析にて行う。構造部材については、はり要素及び平面ひずみ要素を用 いる。また、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるよ うにモデル化する。地震応答解析については、解析コード「FLIP Ver.7.3.0_2」を使用 する。なお、解析コードの検証及び妥当性確認等の概要については、V-5-10「計算機プ ログラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 6.2-9 に示す。

図 6.2-9 地震応答解析手法の選定フロー

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用 する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ 及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に,地盤は荷重を与えることによりせん断ひずみを増加させていくと,地盤のせん 断応力は上限値に達し,それ以上はせん断応力が増加しなくなる特徴がある。また,地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

- 6.2.9 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を適用し、図6.2-10に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上を 確保する。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数 20 Hz 及びせん断波速度V_sで算定される波長の 5 又は 4 分割、すなわちV_s/100 又はV_s/80 を考慮し、要素高さを 1 m 程度まで細分割して設定する。

構造物の要素分割については、構造物が接している地盤と同じ要素幅に分割して設定する。

図 6.2-10 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデル(不整形地 盤左右端のそれぞれ縦1列の要素列と同じ地層構成で、水平方向に連続することを表現す るために循環境界条件を設定したモデル)である。2次元有効応力解析における自由地盤 の初期応力解析から不整形地盤の地震応答解析までのフローを図 6.2-11 に示す。また、 立坑周辺の地質断面図を図 6.2-12 に示す。

図 6.2-12(1) 地質断面図(南北方向断面)

- (2) 境界条件
 - a. 固有值解析時

固有値解析を実施する際の境界条件は、境界が構造物を含めた周辺地盤の振動特性に 影響を与えないよう設定する。ここで、底面境界は地盤のせん断方向の卓越変形モード を把握するために固定とし、側面は実地盤が側方に連続していることを模擬するため水 平ローラーとする。境界条件の概念図を図 6.2-13 に示す。

図 6.2-13 固有値解析における境界条件の概念図

b. 初期応力析時

初期応力解析は、地盤や構造物の自重及び風荷重等の静的な荷重を載荷することによ る常時の初期応力を算定するために行う。そこで、初期応力解析時の境界条件は底面固 定とし、側方は自重による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。 境界条件の概念図を図 6.2-14 に示す。

図 6.2-14 初期応力解析における境界条件の概念図

c. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 地震応答解析モデルを図 6.2-15 に示す。 図 6.2-15(1) 立坑の地震応答解析モデル(南北方向断面)

図 6.2-15(2) 立坑の地震応答解析モデル(東西方向断面)

(3) 構造物のモデル化

立坑は, 立坑中心位置において各構造部材と等価な剛性を有する線形はり要素にてモデ ル化する。

①立坑構造(線形はり要素)

図 6.2-17 に示すように各層における開口配置を考慮し,開口を控除した断面諸量(断面積 A,断面 2 次モーメント I)を設定する。

開口については、開口補強ができない場合(部材厚よりも開口サイズ(1辺の長さ)が 大きい場合を目安とする。)には、開口として評価する。また、開口補強が可能な場合 (部材厚よりも開口サイズが小さい場合を目安とする。)には、開口を剛性低減しないモ デルで評価し、実配筋としては、開口により配置できない鉄筋と同等以上を開口部周辺に 配置する(周囲への鉄筋の配置で補強が可能な規模の開口については、開口がない部材と しての質量ならびに剛性を考慮して断面力を保守的に算定する。)。

立坑構造の質量は、線形はり要素に分布質量として設定する。なお、立坑構造をモデル 化した線形はり要素には回転慣性を考慮する。

解析奥行は単位奥行(1.0 m)とする。

②立坑側方(仮想剛梁要素)

立坑の構造部材と地盤との相互作用を考慮するため、構造部材に対して剛な断面性能の 仮想剛梁を配置する。

軸剛性=100×EA 曲げ剛性=100×EI 質量密度 ρ=0.0

③側面(仮想柔梁要素)

立坑構造と地盤の接合面にジョイント要素を設けるため、側面に仮想柔梁を配置する。 仮想柔梁は、解析モデルの挙動に影響を及ぼさないよう十分に柔な断面性能とする。

軸剛性=EA/10⁶ 曲げ剛性=EI/10⁶ 質量密度 ρ=0.0

員重田及り 0.0

④底面(仮想剛梁要素)

底面のロッキング挙動を考慮するため、立坑の構造部材に対して剛な断面性能の仮想剛 梁を配置する。

軸剛性=100×EA

曲げ剛性=100×EI

質量密度 ρ =0.0

⑤その他

側面及び底面と地盤との間にジョイント要素を配置し、接合面の剥離及びすべりを考慮

する。

機器配管荷重及び積雪荷重については節点付加質量で考慮する。積雪については回転慣 性<mark>を</mark>考慮する。

図 6.2-16(1) 立坑構造物の解析モデル図(立坑南北方向)

図 6.2-16 (2) 立坑構造物の解析モデル図 (立坑東西方向)

図 6.2-17 立坑構造物(線形はり要素)の入力剛性設定
(4) ジョイント要素の設定

地盤と構造体の接合面にジョイント要素を設けることにより,強震時の地盤と構造体の 接合面における剥離及びすべりを考慮する。

ジョイント要素は、地盤と構造体の接合面で法線方向及びせん断方向に対して設定する。 法線方向については、常時状態以上の引張荷重が生じた場合、剛性及び応力をゼロとし、 剥離を考慮する。せん断方向については、地盤と構造体の接合面におけるせん断抵抗力以 上のせん断荷重が生じた場合、せん断剛性をゼロとし、すべりを考慮する。図 6.2-18 に ジョイント要素の考え方を示す。

なお、せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。 c、 ϕ は周辺地盤 の c、 ϕ とする。 (表 6.2-8 参照)

```
\tau_{\rm f} = c + \sigma' \tan \phi
```

ここで,

τ_f : せん断強度

c : 粘着力

φ :内部摩擦角

周辺の状況		粘着力 C (N/mm ²)	内部摩擦角 (度)	備考
第四紀層	埋戻土層	0	37.3	_
	du 層 0		37.3	_
	D2g-3 層	0	44.4	_
新第三系 Km 層		C=0.358-0.00603 · Z	φ =23. 2+0. 0990 • Z	_
地盤改良体		1.5	0	_

表 6.2-8 周辺地盤及び隣接構造物との境界に用いる強度特性

Z:標高(m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸技術研究センター)に従い、表 6.2-9 のとお り設定する。

表 6.2-9 ジョイント要素のばね定数

	せん断剛性 k 。	圧縮剛性 k _n
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

:ジョイント要素

図 6.2-18 ジョイント要素の考え方

(5) 材料特性の設定

立坑南北方向断面及び東西方向断面については、側壁、底版、頂版及び中床版を線形は り要素によりモデル化する。

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

6.2.10 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお、 Rayleigh 減衰をα=0となる剛性比例型減衰とする。

有効応力解析では、時系列で地盤の1次固有振動数が低振動数側へシフトして行くこと から、Rayleigh 減衰の係数α、βの両方を用いると、質量比例項の減衰α[M]の影響によ り、有効応力解析における減衰定数が低振動数帯で過減衰となる場合がある。

一方,有効応力解析における低振動数帯で減衰α[M]の影響がない剛性比例型減衰では, 地盤の1次固有振動数が時系列で低振動数側へシフトしていくのに伴い,1次固有振動モ ードに対する減衰定数が初期減衰定数より保守的に小さい側へ変化していくことを考慮で きる。

ゆえに、有効応力解析では、地震力による時系列での地盤剛性の軟化に伴う1次固有振動数の低振動数側へのシフトに応じて、1次固有振動モードに対する減衰定数として、初 期減衰定数よりも保守的に小さい側のモード減衰定数を適用し、地盤応答の適切な評価が 行えるように、低振動数帯で減衰α[M]の影響がない剛性比例型減衰を採用した。

[C] = α [M] + β [K]
 ここで、
 [C] :減衰係数マトリックス
 [M] :質量マトリックス
 [K] :剛性マトリックス
 α, β :係数

係数α, βは以下のように求めている。

 $\alpha = 0$ $\beta = \frac{h}{\pi f}$ ここで、 f : 固有値解析により求められた1次固有振動数 h : 各材料の減衰定数

地盤の減衰定数は 1% (解析における減衰は,ひずみが大きい領域では履歴減衰が支配 的となる。このため,解析上の安定のためになるべく小さい値として 1%を採用してい る。)とする。また,線形材料としてモデル化するコンクリートの減衰定数は 5% (JE AG4601-1987)とする。

図 6.2-19 に Rayleigh 減衰の設定フローを,表 6.2-10 及び表 6.2-11 に固有値解析 結果を示す。

モード次数 刺激係数 固有振動数(Hz) 備考 1次として採用 1 0.773 278.33 2 1.000 -56.19 _ 3 1.23936.97 — 4 1.497 0.65 _ 5 1.54612.82 ____ 6 1.672 -0.99 — 7 1.895 -3.07 _ 8 1.935-20.21 — 9 2.027 -7.79 —

表 6.2-10(1) 固有值解析結果(立坑南北方向)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

表 6.2-10(2) 固有值解析結果(立坑南北方向)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.778	281.49	1次として採用
2	1.032	-39.67	_
3	1.284	35.91	_
4	1.498	0.80	—
5	1.649	-13.72	_
6	1.674	-0.34	_
7	1.905	-0.47	—
8	1.964	-20.46	_
9	2.079	-7.30	_

(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

モード次数 刺激係数 固有振動数(Hz) 備考 1次として採用 1 0.769 274.69 2 0.975 -71.09 _ 3 1.214 37.26 — 4 1.45713.30 _ 0.35 5 1.495____ 6 1.672 0.89 — 7 7.38 1.884 _ 8 1.909 -16.31 _ 9 1.980 -10.85 _

表 6.2-10(3) 固有值解析結果(立坑南北方向)

(検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

表 6.2-10(4) 固有值解析結果(立坑南北方向)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.762	271.47	1次として採用
2	0.953	-72.43	—
3	1.172	-33.16	_
4	1. 428	17.02	—
5	1.506	1.76	—
6	1.626	-15.64	_
7	1.688	-13.62	_
8	1.723	-13.35	_
9	1.839	0.48	_

地盤を強制的に液状化させることを仮定した検討ケース)

モード次数 刺激係数 固有振動数(Hz) 備考 1次として採用 1 0.768 243.80 2 1.253 3.37 _ 3 1.542 4.65 — 6.95 4 1.815 _ 5 1.9622.05 ____ 6 2.139 55.34 — 7 2.224 -57.35 _ 8 2.432 14.17 — 9 2.744 16.77 _

表 6.2-11(1) 固有值解析結果(立坑東西方向)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

表 6.2-11(2) 固有值解析結果(立坑東西方向)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.769	243.95	1次として採用
2	1.260	3.00	_
3	1.544	-5.14	_
4	1.840	-5.17	_
5	1.969	-1.37	_
6	2. 181	67.66	_
7	2.253	42.61	_
8	2. 445	14.58	_
9	2.814	18.71	_

(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

モード次数 刺激係数 固有振動数(Hz) 備考 1次として採用 1 0.767 243.60 2 1.245 3.90 _ 3 1.540 -3.90 — -9.59 4 1.783 _ 5 1.955-3.40 ____ 6 2.080 46.25 — 7 2.200 64.27 _ 8 2.418 13.93 _ 9 2.651 -14.09 _

表 6.2-11 (3) 固有值解析結果 (立坑東西方向)

(検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

表 6.2-11(4) 固有值解析結果(立坑東西方向)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.754	238.96	1次として採用
2	1.157	17.38	—
3	1.436	-26.96	_
4	1.569	-11.20	—
5	1.671	17.94	—
6	1.821	-47.61	_
7	1.864	-45.09	—
8	1.952	19.03	_
9	2.086	-10.61	_

地盤を強制的に液状化させることを仮定した検討ケース)

6.2.11 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出 し,それぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反 力による荷重が含まれるものとする。

なお、立坑は、地盤内に埋設されている構造物であることから運転時の異常な過渡変化 時の状態及び設計基準事故時の状態の影響を受けないと考えられるため当該状態について の組合せは考慮しないものとする。また重大事故等対処時においても、地盤内で設計基準 事故時の条件を上回るような事象は発生しないため、設計基準事故時の条件を上回る荷重 はない。

荷重の組合せを表 6.2-12 に示す。

地震時に立坑に作用する機器・配管系からの反力については,機器・配管系を,解析モ デルに付加質量として与えることで考慮する。

種別		荷重		算定方法
		転任古手	(・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	常時	1214日里	0	じて設定
	考慮	機器・配管自重	\bigcirc	・機器・配管の重さに基づいて設定
-), h	荷重	土被り荷重	\bigcirc	・常時応力解析により設定
水人		永久上載荷重 -		・恒常的に配置された設備等はないことから、考慮しない
何里	静止土圧		\bigcirc	・常時応力解析により設定
			(・地下水位に応じた静水圧として設定
		2下水庄		・地下水の密度を考慮
	内水圧		_	・内水がないことから、考慮しない
変動荷重		雪荷重(・雪荷重を考慮
		<u>車</u> 風荷重		 ・躯体が地中にあることから、風荷重を考慮しない
(田 文)公	世毛	水平地震動	\bigcirc	・基準地震動S。による水平・鉛直同時加振
(地震	(何里)	鉛直地震動	0	・躯体,機器・配管の慣性力,動土圧を考慮
(地莀何里)		動水圧		・内水がないことから、考慮しない

表 6.2-12 荷重の組合せ

(1) 機器・配管荷重

図 6.2-20 に南北断面,東西断面における機器・配管荷重図を,表 6.2-13 に機器・配 管荷重表を示す。

機器・配管荷重は解析の単位奥行き(1 m)あたりの付加質量として立坑線形はり要素位置に考慮する。

配管荷重は立坑線形はり要素構成節点の分担幅を考慮した付加質量を計算し,立坑線形 はり要素各節点に考慮する。

機器荷重,水密扉等の固定物荷重については,設置位置に相当する節点に付加質量とし て考慮する。

図 6.2-20(1) 機器・配管荷重図(南北断面)

図 6.2-20(2) 機器·配管荷重図(東西方向断面)

	采 0.2 1	0 成曲 起目向主教	
荷重 No.	種類	荷重値及び単位	備考
1	軽油配管	0.40 t/m	東西配管の合計値
2	電線管	0.20 t/m	
3	ケーブルトレイ	0.50 t/m	
4	原子炉注水配管	0.70 t/m	
5	弁	0.74 t	
⑥及び⑥'	ダクト	0.30 t/m	
7	TBP 配管	0.20 t/m	
⑧及び⑧'	消火配管	0.10 t/m	
9	排水配管	0.20 t/m	
а	仕切り壁	23.21 t	
b	水密扉	5.00 t	
С	仕切り壁	34.21 t	
	盤	8.00 t	
d	仕切り壁	28.49 t	
е	仕切り壁	17.49 t	
	ボンベユニット	5.00 t	
f, g, h, i	立坑東側階段荷重	3.75 t	1か所当たり
			総重量 15.0 t
j	排水ポンプ	0.40 t	2 基分の重量

表 6.2-13 機器・配管荷重表

(2) 外水圧

地下水位は地表面として設定する。設定の際は、地下水の密度として、1.00 g/cm³を考慮する。

(3) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施行細則 第16条の4」に従って設定する。積雪の厚さ1 cm あたりの荷重を20 N/m²/cm として、 積雪量は30 cm としていることから積雪荷重は600 N/m²であるが、地震時短期荷重とし て図 6.2-21 に示すように積雪荷重の0.35 倍である 0.21 kN/m²を考慮する。

積雪荷重は解析の単位奥行き(1 m)あたりの付加質量として立坑線形はり要素頂部に考慮する。立坑東西方向断面にモデル化している軽油カルバート上面についても同様である。

図 6.2-21(1) 雪荷重図(南北方向断面)

図 6.2-21 (2) 雪荷重図 (東西方向断面)

- 6.2.12 地震応答解析の検討ケース
 - (1) 耐震評価における検討ケース <mark>耐震評価</mark>における検討ケースを表 6.2-14 に示す。 耐震評価においては、全ての基準地震動S。に対して実施する①の検討ケース(基本ケ ース)において、せん断力照査及び曲げ軸力照査をはじめとした全ての評価項目につい て,各照査値が最も厳しい(許容限界に対する余裕が最も小さい)地震動を用い,②~⑥ より追加検討ケースを実施する。最も厳しい地震動の選定は、照査値1.0に対して2倍の 余裕となる照査値0.5以上を相対的に厳しい地震動の選定の目安として実施する。 ②~⑥より追加検討ケースを実施する地震動の選定フローを図 6.2-22 に示す。

<u>表 6.2-14 耐震評価における検討ケース</u>									
検討ケース			 原地盤に基 づく液状化 強度特性を 用いた解析 ケース(基 本ケース) 	地ば考の析	② 盤物性の ら(+1) ケース	③ 地盤物性 のばを考慮 (-1 σ)した 解析ケー ス	 ④ 地盤を強制 的にせること を仮析ケース 	 ⑤ 席地盤にお いて非 いの条件を 化の定した ボケース 	 ⑥ 地盤物性のば らで、 (+1) σ) して非 液状化の定し た解析ケース
液状化強度特性 の設定		 原地盤に基 づく液状化 強度特性 (標準偏差 を考慮) 	原づ強(を	地盤に基 く液状化 度特性 標準偏差 考慮)	 原地盤に基 づく液状化 強度特性 (標準偏差 を考慮) 	敷地に存在しない豊浦標準砂の液状化強度特性	液状化パラ メータを 非適用	液状化パラ メータを 非適用	
	S _s -D1	(H+V+)	実施						
		(H+V-)	実施						
		(H - V +)	実施		全ての	基準地震動:	S _s に対して	実施する①の	の検討ケー
바		(H - V -)	実施		ス (基)	本ケース)に	こおいて、せ	ん断力照査	及び曲げ軸 📗
地震	$S_s = 1.1$		実施		十四大	+.1+1×4 1.1	た人ての四	木西日につ	
波	$S_s - 12$		実施		刀照宜	をはしめとし	レた主ての思	宜頃日にう(いし、谷思
	$S_{s} - 1 3$		実施		査値が	最も厳しい	(許容限界に	対する余裕	が最も小さ
亿相	$S_{s} - 14$		実施		い)地知	震動を用い,	2~6より	追加検討ケ・	ースを実施
Ű	$S_{s} - 21$		実施						
	$S_{s} = 2.2$		実施		१२०				Π
	C 9 1	(H + V +)	実施						[_]
	$5_{s} = 31$	(H - V +)	実施						
桿	「築物間の相	国対変位の算	定を行う場	合に	は、上記の	の実施ケージ	スにおいて変	変位量が厳し	、いケースで行

う。

 (2) 機器・配管系に対する加速度応答抽出のための検討ケース 機器・配管系に対する加速度応答の抽出における検討ケースを表 6.2-15 に示す。 全ての基準地震動 S。に対して実施する⑤の検討ケース(原地盤において非液状化の条 件を仮定した解析ケース)において,上載される機器・配管系の固有振動数帯で加速度応 答が最も大きくなる地震動を用い,④及び⑥より追加検討ケースを実施する。

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤ 原地盤において非液 状化の条件を仮定し た解析ケース	 ⑥ 地盤物性のばらつき を考慮(+1σ)し て非液状化の条件を 仮定した解析ケース
液状化強度特性 の設定		敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用	
	S _s – D 1	$\begin{array}{c} (H+V+) \\ (H+V-) \\ (H-V+) \\ (H-V-) \end{array}$	 全ての基準地震動 S_sに対して実施す る⑤の検討ケース (原地盤において非 	実施 実施 実施 実施 実施	 全ての基準地震動 S_sに対して実施す る⑤の検討ケース (原地盤において非
地震	S _s -11		液状化の条件を仮定	実施	液状化の条件を仮定
波	$S_{s} = 1.2$		した解析ゲース)に	実施	した解析ケース)に
	$S_{s} - 13$		おいて,上載される 機器・配管系の固有 振動粉帯で加速度広	実施	やいて、工戦される 機関・配答玄の因右
位相)	$S_{s} = 1.4$			実施	振動数帯で加速度応
	${\rm S}_{\rm s} = 2.1$		答が最も大きくなる	実施	答が最も大きくなる
	${\rm S}$ s -2.2		地震動を用い,④及 び⑥より追加検討ケ ースを実施する。	実施	地震動を用い、④及
	S _s -31	$(\overline{H+V+})$ $(H-V+)$		実施 実施	び⑥より追加検討ケ ースを実施する。

表 6.2-15 機器・配管系に対する加速度応答抽出のための検討ケース

6.3 評価内容

- 6.3.1 鉛直断面の設計
 - (1) 鉛直断面の曲げ及び軸力に対する設計

矩形立坑は強軸断面方向及び弱軸断面方向が明確でないことから,矩形立坑二方向を設計断面として選定する。矩形立坑二方向に対し2次元有効応力解析を実施し部材の設計を 行う。立坑の鉛直鉄筋は2次元有効応力解析にて算出される線形はり要素の発生断面力

(曲げモーメント及び軸力)を用いて照査を行う。

図 6.3-1 に鉛直鉄筋配置の概念図を示す。鉛直鉄筋を配置する範囲は側壁内-内幅及 び隅角部 45 度範囲(図 6.3-1の青塗り範囲)とする。RC 断面計算に用いる鉛直鉄筋配 置を区分することで、矩形二方向断面を独立して設計する。

図 6.3-2 に開口部における鉛直鉄筋配置概念図を示す。側壁の開口が部材厚よりも大きい場合は、開口部以外に配置される鉄筋のみを有効として照査を行うことで開口の影響を考慮する。

図 6.3-1 鉛直鉄筋配置概念図

12500 6500

800 352 (B4F) <u>① ビット部</u>

12 底版

曲げに対する鉛直筋配置範囲

6100

000

(6)B3F

16500

10500

凶

①ピット部

6500

16500 10500

図 6.3-2 開口を有する断面の照査で有効とする鉛直鉄筋の概念図

(2) 鉛直断面のせん断に対する設計

鉛直断面のせん断照査については、発生せん断力(S)に対し図 6.3-3の有効断面積 (Aw,図 6.3-3の赤塗り範囲)で抵抗するものとし、せん断応力度 $\tau = S/Aw$ が「コンク リート標準示方書〔構造性能照査編〕((社)土木学会 2002 年制定)」に示される許容 せん断応力度 τ_{a1} 以下である場合にはせん断補強筋は不要である。

許容せん断応力度 τ_{al}を超える場合にせん断補強筋が必要となるが,鉛直断面せん断照 査におけるせん断補強筋は,水平断面照査における主鉄筋と同じ方向の鉄筋であり,両設 計で必要となる配筋量を足し合わせた配筋量以上を配置する設計を行う。

立坑を1本の線形はり要素としてモデル化した場合,加振方向の側壁(耐震壁)は,は り要素のウェブとして機能する。はり要素に発生する面外せん断力に対し,はり要素のウ ェブでせん断に抵抗するものとし,はり要素のせん断応力度 τ = S/Aw を算定する。このと きの Aw ははりの有効せん断面積(=ウェブの断面積)である。

上記のせん断応力度 τ は,はり要素断面のウェブに発生するせん断応力度であり,耐震 壁に発生する面内せん断応力度相当と考えられる。はりのせん断応力度 τ の算定に関し, はりのせん断有効面積(=ウェブの面積)について側壁に開口がある場合は、開口以外の ウェブをせん断有効面積としてせん断力に対する照査を行うことで、開口の影響を考慮す る。この方法によりせん断応力度に対する剛性低減の影響を考慮する。

上記のようにはり要素に発生するせん断力に対し,コンクリートが負担するせん断力に ついてはせん断有効面積を低減させた計算を行う。

はり要素に発生するせん断応力度 τ が「コンクリート標準示方書〔構造性能照査編〕

((社)土木学会 2002 年制定)」に示される許容せん断応力度 τ_{al}を超える場合は,せん断補強筋を用いる。鉛直断面せん断照査におけるせん断補強筋は,水平断面照査における主鉄筋(=水平鉄筋)と同じ方向の鉄筋である。

鉛直断面せん断照査におけるせん断補強筋の設計においては、部材厚より大きい開口が ある側壁に配置される水平鉄筋も有効とみなしせん断補強筋の設計を行う。(せん断補強 筋は両側壁で同じ配筋である。)開口における水平鉄筋は、開口上下にまわり込ませて配 置する。

せん断有効面積範囲

図 6.3-3 せん断有効面積概念図

12500

12500

図 6.3-4 せん断有効面積の考え方

図 6.3-5 開口部せん断照査の考え方

(3) 版部材が側壁を固定することによる隅角部の評価(曲げ)

側壁と版部材の隅角部には、各部材の剛性に起因する端曲げが発生するため、隅角部に おける曲げモーメントの廻り込みに対する影響検討を行う。

a. 版部材の拘束効果による側壁の検討

図 6.3-6 版部材から側壁に廻り込む曲げモーメント算定概念図

図 6.3-7 矩形立坑の形状ばねの算出方法

(「シールド工事用立坑の設計((社)土木学会,平成27年1月)」)

版部材から側壁に廻り込む曲げモーメントを計算する場合の概念図を図 6.3-6 に示 す。

版部材と側壁の隅角部には、版部材の曲げモーメント(Mo)が側壁に廻り込む。また 側壁が版部材に支持される拘束効果により、地震時荷重を面外方向に受けた場合に曲げ モーメントが反転する(M1, M2)。この現象は2次元有効応力解析において考慮するこ とができない。

版部材の端曲げモーメント(Mo)は、境界条件を固定支持としてシェル解析により算 定する。

側壁は版部材中心間距離で固定支持された,単位幅を有する両端固定はりとしてモデ ル化し,地震時荷重を作用させた場合に,支持位置に発生する曲げモーメント

(M1,M2) を算定する。

地震時荷重については、各鉛直スパンの地盤反力(地盤要素の水平有効直応力

(σ_x') +間隙水要素の発生応力(Δu))の合算値が最大となる時刻の地盤反力分布 を用いる。

開口近傍に版部材が存在しない場合については,開口上部にかまち梁を想定し,版部 材とかまち梁中心間をスパンとした両端固定はりにより曲げモーメントを算定する。

本検討において立坑側壁を単位奥行当たりのはり要素でモデル化するが、実際の立坑 形状は図 6.3-7 に示すように直交壁が存在し、側壁の変形を抑制している。立坑側壁 に開口補強できない開口が存在しない場合は、図 6.3-7 に示すように立坑の形状ばね を考慮した弾性床上のはり(端部は固定支持)としてモデル化を行い曲げモーメントを 算定する。矩形立坑の形状ばねの算定は、「シールド工事用立坑の設計((社)土木学 会、平成 27 年 1 月)」に示される通り、側壁及び直交壁で閉鎖された形状に対し、単 位荷重を作用させた場合に側壁に発生する最大変位を用いて導出する。

版部材の端曲げモーメント(Mo)及び版部材に拘束された側壁に発生する端曲げモー メント(M1, M2のうちモーメントの連続性を考えて両者の最大値を用いる)の和を設 計曲げモーメントとする。

上記により得られる設計曲げモーメントから鉛直鉄筋の引張応力度を算定し、

「6.3.1 鉛直断面の設計」における鉛直鉄筋の引張応力度を加算した照査を行い,必要な場合は補強鉄筋を配置する。

b. 側壁の拘束効果による版部材の検討

版部材については、版部材の端曲げモーメント(Mo)及び側壁から版部材へ廻り込む モーメント(M1, M2のうち最大値)の和を設計曲げモーメントとする。

上記により得られる設計曲げモーメントから版部材主鉄筋の引張応力度を算定し, 「6.3.3 版部材の設計」における版部材主鉄筋の引張応力度を加算した照査を行 い,必要な場合は補強鉄筋を配置する。

- 6.3.2 水平断面の設計
 - (1) 設計断面の選定

立坑水平断面については,立坑側壁及び中壁を線形はり要素としてモデル化した静的フレーム解析に地震時荷重を作用させたときに発生する断面力に対し,水平鉄筋及びせん断 補強筋の設計を行う。

図 6.3-8 に水平断面の設計断面選定図を示す。

立坑は各階層において開口の位置及び中壁の厚さが異なることから,図 6.3-8 に示す 6 断面を選定し設計を行う。

図 6.3-8 設計断面選定図

- (2) 解析のモデル化
 - a. 開口部がない水平断面(設計断面4及び設計断面6) 立坑水平断面については,立坑側壁及び中壁を図心位置において線形はり要素として モデル化した静的フレーム解析を行う。

境界条件については、「道路橋示方書(I共通編・IV下部構造編)・同解説((社) 日本道路協会,平成14年3月)」に準拠し、単純支持とする。

静的フレーム解析におけるはり要素の要素分割については、土木学会マニュアルに準 拠して、各分割要素が断面厚さまたは有効高さの1.0倍程度の長さとし、各分割要素が 部材の断面厚または有効高さの2.0倍以下として設定する。

図 6.3-9 に静的フレーム解析における剛域の考え方を示す。静的フレーム解析においては、「コンクリート標準示方書〔構造性能照査編〕((社)土木学会 2002 年制定)」に準拠し、隅角部に剛域を設ける。

b. 開口部を含む水平断面(設計断面1, 2, 3及び5)

側壁に開口がある場合については,立坑側壁及び中壁を線形はり要素としてモデル化 し,開口部は開口部上下に位置する部材に相当する等価剛性を入力した静的フレーム解 析により水平断面の照査を行う。

等価剛性の設定にあたっては,図 6.3-8 に示す全高(H)中に開口上下の部材及び開 口部が存在するが,これら剛性を足し合わせた,それを解析奥行1.0m相当にして入力 する。全高とする範囲は,開口が存在する側壁に接続する上下床版の上面から下面まで とする。スラブ上下の側壁及び中壁に開口がある場合は,スラブ中心間距離とする。

得られた断面力に対し水平鉄筋を決定するが,等価剛性を入力した部材については, スターラップで内外主鉄筋を拘束するはりの配筋を施すことで対応する。

境界条件,はり要素の要素分割及び剛域の設定は,a. 開口部がない水平断面と同じ 設定とする。

図 6.3-9 静的フレーム解析における剛域の考え方

(3) 荷重条件

図 6.3-10 に立坑水平断面の荷重図を示す。

地盤と立坑の連成系モデルによる2次元有効応力解析の結果に基づき,立坑水平断面の 検討では,立坑の両側に地盤からの最大荷重を作用させる場合(両押し時)と,片側のみ に地盤からの最大荷重を作用させる場合(片押し時)の2つの荷重状態について検討す る。

水平断面の設計荷重として,図6.3-10に示すように,両押し時は,2次元有効応力解 析により得られる立坑側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x')+間 隙水要素の発生応力(Δu))の全時刻の最大値を抽出し,立坑平面の両側から同じ最大 荷重を常時荷重と共に作用させる。

片押し時は,両押し時と同じ地震時地盤反力の最大値を立坑平面の片側から最大荷重と して常時荷重と共に作用させる。

常時荷重については常時土圧及び静水圧を考慮する。設計断面の適用範囲ごとに最浅部 (最小)及び最深部(最大)の常時荷重を算定し,図 6.3-10 に示すように,立坑水平断 面の静的フレーム解析に用いる。

図 6.3-10 立坑水平断面の荷重図

- 6.3.3 版部材の設計
 - (1) 頂版及びスラブの設計

頂版及びスラブについては、開口形状を模擬したシェル解析により設計断面力を算定す る。

スパンは頂版及びスラブが接続する側壁及び中壁の中心間距離とし,境界条件は単純支 持とする。

設計荷重は,面外方向に躯体及び機器類の慣性力を静的に作用させる。 頂版については 積雪の慣性力も考慮する。

慣性力については、2次元有効応力解析により各床版位置における最大鉛直加速度を算 定し、重力加速度で除することで鉛直設計震度を求め算定する。

単純支持によるシェル解析により求めた主鉄筋を, 頂版及びスラブ上下面に格子状に配 置する。

シェル解析の要素分割については、土木学会マニュアルに準拠して、各分割要素が断面 厚さまたは有効高さの1.0倍程度の長さとし、各分割要素が部材の断面厚または有効高さ の2.0倍以下として設定する。

シェル要素のアスペクト比については、「コンクリート構造物の設計に FEM 解析を適用 するためのガイドライン(1989年3月 日本コンクリート工学協会)」を参考に原則 1:1 とし、最大でも 1:5 程度を限度とする。

②スラブ (B1F) 16500

③スラブ (B2F)

16500

450 700

1,100 1000

平面図

図 6.3-11 頂版及びスラブ平面図

500 2000

2500

9500

Δ

<u>スラブ(B1F)</u>

7750

シェル要素

12500

5500

<u>スラブ(B3F)</u>

5750

シェル要素

図 6.3-12 頂版及びスラブシェル解析モデル図

6 - 61

(2) 底版の設計

底版は接続する側壁及び中壁の中心間距離をスパンとしたシェル解析により設計断面力 を算定する。境界条件は単純支持とする。

設計荷重は2次元有効応力解析において,仮想剛梁要素(底面)下面の地盤要素に発生 する鉛直方向有効直応力(σ_y')及び間隙水要素の発生応力(Δu)の底版幅方向合力が 最大となる時刻を抽出し,その時刻における地盤反力分布を作用させる。また,静水圧も 分布荷重として考慮する。

シェル解析における要素分割は、頂版及びスラブにおける設定と同じとする。 単純支持によるシェル解析により求めた主鉄筋を、底版上下面に格子状に配置する。

6.3.4 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動 S_sを1次 元波動論により地震応答解析モデルの底面位置で評価したものを用いる。

図 6.3-14 に入力地震動算定の概念図を,図 6.3-15 及び図 6.3-16 に入力地震動の加 速度時刻歴波形と加速度応答スペクトルを示す。入力地震動の算定には解析コード

「microSHAKE/3D Ver. 2.2.3.311」を使用する。

なお、基準地震動S_sのうち断層モデル波については、特定の方向性を有しない地震動 については、位相を反転させた場合の影響も確認する。断層モデル波であるS_s-11~ S_s-22については、特定の方向性を有することから、構造物の評価対象断面方向を考 慮し、方位補正を行う。具体的にはNS方向及びEW方向の地震動について構造物の評価断 面方向の成分を求め、各々を足し合わせることで方位補正した地震動を設定する。

図 6.3-14 入力地震動算定の概念図

MAX 621 cm/s² (53.46 s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 6.3-15(1) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504 cm/s^2 (44.23 s) 1200 1000 800 600 -600 -800 -1000 -12000 50 100 150 200 時間 (s) (a) 加速度時刻歷波形 h=0.05 3500 3000 2500 加速度 (cm/s²) 2000 1500 1000 500 0 0.01 0.1 1 10 周期(s)

(b) 加速度応答スペクトル

図 6.3-15(2) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-D1)
MAX 414 cm/s^2 (25.29 s)

図 6.3-15(3) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524 cm/s^2 (25.01 s)

図 6.3-15(4) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

MAX 380 cm/s² (29.13 s)

図 6.3-15(5) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 491 cm/s^2 (27.81 s)

図 6.3-15(6) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

MAX 402 cm/s^2 (26.35 s)

図 6.3-15(7) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

MAX 482 cm/s² (25.03 s)

図 6.3-15(8) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-13)

MAX 356 cm/s^2 (27.50 s)

図 6.3-15(9) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 403 cm/s² (28.97 s)

図 6.3-15(10) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-14)

MAX 649 cm/s^2 (68.81 s)

図 6.3-15(11) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-21)

MAX 583 cm/s^2 (70.16 s)

図 6.3-15(12) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-21)

MAX 645 cm/s^2 (72.65 s)

図 6.3-15(13) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-22)

MAX 653 cm/s^2 (72.08 s)

図 6.3-15(14) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-22)

MAX 573 cm/s² (8.25 s)

(b) 加速度応答スペクトル

周期(s)

図 6.3-15(15) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-31)

79

MAX 245 cm/s 2 (7.81 s)

(b) 加速度応答スペクトル

図 6.3-15(16) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-31)

80

MAX 621 cm/s^2 (53.46 s)

(a) 加速度時刻歷波形

図 6.3-16(1) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504 cm/s^2 (44.23 s)

図 6.3-16(2) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-D1)

MAX 536 cm/s^2 (25.95 s)

図 6.3-16(3) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524 cm/s^2 (25.01 s)

図 6.3-16(4) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

MAX 584 cm/s^2 (28.10 s)

(a) 加速度時刻歷波形

図 6.3-16(5) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 475 cm/s^2 (27.81 s)

図 6.3-16(6) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

MAX 597 cm/s^2 (25.32 s)

(a) 加速度時刻歷波形

図 6.3-16(7) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

MAX 470 cm/s² (25.03 s)

図 6.3-16(8) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-13)

MAX 367 cm/s^2 (31.25 s)

図 6.3-16(9) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 404 cm/s^2 (28.97 s)

図 6.3-16 (10) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-14)

MAX 732 cm/s^2 (61.54 s)

図 6.3-16(11) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-21)

MAX 573 cm/s^2 (70.16 s)

図 6.3-16(12) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-21)

MAX 794 cm/s^2 (69.86 s)

図 6.3-16(13) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-22)

MAX 650 cm/s^2 (72.08 s)

図 6.3-16(14) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-22)

図 6.3-16(15) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-31)

MAX 245 cm/s^2 (7.81 s) 1200 1000 800 600 Maran -600 -800 -1000 -1200 5 0 10 15 20 時間 (s) (a) 加速度時刻歷波形

図 6.3-16(16) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-31)

6.3.5 許容限界の設定

(1) 許容応力度による許容限界

立坑の構造部材は,許容応力度による照査を行う。評価位置においてコンクリートの圧 縮応力度,鉄筋の引張応力度,コンクリートのせん断応力度が許容応力度以下であること を確認する。

短期許容応力度については、「コンクリート標準示方書[構造性能照査編]((社)土 木学会、2002年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説

((社)日本道路協会,平成24年3月)」に基づき,鉄筋コンクリートの許容応力度に 対して1.5倍の割増しを考慮し,表6.3-1のとおり設定する。

	短期許容応力度 (N/mm ²)		
コンクリート	許容曲げ圧縮応力度σ <mark>。。</mark>	21.0	
(f' <mark>ck</mark> =40 N/mm²)	許容せん断応力度 τ <mark>a 1</mark>	0.825*	
<i>金</i> 告符(SD400)	許容引張応力度 σ <mark>sa</mark> (曲げ)	435	
亚大月万(30490)	許容引張応力度 σ sa (せん断)	300	
鉄筋(SD345)	許容引張応力度 σ <mark>sa</mark> (せん断)	294	

表 6.3-1 許容応力度

注記 *:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社) 土木学会、2002 年制定)」に基づき、次式により求められる許容せん断力 (V_a)を許容限界とする。

> $V_a = V_{ca} + V_{sa}$ ここで, V _{c a} : コンクリートの許容せん断力 $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$ V _{s a} :斜め引張鉄筋の許容せん断力 $V_{sa} = A_w \cdot \sigma_{sa} \cdot j \cdot d / s$:斜め引張鉄筋を考慮しない場合の許容せん断応力度 τ_{a1} b w : 有効幅 j : 1/1.15 d : 有効高さ :斜め引張鉄筋断面積 A_{w} :鉄筋の許容引張応力度 σ_{sa} :斜め引張鉄筋間隔 S

		断面形状		せん断補強	失筋	許容せ	ん断力		
位置	部材幅 b	部材高 h	有効高 d	径	s	コンクリート V _{c a}	鉄筋 V _{sa}	短期許容 せん断力V _a (=V _{ca} +V _{sa})	
	(mm)	(mm)	(mm)		(mm)	(kN/m)	(kN/m)	(kN/m)	
B1F	16500	12500	11000	4-D38 4-D32 2-D29	200	717. 39	7844.87	8562	
B2F	16500	12500	11000	4-D38 4-D32 2-D29	200	1639.91	7844.87	9484	
B3F	16500	12500	11000	4-D51 2-D35 ,2-D32 2-D29	200	1641.40	11212. 52	12853	
B4F	16500	12500	11000	8-D51 2-D29	200	1678.53	15218.09	16896	
B4F トンネル部	16500	12500	11000	4-D41 4-D38 2-D22	200	1577.68	9299.30	10876	
ピット部	16500	12500	11000	4-D51 4-D35 2-D22	200	1597.28	11050.96	12648	

表 6.3-2 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(鉛直断面南北方向)

表 6.3-3 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(鉛直断面東西方向)

		断面形状		せん断補強	失筋	許容せ	ん断力		
位置	部材幅 b	部材高 h	有効高 d	径	s	コンクリート V _{c a}	鉄筋 V _{s a}	短期計谷 せん断力V _a (=V _{ca} + V _{sa})	
	(mm)	(mm)	(mm)		(mm)	(kN/m)	(kN/m)	(kN/m)	
B1F	12500	16500	15000	4-D38 4-D29	200	2582.61	11159.37	13741	
B2F	12500	16500	15000	4-D38 3-D29 D32	200	1291.30	11396.97	12688	
B3F	12500	16500	15000	4-D51 4-D38	200	2582.61	19828.17	22410	
B4F	12500	16500	15000	8-D51	200	2582.61	25381.57	27964	
B4F トンネル部	12500	16500	15000	4-D41 D38 , D35 2-D29	200	1870. 43	13682.19	15552	
ピット部	12500	16500	15000	4-D51 2-D32 2-D29	200	2582.61	17187.97	19770	

			断面	i形状		せん断補強筋			許容せん断力		短期許容
	位置		部材高	かぶり	有効高				コンクリート	鉄筋	せん断力V。
位置				.,		径	s _b	s	37	N7	
		b	h	d	d				V _{c a}	V s a	$(-v_{ca}+v_{sa})$
		(mm)	(mm)	(mm)	(mm)		(mm)	(mm)	(kN/m)	(kN/m)	(kN/m)
水平断面	地山	1000	3000	310	2690	D16	400	200	964.85	1707.16	2672
(B1F 南北側壁)	内空	1000	3000	310	2690	D16	400	200	964.85	1707.16	2672
水平断面	地山	1000	3000	331	2669	D16	400	200	957.41	1693.98	2651
(B1F 東西側壁)	内空	1000	3000	331	2669	D16	400	200	957.41	1693. 98	2651
水平断面	地山	1000	3000	323	2677	D16	400	200	960.35	1699.20	2659
(B2F 北側壁)	内空	1000	3000	310	2690	D16	400	200	964.85	1707.16	2672
水平断面	地山	1000	3000	310	2690	D16	400	200	964.85	1707.16	2672
(B2F 南側壁)	内空	1000	3000	310	2690	D16	400	200	964.85	1707.16	2672
水平断面	地山	1000	3000	331	2669	D16	400	200	957.41	1693.98	2651
(B2F 東西側壁)	内空	1000	3000	331	2669	D16	400	200	957.41	1693.98	2651
水平断面	地山	1000	3000	304	2696	D25	400	200	967.19	4366.13	5333
(B3F 南北側壁)	内空	1000	3000	304	2696	D25	400	200	967.19	4366, 13	5333
水平断面	地山	1000	3000	300	2700	D25	400	200	968.56	4372.31	5340
(B3F 東西側壁)	内空	1000	3000	289	2711	D25	400	200	972.49	4390.04	5362
水平断面	地山	1000	3000	335	2665	D19	200	200	955.92	4879.90	5835
(B4F 南北側壁)	内空	1000	3000	335	2665	D19	200	200	955, 92	4879.90	5835
水平断面	地山	1000	3000	345	2655	D19	200	200	952.34	4861.59	5813
(B4F 東西側壁)	内空	1000	3000	345	2655	D19	200	200	952.34	4861.59	5813
水平断面	地山	1000	3000	324	2676	D19	400	200	959.82	2449.90	3409
(B4Fトンネル部 北側壁)	内空	1000	3000	301	2699	D19	400	200	968.11	2471.07	3439
水平断面	地山	1000	3000	335	2665	D19	400	200	955.95	2440.03	3395
(B4Fトンネル部 南側壁)	内空	1000	3000	301	2699	D19	400	200	968.11	2471.07	3439
水平断面 (P4Fトンネル部 声声側)	地山	1000	3000	344	2656	D19	400	200	952.66	2431.61	3384
(D4Fトンネルの 泉西側 壁)	内空	1000	3000	344	2656	D19	400	200	952.66	2431.61	3384
水平断面	地山	1000	3000	283	2717	D22	400	200	974.51	3360. 79	4335
(ピット部 南北側壁)	内空	1000	3000	273	2727	D22	400	200	978.32	3373, 93	4352
水平断面	地山	1000	3000	300	2700	D22	400	200	968.56	3340.28	4308
(ピット部 東西側壁)	内空	1000	3000	300	2700	D22	400	200	968.56	3340.28	4308
水平断面	東側	1000	1500	190	1310	D16	400	200	469.89	831.40	1301
(中壁 部材高1500mm)	西側	1000	1500	190	1310	D16	400	200	469.89	831.40	1301
水平断面	東側	1000	1000	170	830	D16	400	200	297.72	526.76	824
(中壁 部材高1000mm)	西側	1000	1000	190	810	D16	400	200	290.54	514.07	804

表 6.3-4 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(水平断面一般部)

	断面形状					せん断補強的	穷	許容せ	ん断力	短期許容	
		部材幅	部材高	かぶり	有効高				コンクリート	鉄筋	せん断力V _a
位置		b	h	d'	d	径	s _b	s	V _{c a}	V _{s a}	$(=V_{ca} + V_{sa})$
		(mm)	(mm)	(mm)	(mm)		(本)	(mm)	(kN/m)	(kN/m)	(kN/m)
水平断面	地山	533	3000	355	2645	D19	8本	200	506.00	1033.23	1539
(東側壁B1F開口部)	内空	533	3000	355	2645	D19	8本	200	506.00	1033.23	1539
水平断面	地山	556	3000	345	2655	D25	12本	200	529.08	2863.00	3392
(北側壁B2F開口部)	内空	556	3000	345	2655	D25	12本	200	529.08	2863.00	3392
水平断面	地山	476	3000	345	2655	D25	12本	200	453.49	3274.32	3727
(開口部))	内空	476	3000	345	2655	D25	12本	200	453.49	3274.32	3727
水平断面	東側	462	1500	270	1230	D16	3本	200	203.63	143.86	347
(中壁B1F開口部)	西側	462	1500	270	1230	D16	3本	200	203.63	143.86	347
水平断面	東側	385	1500	270	1230	D16	2本	200	169.69	119.81	289
(中壁B2F開口部)	西側	385	1500	270	1230	D16	2本	200	169.69	119.81	289
水平断面	東側	462	1500	270	1230	D16	3本	200	203.63	143.86	347
(中壁B3F開口部)	西側	462	1500	270	1230	D16	3本	200	203.63	143.86	347
水平断面 (中時B4Fトンネル部(開	東側	476	1000	245	755	D16	4本	200	128.96	121.60	250
口部))	西側	476	1000	265	735	D16	4本	200	125.54	118.38	243

表 6.3-5 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(水平断面開口部)

表 6.3-6 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(版部材)

				断面	i形状		t	じん断補強鉄	筋	許容せ	ん断力	短期許容
位職		部材幅	部材高	かぶり	有効高				コンクリート	鉄筋	せん断力V _。	
	11716		b	h	d'	d	(径	s _b	s	V _{c a}	V s a	$(=V_{ca} + V_{sa})$
			(mm)	(mm)	(mm)	(mm)		(mm)	(mm)	(kN/m)	(kN/m)	(kN/m)
	頂版	上側	1000	2000	290	1710	D16	400	200	613.37	1085.26	1698
	(南北方向)	下側	1000	2000	210	1790	D16	400	200	642.07	1136.04	1778
	スラブ	上側	1000	2000	210	1790	D16	400	200	642.07	1136.04	1778
	(南北方向 B1F)	下側	1000	2000	210	1790	D16	400	200	642.07	1136.04	1778
-	スラブ	上側	1000	2000	210	1790	D16	400	200	642.07	1136.04	1778
用北	(南北方向 B2F)	下側	1000	2000	210	1790	D16	400	200	642.07	1136.04	1778
方向	スラブ (南北方向 B3F)	上側	1000	2000	230	1770	D16	400	200	634.89	1123.34	1758
[F]		下側	1000	2000	230	1770	D16	400	200	634.89	1123.34	1758
	スラブ	上側	1000	1000	250	750	D16	400	200	269.02	475.99	745
	(南北方向 B4F)	下側	1000	1000	250	750	D16	400	200	269.02	475.99	745
	底版	上側	1000	3000	230	2770	D16	400	200	993.59	1758.00	2751
	(南北方向)	下側	1000	3000	250	2750	D16	400	200	986.41	1745.31	2731
	頂版	上側	1000	2000	260	1740	D16	400	200	624.13	1104.30	1728
	(東西方向)	下側	1000	2000	180	1820	D16	400	200	652.83	1155.07	1807
	スラブ	上側	1000	2000	180	1820	D16	400	200	652.83	1155.07	1807
	(東西方向 B1F)	下側	1000	2000	180	1820	D16	400	200	652.83	1155.07	1807
-	スラブ	上側	1000	2000	180	1820	D16	400	200	652.83	1155.07	1807
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	(東西方向 B2F)	下側	1000	2000	180	1820	D16	400	200	652.83	1155.07	1807
方	スラブ	上側	1000	2000	200	1800	D16	400	200	645.65	1142.38	1788
[4]	(東西方向 B3F)	下側	1000	2000	200	1800	D16	400	200	645.65	1142.38	1788
	スラブ	上側	1000	1000	200	800	D16	400	200	286.96	507.73	794
	(東西方向 B4F)	下側	1000	1000	200	800	D16	400	200	286.96	507.73	794
	底版	上側	1000	3000	200	2800	D16	400	200	1004.35	1777.04	2781
	(東西方向)	下側	1000	3000	220	2780	D16	400	200	997.17	1764.35	2761

(2) 基礎地盤の支持性能に対する許容限界

極限支持力は、V-2-1-3「地盤の支持性能に係る基本方針」に基づき,道路橋示方書 (I共通編・IV下部構造編)・同解説((社)日本道路協会,平成14年3月)より設定 する。

道路橋示方書によるケーソン基礎の支持力算定式を以下に示す。

なお,支持性能評価における保守的な配慮として,以下の支持力算定式の第3項を0と 仮定し,極限支持力を算定する。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

$q_{\rm d}$:基礎底面地盤の極限支持力度
С	: 基礎底面より下にある地盤の粘着力
γ1	: 基礎底面より下にある地盤の単位体積重量。
	ただし、地下水位以下では水中単位体積重量とする
γ2	: 基礎底面より上にある周辺地盤の単位体積重量。
	ただし、地下水位以下では水中単位体積重量とする
α,β	:表 6.3-7 に示す基礎底面の形状係数
В	:基礎幅
$D_{\rm f}$:基礎の有効根入れ深さ
N $_{\rm c}$, N $_{\rm q}$, N $_{\gamma}$:図 6.3-17 に示す支持力係数

基礎底面の形状 形状係数	帯	状	正方形,	円形	長方形,	小判形
α	1.0		1.3		1+0.3	$\frac{B}{D}$
β	1.	0	0.6		1-0.4	$4\frac{B}{D}$

表 6.3-7 基礎底面の形状係数

D:ケーソン前面幅(m), B:ケーソン側面幅(m) ただし, B/D>1の場合, B/D=1とする。

「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成14年3月)」より

「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成14年3月)」より

図 6.3-17 支持力係数を求めるグラフ
立坑の極限支持力の算定結果を表 6.3-8 に示す。

項目	算定結果	備考
極限支持力度q _d (kN/m ²)	<mark>5796</mark>	
α c N _c (kN/m ²)	5796	
$\frac{1}{2} \beta \gamma'_{1} B N_{\gamma} (kN/m^{2})$	0	
$\gamma'_2 D_f N_q$ (kN/m ²)	<mark>0</mark>	保守的な配慮として <mark>0 と仮定</mark>
粘着力 c (kN/m ²)	945	非排水せん断強度*
せん断抵抗角 φ (°)	0	
地盤の単位体積重量 γ'_1 (kN/m ³)	7.092	
周辺地盤の単位体積重量 γ'2 (kN/m ³)	—	
形状係数α	1.227	
形状係数β	0.697	
基礎幅B(m)	12.500	
有効根入れ深さDf(m)	<mark>—</mark>	
N _c	5	図 6.3-17より
Νγ	0	図 6.3-17より
N q	—	

表 6.3-8(1) 極限支持力算定の諸元と算定結果(南北方向)

注記 *:非排水せん断強度C_{cuu}= (0.837 - 0.00346・Z) ×1000 (kN/m²) 基礎底面標高Z=EL.-31.1 (m)

項目	算定結果	備考
極限支持力度q _d (kN/m ²)	<mark>6139</mark>	
α c N $_{\rm c}$ (kN/m ²)	6139	
$\frac{1}{2} \beta \gamma'_{1} B N_{\gamma} (kN/m^{2})$	0	
$\gamma'_2 D_f N_q (kN/m^2)$	<mark>0</mark>	<mark>保守的な配慮として</mark> <mark>0 と仮定</mark>
粘着力 c (kN/m ²)	945	非排水せん断強度*
せん断抵抗角 φ (°)	0	
地盤の単位体積重量 γ'」(kN/m³)	7.092	
周辺地盤の単位体積重量 γ'2(kN/m³)	—	
形状係数α	1.300	
形状係数β	0.600	
基礎幅B(m)	16.500	
有効根入れ深さD _f (m)	—	
N _c	5	図 6.3-17より
Νγ	0	図 6.3-17より
N q	—	
		(1)

表 6.3-8(2) 極限支持力算定の諸元と算定結果(東西方向)

注記 *:非排水せん断強度C_{cuu}=(0.837 - 0.00346・Z)×1000 (kN/m²) 基礎底面標高Z=EL.-31.1 (m) 6.4 評価結果

6.4.1 地震応答解析結果

地震応答解析結果として,「断面力分布」,「最大せん断ひずみ分布」,「過剰間隙水 圧比分布」及び「最大加速度分布」を示す。

(1) 鉛直断面の検討ケースの選定

図 6.4-1に鉛直断面検討ケース選定フローを示す。

鉛直断面の照査結果については、解析ケース①については基準地震動全ケース(12 ケース)の結果を記載する。また、解析ケース②~⑥の照査結果については、解析ケース①において鉛直断面の照査値(鉄筋曲げ引張)及びせん断力が最大となる基準地震動について鉛直断面照査を行い、②~⑥で鉄筋の曲げ引張の照査値及びせん断力が最大となる解析ケースについて照査結果を記載する。

表 6.4-1 に解析ケース①鉛直鉄筋の曲げ引張に関する照査値及びせん断力を示す。

本立坑においては,鉛直断面を立坑高さ方向に6断面に分割して応力度照査を実施している。そのうち曲げ引張の照査値及びせん断力は東西方向 B4F が最大となり,他断面については曲げ引張の照査値及びせん断力が小さいことから,東西方向 B4F を代表断面として基準地 震動の選定を行う。

表 6.4-2 及び表 6.4-3 に解析ケース①~⑥における立坑鉛直鉄筋の曲げ引張照査結果及 びせん断力を示す。

解析ケース①において、S_s-D1 (H-, V+)のときに鉛直鉄筋の曲げ引張照査が最大となり、S_s-D1 (H+, V+)のときにせん断力が最大となった。解析ケース②~⑥ について、S_s-D1 (H+, V+)及びS_s-D1 (H-, V+)を入力地震動とした2次元有効応力解析を実施し、解析ケース②~⑥の照査結果を比較したところ、解析ケース④の曲げ引張の照査値及びせん断力が最大となることから、解析ケース②~⑥については解析ケース④をばらつき検討ケースとする。

図 6.4-1 鉛直断面検討ケース選定フロー

表 6.4-1(1) 解析ケース①における立坑鉛直断面照査値

					曲に	げ軸力照査	(鉄筋曲)	ザ引張)						
	体位置			NSZ	方向					EWJ	与向	_		
地震動		B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	最大
	++	0.01	0.03	0.03	0.01	0.00	0.00	0.01	0.02	0.05	0.12	0.05	0.02	0.12
() S D 1	+-	0.01	0.03	0.06	0.01	0.00	0.00	0.01	0.01	0.03	0.10	0.04	0.01	0.10
US _s -D1	-+	0.01	0.03	0.04	0.00	0.00	0.00	0.01	0.01	0.05	0.14	0.06	0.01	0.14
		0.01	0.03	0.03	0.01	0.00	0.00	0.00	0.01	0.05	0.13	0.06	0.01	0.13
① S _s - 1 1		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(]) S _s - 1 2		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
(]) S _s - 1 3		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
(]) S _s - 1 4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(]) S $_{\rm s} - 2 1$		0.01	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
$(1) S_s - 2 2$		0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.02
0.6 2.1	++	0.00	0. 01	0. 01	0.00	0. 00	0.00	0.00	0.00	0. 01	0.04	0. 01	0. 00	0.04
US _s -31	-+	0.01	0. 01	0. 01	0.00	0. 00	0.00	0.00	0.00	0. 01	0.03	0. 01	0.00	0.03
最大		0.01	0.03	0.06	0.01	0.00	0.00	0.01	0.02	0.05	0.14	0.06	0.02	0.14

せん断照査(発生せん断力)														
#	価位置			NSZ	方向					EWJ	方向			
地震動		B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	菆大
	++	1203	1271	1644	3356	3280	3047	1155	2713	4163	5796	2277	2440	5796
08 -D1	+-	1196	1273	1617	3415	3284	3012	1145	2678	4118	5722	2284	2435	5722
0.3 _s -D1	-+	1172	1770	2104	2977	2978	2925	1297	2782	4349	5543	2072	2301	5543
		1176	1778	2115	2979	2977	2924	1306	2828	4410	5519	2066	2311	5519
(1) S $_{s} - 1 1$		372	542	709	1586	1576	1462	516	779	1131	1585	1521	1539	1586
(1) S $_{\rm s} - 1$ 2		797	770	1017	2859	2862	2762	753	1198	1776	2497	1827	1862	2862
(1) S $_{\rm s} - 1$ 3		761	817	1075	2789	2790	2692	710	1107	1634	2465	1769	1802	2790
(1) S $_{\rm s} - 1$ 4		586	503	630	2283	2296	2258	429	834	1317	1861	1859	1922	2296
$(])$ S $_{s} - 2 1$		953	1142	1487	2920	2916	2786	648	1269	1875	2424	1522	1669	2920
$(1) S_{s} - 2 2$		871	1189	1462	2471	2454	2317	782	1621	2481	3519	1891	1934	3519
0.8 - 2.1	++	1028	1576	1771	3287	3259	3095	1137	2321	3798	5128	2136	2215	5128
U.S _s -51	-+	1048	939	1259	3505	3456	3196	1031	2319	3651	5347	2446	2411	5347
最大		1203	1778	2115	3505	3456	3196	1306	2828	4410	5796	2446	2440	5796

表 6.4-1(2) 解析ケース①における立坑鉛直断面せん断力

表 6.4-2 解析ケース①~⑥における立坑鉛直断面照査結果

検討	ケース		曲に	げ軸力照査(鉄筋曲げ引き	脹)	
地震動		1	2	3	4	5	6
	++	0.12					
S D 1	+-	0.10					
5 _s -D1	-+	0.14	0.15	0.13	0.35	0.04	0.04
		0.13					
S _s -11		0.00					
$S_{s} - 12$		0.00					
S _s -13		0.00					
$S_{s} - 14$		0.00					
$S_{s} - 21$		0.00					
S _s -22		0.01					
S _ 2 1	++	0.04					
$3_{s} = 31$	-+	0.03					

鉛直断面EW方向 B4F

表 6.4-3 解析ケース①~⑥における立坑鉛直断面せん断力

如臣时国5"万时	DH						
検討	†ケース		せ	ん断照査(羽	発生せん断力))	
地震動		1	2	3	4	5	6
	++	5796	5991	5654	8220	5065	5097
8 D 1	+-	5722					
$S_s - D_1$	-+	5543					
		5519					
S _s -11	-	1585					
$S_{s} - 12$		2497					
S _s -13		2465					
$S_{s} - 14$		1861					
$S_{s} - 21$		2424					
S _s -22		3519					
S 2 1	++	5128					
$5_{s} - 31$	-+	5347					

鉛直断面EW方向 B4F

(2) 断面力分布(部材に着目した断面力図)

コンクリートの曲げ軸力に対する照査,鉄筋の曲げ軸力に対する照査,せん断力に対する 照査の3つの照査項目それぞれに対して,検討ケースのうち最も厳しい照査値となった時刻 における断面力(曲げモーメント,軸力,せん断力)の分布を部材毎に図示する。

記載する断面力分布において部材毎に該当する照査値及び検討ケースの一覧表を表 6.4-4 ~表 6.4-5に示す。図 6.4-4~図 6.4-5にコンクリートの曲げ軸力に対する照査,鉄筋 の曲げ軸力に対する照査,せん断力に対する照査の3つの照査に対して,検討ケースのうち 最も厳しい照査値となった時刻における断面力(曲げモーメント,軸力,せん断力)の分布 を部材毎に図示する。

									1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
家体化去理		如杜林	断面性状	方為宣	鉄筋仕様	発生間	計面力 あわ	圧縮 広力度	短期許容 広力度	照查值	********
i平1四1立,但.		^{古り421} 年間 し(mm)	市10121 mg h (mm)	d (mm)	(引張鉄筋)	(kN • m/m)	^{単田ノリ} (kN/m)	$\sigma_{\rm c} (\rm N/mm^2)$	$\sigma_{ca} (N/mm^2)$	$\sigma_{\rm c}/\sigma_{\rm ca}$	快的ワース
B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5129	1425	0.37	21.0	0.02	①S _s -D1 (H-, V-)
B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-14033	2543	1.35	21.0	0.07	④S _s −D1 (H−, V+)
B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-17332	3210	1.24	21.0	0.06	②S _s -D1 (H-, V+)
B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-17653	7963	1, 52	21, 0	0, 08	⑥S _s -D1 (H+, V+)
B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	8412	8988	1.47	21.0	0.07	②S _s -D1 (H-, V+)
ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	5665	10924	1.40	21.0	0.07	①S _s -D1 (H+, V-)

表 6.4-4(1) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース
⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

鉛直断面照査位置図

				断面性状		but felse (1 - 15h	発生機	所面力	引張	短期許容	吸木齿	
	評価位置		部材幅	部材高	有効高	(引起鉄)	曲げモーメント	軸力	応力度	応力度	照道理	検討ケース
			b (mm)	h (mm)	d (mm)	(JI) JACKADI	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm s} ({\rm N/mm}^2)$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}	
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5195	1141	3	435	0.01	①S _s -D1 (H+, V+)
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	7377	1394	23	435	0.06	(⊕S _s −D1) (H+, V+)
	B3F	8	16500	12500	12250	2-D38 @200 2-D38 @200	-10929	1425	25	435	0.06	②S _s -D1 (H+, V+)
	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-18872	4205	11	435	0.03	②S _s -D1 (H+, V+)
I	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4066	3654	0	435	0.00	③S _s -D1 (H+, V+)
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	7098	5319	0	435	0.00	(⊕S _s −D1) (H+, V+)

表 6.4-4 (2) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1σ)した解析ケース ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

評価位置は下図に示す。

<u> 鉛直断面照査位置図</u>

評価位置		部材幅	断面性状 部材高	有効高	鉄筋仕様 (せん断補強筋)	発生 せん断力	短期許容せん断力	照查値	検討ケース
		b(mm)	h (mm)	d (mm)		V (kN/m)	V_a (kN/m)	V/V _a	
B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1250	8562	0.15	④S _s −D1 (H+, V+)
B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1973	9484	0.21	④S _s −D1 (H−, V+)
B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	2526	12853	0.20	(4) S ₅ −D 1 (H−, V+)
B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3684	16896	0, 22	②S _s -D1 (H+, V+)
B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3609	10876	0.34	②S _s -D1 (H+, V+)
ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3318	12648	0.27	② S _s -D 1 (H+, V+)

表 6.4-4(3) 南北方向断面のせん断力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

評価位置は下図に示す。

鉛直断面照査位置図

									A		
635 Jur 14+ 1993		40++++2	断面性状	大热声	鉄筋仕様	発生的	新面力	圧縮	短期許容	照查值	14314 -7
評価位置		部树帽	部材局	有刻尚	(引張鉄筋)	田けモーメント	甲田ノリ	心力度	心力度		板討ケース
		b (mm)	h (mm)	d (mm)	1010000000000	(kN・m/m)	(kN/m)	σ_{c} (N/mm ²)	σ _{ca} (N/mm ²)	σ_c/σ_{ca}	
B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-7476	1519	0.36	21.0	0.02	④S _s −D1 (H−, V+)
B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	24058	3221	1.01	21.0	0.05	④S _s −D1 (H+, V+)
B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	52236	5052	2.15	21.0	0.11	④S _s −D1 (H+, V+)
B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-104103	6726	4.26	21.0	0.21	④S _s −D1 (H−, V+)
B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-91086	8129	3. 76	21.0	0.18	④S _s −D1 (H−, V+)
ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-70965	9288	2.82	21.0	0.14	④S _s −D1 (H−, V+)

表 6.4-5(1) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

<u>鉛直断面照査位置図</u>

			断面性状			発生開	所面力	引張	短期許容	1177 - sk* fait:	
評価位置		部材幅	部材高	有効高	鉄筋仕様	曲げモーメント	軸力	応力度	応力度	照宜恒	検討ケース
		b (mm)	h (mm)	d (mm)	(9)30387337	(kN ∙ m/m)	(kN/m)	σ_{s} (N/mm ²)	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}	
B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	7341	1698	2	435	0.01	(∰S _s −D1) (H+, V+)
B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	24058	3221	15	435	0.04	(€ S _s −D 1 (H+, V+)
B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-50614	4064	62	435	0.15	④S _s −D1 (H−, V+)
B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-103648	6590	152	435	0.35	(€ S _s −D 1 (H−, V+)
B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-91086	8129	102	435	0.24	④S _s −D1 (H−, V+)
ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-70965	9288	40	435	0.10	(⊕S _s −D1) (H−, V+)

表 6.4-5(2) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

<u>鉛直断面照査位置図</u>

評価位置		部材幅 b(mm)	断面性状 部材高 h(mm)	有効高 d(mm)	鉄筋仕様 (せん断補強筋)	発生 せん断力 V (kN/m)	短期許容 せん断力 V _a (kN/m)	照查值 V/V _a	検討ケース
B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1611	13741	0.12	④ S _s −D 1 (H−, V+)
B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	3786	12688	0.30	④S _s −D1 (H−, V+)
B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	6340	22410	0, 29	④S _s −D1 (H−, V+)
B4F	10	12500	16500	15000	8-D51 @200	8498	27964	0, 31	(∰S _s −D1) (H−, V+)
B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2776	15552	0.18	⑥S _s -D1 (H+, V+)
ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	3269	19770	0.17	④ S _s -D 1 (H-, V+)

表 6.4-5(3) 東西方向断面のせん断力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース ⑥:地盤物性のばらつきを考慮(+1g)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

記号の説明

曲げモーメント	: M
軸力	: N
せん断力	: V

応力の符号

曲げモーメント	(M)	正:上端が圧縮となる曲げモーメント
		負:上端が引張となる曲げモーメント
軸力	(N)	正:圧縮
		負:引張

図 6.4-2 応力の方向(はり要素)

図 6.4-3 はり要素の方向(鉛直断面)

To2_VS-NS_OG-L_MnsShousaSect_Ss-D1--.36 Time: t=53.89sec

(+: 圧縮, -: 引張)

軸力 (kN/m)

 図 6.4-4(1) 南北方向断面の側壁(B1F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H-, V-), t=53.89s) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

 図 6.4-4 (2) 南北方向断面の側壁(B2F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H-, V+), t=53.91s) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

 図 6.4-4 (3) 南北方向断面の側壁 (B3F) において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力 (S_s-D1 (H-, V+), t=53.92s) (検討ケース②: 地盤物性のばらつきを考慮 (+1σ) した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4(4) 南北方向断面の側壁(B4F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H+, V+), t=23.10s) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して

非液状化の条件を仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4(5) 南北方向断面の側壁(B4Fトンネル部)において最も厳しいコンクリートの曲げ
軸力の照査値となる時刻の断面力(S_s-D1(H-, V+), t=60.37s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-4(6) 南北方向断面の側壁(ピット部)において最も厳しいコンクリートの曲げ軸力の 照査値となる時刻の断面力(S_s-D1(H+, V-), t=23.39s) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

(+:圧縮,-:引張)

Axial Force

10000 kN/m

5000 kN/m

6704

7456

8461

図 6.4-4(7) 南北方向断面の側壁(B1F)において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力(S_s-D1(H+, V+), t=53.89s)
(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4(8) 南北方向断面の側壁(B2F)において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力(S_s-D1(H+, V+), t=53.90s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-4 (9) 南北方向断面の側壁 (B3F) において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力 (S_s-D1 (H+, V+), t=44.31s)
(検討ケース②: 地盤物性のばらつきを考慮 (+1g) した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4 (10) 南北方向断面の側壁 (B4F) において最も厳しい鉄筋の曲げ軸力の照査値となる 時刻の断面力 (S_s-D1 (H+, V+), t=53.77s)

(検討ケース②:地盤物性のばらつきを考慮(+1))した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

5365

せん断力 (kN/m)

 図 6.4-4 (11) 南北方向断面の側壁(B4Fトンネル部)において最も厳しい鉄筋の曲げ軸力の照 査値となる時刻の断面力(S_s-D1(H+, V+), t=22.65s) (検討ケース③: 地盤物性のばらつきを考慮(-1σ)した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-4 (12) 南北方向断面の側壁(ピット部)において最も厳しい鉄筋の曲げ軸力の照査値 となる時刻の断面力(S_s-D1(H+, V+), t=60.50s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

6 - 140

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-4 (13) 南北方向断面の側壁 (B1F) において最も厳しいせん断力の照査値となる時刻の 断面力 (S_s-D1 (H+, V+), t=53.87s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-4 (14) 南北方向断面の側壁(B2F)において最も厳しいせん断力の照査値となる時刻の
断面力(S_s-D1(H-, V+), t=53.90s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-4 (15) 南北方向断面の側壁 (B3F) において最も厳しいせん断力の照査値となる時刻の
断面力 (S_s-D1 (H-, V+), t=53.90s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-4 (16) 南北方向断面の側壁 (B4F) において最も厳しいせん断力の照査値となる時刻の
断面力 (S_s-D1 (H+, V+), t=53.83s)

(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4(17) 南北方向断面の側壁(B4Fトンネル部)において最も厳しいせん断力の照査値と なる時刻の断面力(S_s-D1(H+, V+), t=53.82s) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-4 (18) 南北方向断面の側壁(ピット部)において最も厳しいせん断力の照査値となる 時刻の断面力(S_s-D1(H+, V+), t=53.80s)

(検討ケース②:地盤物性のばらつきを考慮(+1))した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-5(1) 東西方向断面の側壁(B1F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H-, V+), t=53.94s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-5 (2) 東西方向断面の側壁(B2F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H+, V+), t=53.95s) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

曲げモーメント (kN・m/m)

To2_VS-EW_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=53.95sec

^{(+:} 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-5 (3) 東西方向断面の側壁(B3F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H+, V+), t=53.95s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-5(4) 東西方向断面の側壁(B4F)において最も厳しいコンクリートの曲げ軸力の照査 値となる時刻の断面力(S_s-D1(H-, V+), t=53.94s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

 図 6.4-5(5) 東西方向断面の側壁(B4Fトンネル部)において最も厳しいコンクリートの曲げ 軸力の照査値となる時刻の断面力(S_s-D1(H-, V+), t=53.93s) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

ſ

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-5(6) 東西方向断面の側壁(ピット部)において最も厳しいコンクリートの曲げ軸力の 照査値となる時刻の断面力(S_s-D1(H-, V+), t=53.93s) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

図 6.4-5(7) 東西方向断面の側壁(B1F)において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力(S_s-D1(H+, V+), t=53.94s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-5(8) 東西方向断面の側壁(B2F)において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力(S_s-D1(H+, V+), t=53.95s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-5 (9) 東西方向断面の側壁(B3F)において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力(S_s-D1(H-, V+), t=53.94s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-5 (10) 東西方向断面の側壁 (B4F) において最も厳しい鉄筋の曲げ軸力の照査値となる
時刻の断面力 (S_s-D1 (H-, V+), t=53.93s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)

Ľ

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-5 (11) 東西方向断面の側壁(B4Fトンネル部)において最も厳しい鉄筋の曲げ軸力の照 査値となる時刻の断面力(S_s-D1(H-, V+), t=53.93s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-5 (12) 東西方向断面の側壁(ピット部)において最も厳しい鉄筋の曲げ軸力の照査値 となる時刻の断面力(S_s-D1(H-, V+), t=53.93s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-5 (13) 東西方向断面の側壁(B1F)において最も厳しいせん断力の照査値となる時刻の
断面力(S_s-D1(H-, V+), t=53.92s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-5 (14) 東西方向断面の側壁(B2F)において最も厳しいせん断力の照査値となる時刻の
断面力(S_s-D1(H-, V+), t=53.93s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

7922

8879

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-5 (15) 東西方向断面の側壁(B3F)において最も厳しいせん断力の照査値となる時刻の
断面力(S_s-D1(H-, V+), t=53.92s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-5 (16) 東西方向断面の側壁 (B4F) において最も厳しいせん断力の照査値となる時刻の
断面力 (S_s-D1 (H-, V+), t=53.92s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-5 (17) 東西方向断面の側壁(B4Fトンネル部)において最も厳しいせん断力の照査値となる時刻の断面力(S_s-D1(H+, V+), t=53.79s)
(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-5(18) 東西方向断面の側壁(ピット部)において最も厳しいせん断力の照査値となる
時刻の断面力(S_s-D1(H-, V+), t=54.00s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) (3) 断面力分布(各基準地震動に着目した断面力図)

各基準地震動において、立坑に対する照査のうち、最も厳しい照査値となる部材の評価 時刻においての断面力分布を示す。検討ケースは①:原地盤に基づく液状化強度特性を用 いた解析ケースについて各基準地震動の照査結果を示す。表 6.4-6 に各基準地震動で抽 出した照査値について照査項目とその評価位置の一覧表を示し、図 6.4-6、図 6.4-7 に 断面力図を示す。

表 6.4-6(1) 南北方向断面の各地震波に対して最も厳しい照査値とその照査項目及び 評価位置の結果

	抽出照査値と照査項目			
基準地震動	照査値	照查項目	評価位置	
$S_{s} - D 1 (H+, V+)$	0.31	せん断照査	B4Fトンネル部	13
$S_{s} - D 1 (H+, V-)$	0.31	せん断照査	B4Fトンネル部	13
$S_{s} - D 1 (H-, V+)$	0.28	せん断照査	B4Fトンネル部	13
$S_{s} - D 1 (H-, V-)$	0.28	せん断照査	B4Fトンネル部	13
S _s -11	0.15	せん断照査	B4Fトンネル部	13
S _s -12	0.27	せん断照査	B4Fトンネル部	13
S _s -13	0.26	せん断照査	B4Fトンネル部	13
S _s -14	0.22	せん断照査	B4Fトンネル部	14
S _s -21	0.27	せん断照査	B4Fトンネル部	13
S _s - 2 2	0.23	せん断照査	B4Fトンネル部	13
$S_{s} - 31$ (H+, V+)	0.30	せん断照査	B4Fトンネル部	13
$S_{s} - 31$ (H-, V+)	0.32	せん断照査	B4Fトンネル部	13

※1 評価位置は下図に示す

表 6.4-6(2) 東西大	方向断面の各地震波に対して最も	厳しい照査値とその照査項目及び
夜 0.4-0 (2) 東西方	「門例面の谷地辰仮に刈して取り	敵しい思査値とての思査項目及び

	抽出照査値と照査項目			
基準地震動	照查値	照查項目	評価位置	
$S_{s} - D 1 (H+, V+)$	0.22	せん断照査	B2F	6
$S_{s} - D 1 (H+, V-)$	0.22	せん断照査	B2F	6
$S_{s} - D 1 (H-, V+)$	0.22	せん断照査	B2F	6
$S_{s} - D 1 (H-, V-)$	0.23	せん断照査	B2F	6
S _s - 1 1	0.10	せん断照査	B4Fトンネル部	15
S _s -12	0.12	せん断照査	B4Fトンネル部	15
S _s -13	0.12	せん断照査	B4Fトンネル部	15
S _s -14	0.12	せん断照査	B4Fトンネル部	15
S _s - 2 1	0.11	せん断照査	B2F	6
S _s - 2 2	0.13	せん断照査	B2F	6
$S_{s} - 31$ (H+, V+)	0.19	せん断照査	B4F	10
$S_{s} - 31$ (H-, V+)	0.20	せん断照査	B4F	10

評価位置の結果

※1 評価位置は下図に示す

鉛直断面照査位置図

(+: 圧縮, -: 引張)

軸力(kN/m)

最も厳しい照査値となる時刻の断面力(t = 53.82s)

軸力(kN/m)

最も厳しい照査値となる時刻の断面力(t=53.81s)

(+: 圧縮, -: 引張)

軸力(kN/m)

7928

8653

9671

最も厳しい照査値となる時刻の断面力(t=53.82s)

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-6(4) 南北方向断面の S_s-D1(H-, V-)において 最も厳しい照査値となる時刻の断面力(t=53.82s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-6(5) 南北方向断面の S_s-11において最も厳しい照査値となる時刻の断面力 (t=69.54s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

図 6.4-6(6) 南北方向断面の S_s-12において最も厳しい照査値となる時刻の断面力 (t=31.58s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-6(7) 南北方向断面の S_s-13において最も厳しい照査値となる時刻の断面力 (t=28.79s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

(t = 31.72s)

(+: 圧縮, -: 引張)

軸力(kN/m)

図 6.4-6(9) 南北方向断面の S_s-21において最も厳しい照査値となる時刻の断面力 (t=66.75s)

(+: 圧縮, -:引張)

軸力 (kN/m)

(t = 69.46s)

To2_VS-NS_OG-L_MnsShousaSect_Ss-31++.36 Time: t=8.71sec

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

図 6.4-6(11) 南北方向断面の S_s-31(H+, V+)において 最も厳しい照査値となる時刻の断面力(t=8.71s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

最も厳しい照査値となる時刻の断面力(t=8.71s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-7(1) 東西方向断面のS_s-D1(H+, V+)において 最も厳しい照査値となる時刻の断面力(t=53.90s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7(2) 東西方向断面のS_s-D1(H+, V-)において 最も厳しい照査値となる時刻の断面力(t=53.90s)

(+: 圧縮, -:引張)

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-7(3) 東西方向断面のS_s-D1(H-, V+)において 最も厳しい照査値となる時刻の断面力(t=53.91s)

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

 図 6.4-7(4) 東西方向断面のS_s-D1(H-, V-)において 最も厳しい照査値となる時刻の断面力(t=53.91s)

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

(t = 23.57s)

(+: 圧縮, -:引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7(6) 東西方向断面のS_s-12において最も厳しい照査値となる時刻の断面力 (t=28.83s)

曲げモーメント (kN・m/m)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7(7) 東西方向断面のS_s-13において最も厳しい照査値となる時刻の断面力 (t=26.05s)

(+: 圧縮, -:引張)

軸力 (kN/m)

図 6.4-7(8) 東西方向断面のS_s-14において最も厳しい照査値となる時刻の断面力 (t=28.76s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7(9) 東西方向断面のS_s-21において最も厳しい照査値となる時刻の断面力 (t=102.64s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7 (10) 東西方向断面のS_s-22において最も厳しい照査値となる時刻の断面力 (t=83.78s)

(+: 圧縮, -:引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-7 (11) 東西方向断面のS_s-31 (H+, V+) において 最も厳しい照査値となる時刻の断面力(t=8.77s)

(+: 圧縮, -: 引張)

軸力 (kN/m)

(4) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため,地震応答解析の全時刻における最 大せん断ひずみの分布を示す。

図 6.4-8(1) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(2) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(3) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(4) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(5) 南北方向断面の最大せん断ひずみ(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(6) 南北方向断面の最大せん断ひずみ(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(7) 南北方向断面の最大せん断ひずみ(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(8) 南北方向断面の最大せん断ひずみ(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)
図 6.4-8(9) 南北方向断面の最大せん断ひずみ(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(10) 南北方向断面の最大せん断ひずみ(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(11) 南北方向断面の最大せん断ひずみ(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(12) 南北方向断面の最大せん断ひずみ(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-8(13) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-8(14) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-8(15) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

図 6.4-8(16) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

図 6.4-8(17) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-8(18) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-8(19) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-8(20) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-8(21) 南北方向断面の最大せん断ひずみ(S_s-D1(H+, V+))
(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して
非液状化の条件を仮定した解析ケース)

図 6.4-8(22) 南北方向断面の最大せん断ひずみ(S_s-D1(H-, V+))
(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して
非液状化の条件を仮定した解析ケース)

図 6.4-9(1) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(2) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(3) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(4) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(5) 東西方向断面の最大せん断ひずみ(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(6) 東西方向断面の最大せん断ひずみ(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(7) 東西方向断面の最大せん断ひずみ(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(8) 東西方向断面の最大せん断ひずみ(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(9) 東西方向断面の最大せん断ひずみ(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(10) 東西方向断面の最大せん断ひずみ(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(11) 東西方向断面の最大せん断ひずみ(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(12) 東西方向断面の最大せん断ひずみ(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-9(13) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-9(14) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-9(15) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

図 6.4-9(16) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1_σ)した解析ケース)

図 6.4-9(17) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-9(18) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-9(19) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+)) (検討ケース5:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-9(20) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+)) (検討ケース5):原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-9(21) 東西方向断面の最大せん断ひずみ(S_s-D1(H+, V+))
(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して
非液状化の条件を仮定した解析ケース)

図 6.4-9(22) 東西方向断面の最大せん断ひずみ(S_s-D1(H-, V+))
(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して
非液状化の条件を仮定した解析ケース)
(5) 過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため,地震応答解析の全時刻における過剰 間隙水圧分比の最大値の分布を示す。

図 6.4-10(1) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(2) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(3) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(4) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(5) 南北方向断面の過剰間隙水圧比(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(6) 南北方向断面の過剰間隙水圧比(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(7) 南北方向断面の過剰間隙水圧比(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(8) 南北方向断面の過剰間隙水圧比(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(9) 南北方向断面の過剰間隙水圧比(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(10) 南北方向断面の過剰間隙水圧比(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(11) 南北方向断面の過剰間隙水圧比(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-10(12) 南北方向断面の過剰間隙水圧比(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-10(13) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-10(14) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) 図 6.4-10(15) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

図 6.4-10(16) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース) 図 6.4-10(17) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+))
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-10(18) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) 図 6.4-10(19) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-10(20) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) 図 6.4-10(21) 南北方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース)

図 6.4-10(22) 南北方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース) 図 6.4-11(1) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11(2) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(3) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11(4) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(5) 東西方向断面の過剰間隙水圧比(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11(6) 東西方向断面の過剰間隙水圧比(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(7) 東西方向断面の過剰間隙水圧比(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11(8) 東西方向断面の過剰間隙水圧比(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(9) 東西方向断面の過剰間隙水圧比(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11(10) 東西方向断面の過剰間隙水圧比(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(11) 東西方向断面の過剰間隙水圧比(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-11 (12) 東西方向断面の過剰間隙水圧比(S_s-31 (H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-11(13) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-11 (14) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) 図 6.4-11(15) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

図 6.4-11(16) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース) 図 6.4-11(17) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+))
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-11(18) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) 図 6.4-11(19) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-11 (20) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) 図 6.4-11(21) 東西方向断面の過剰間隙水圧比(S_s-D1(H+, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース)

図 6.4-11(22) 東西方向断面の過剰間隙水圧比(S_s-D1(H-, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース) (6) 最大加速度分布図

各要素に発生している水平方向の加速度応答分布を確認するため,各基準地震動におけ る最大加速度分布を示す。

図 6.4-12(1) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(2) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(3) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(4) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(5) 南北方向断面の水平加速度応答分布図(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(6) 南北方向断面の水平加速度応答分布図(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(7) 南北方向断面の水平加速度応答分布図(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(8) 南北方向断面の水平加速度応答分布図(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(9) 南北方向断面の水平加速度応答分布図(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(10) 南北方向断面の水平加速度応答分布図(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(11) 南北方向断面の水平加速度応答分布図(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-12(12) 南北方向断面の水平加速度応答分布図(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-12(13) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

図 6.4-12(14) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) 図 6.4-12(15) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

図 6.4-12(16) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1_σ)した解析ケース) 図 6.4-12(17) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-12(18) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) 図 6.4-12(19) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-12 (20) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) 図 6.4-12(21) 南北方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1_σ)して 非液状化の条件を仮定した解析ケース)

図 6.4-12(22) 南北方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース) 図 6.4-13(1) 東西方向断面の水平加速度応答分布図(S_s-D1(H+,V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(2) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-13(3) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(4) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-13(5) 東西方向断面の水平加速度応答分布図(S_s-11) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(6) 東西方向断面の水平加速度応答分布図(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)
図 6.4-13(7) 東西方向断面の水平加速度応答分布図(S_s-13) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(8) 東西方向断面の水平加速度応答分布図(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-13(9) 東西方向断面の水平加速度応答分布図(S_s-21) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(10) 東西方向断面の水平加速度応答分布図(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-13(11) 東西方向断面の水平加速度応答分布図(S_s-31(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 6.4-13(12) 東西方向断面の水平加速度応答分布図(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) 図 6.4-13(13) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

図 6.4-13 (14) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) 図 6.4-13(15) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

図 6.4-13 (16) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース) 図 6.4-13(17) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-13(18) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) 図 6.4-13(19) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

図 6.4-13 (20) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) 図 6.4-13 (21) 東西方向断面の水平加速度応答分布図(S_s-D1(H+, V+)) (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース)

 図 6.4-13 (22) 東西方向断面の水平加速度応答分布図(S_s-D1(H-, V+))
 (検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して 非液状化の条件を仮定した解析ケース)

- 6.4.2 鉛直断面に対する耐震評価結果
 - (1) 構造部材の曲げ軸力に対する評価結果

コンクリートの曲げ<mark>軸力</mark>照査及び鉄筋<mark>の</mark>曲げ<mark>軸力</mark>照査の手順を図 6.4-14 に示す。コ ンクリートの曲げ<mark>軸力</mark>照査結果を表 6.4-7~表 6.4-8 に,鉄筋の曲げ<mark>軸力</mark>照査結果を表 6.4-9~表 6.4-10 に示す。

立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。

図 6.4-15 に概略配筋図を,表 6.4-11 に断面計算に用いた断面諸元の一覧を示す。

図 6.4-14 コンクリートの曲げ<mark>軸力</mark>照査及び鉄筋の曲げ<mark>軸力</mark>照査フロー

				断面性状	2	but free () and	発生的	所面力	圧縮	短期許容	服木店
検討ケース	評価位置		部材幅	部材高	有効高	新胎性様 (引起始な)	曲げモーメント	軸力	応力度	応力度	RETUR
			b (mm)	h (mm)	d (mm)	(91)0097/00/	(kN • m/m)	(kN/m)	σ_{c} (N/mm ²)	σ_{ca} (N/mm ²)	$\sigma_{\rm c}/\sigma_{\rm ca}$
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5205	1158	0.36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9539	2584	0.90	21.0	0.05
① S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-13707	3175	0.94	21.0	0.05
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-11999	7633	1.27	21.0	0.07
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	4468	10361	1.46	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	4175	11041	1.35	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5185	1183	0, 36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-10221	2543	0.95	21.0	0.05
① S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-15992	3024	1.14	21.0	0.06
(H+, V-)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-10280	7751	1.21	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	4849	10256	1.46	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	5665	10924	1.40	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5086	1381	0.36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13504	2527	1.29	21.0	0.07
①S _s -D1 (H-, V+)	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-16445	3419	1.14	21.0	0.06
	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	8478	7918	1. 16	21.0	0,06
	B4F トンネル部	14	16500	12500	12250	2-D38 @200 2-D38 @200	4732	9146	1. 32	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3457	10403	1.26	21.0	0.06

表 6.4-7(1) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状		Date Artic J. L. Lots	発生的	所面力	圧縮	短期許容	限本信
検討ケース	評価位置		部材幅	部材高	有効高		曲げモーメント	軸力	応力度	応力度	1997月11日 1997日111日
			b(mm)	h (mm)	d (mm)	(1)1328207007	(kN • m/m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	$\sigma_{\rm c}/\sigma_{\rm ca}$
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5129	1425	0.37	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13532	2771	1.27	21.0	0.07
① S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-17165	3749	1.18	21.0	0,06
(H-, V-)	B4F	12	16500	12500	12250	2-D38 @200 2-D38 @200	3117	10180	1.20	21.0	0, 06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	2032	11078	1.43	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	2126	11805	1.36	21.0	0, 07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-1194	1390	0.21	21.0	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-2863	2675	0.51	21.0	0.03
0.5 - 1.1	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-2549	4414	0.57	21.0	0.03
0.5, 11	B4F	12	16500	12500	12250	2-D38 @200 2-D38 @200	2037	9269	1.06	21.0	0,06
	B4F トンネル部	14	16500	12500	12250	2-D38 @200 2-D38 @200	1500	9762	1.25	21.0	0.06
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	843	10736	1.19	21.0	0.06
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	3080	1194	0.26	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-6059	2584	0.69	21.0	0.04
= 12	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-8716	3317	0.69	21.0	0.04
	B4F	12	16500	12500	12250	2-D38 @200 2-D38 @200	-7135	7330	1.05	21.0	0.05
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	733	10440	1. 29	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	857	11218	1.25	21.0	0.06

表 6.4-7(2) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状	2	Dei- 800 11-100	発生的	所面力	圧縮	短期許容	昭本庙
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄管)	曲げモーメント	軸力	応力度	応力度	WACHENNE.
			b (mm)	h (mm)	d (mm)	(91)289/307	(kN・m/m)	(kN/m)	$\sigma_{\rm c} (N/mm^2)$	$\sigma_{ca} (N/mm^2)$	σ_c / σ_{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-2121	1510	0.26	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-5700	2755	0.69	21.0	0.04
0.5 - 1.3	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-8148	3523	0.69	21.0	0.04
U.S _s -1.5	B4F	12	16500	12500	12250	2-D38 @200 2-D38 @200	1176	9717	1.07	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	755	10520	1.30	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	327	11301	1, 23	21.0	0.06
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	2108	1212	0.23	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-3188	2554	0, 52	21.0	0, 03
0.5 - 1.4	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-4664	3330	0.54	21.0	0.03
00, 14	B4F	12	16500	12500	12250	2-D38 @200 2-D38 @200	2223	9098	1.05	21.0	0.05
	B4F トンネル部	14	16500	12500	12250	2-D38 @200 2-D38 @200	1378	9658	1.23	21.0	0.06
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	-863	10736	1. 19	21.0	0.06
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-3394	1587	0.32	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-8524	3058	0.89	21.0	0.05
0.5 - 2.1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-12556	3172	0.86	21.0	0.05
00, 21	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-8382	7343	1.10	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	2379	10072	1, 32	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	2935	10862	1.29	21.0	0.07

表 6.4-7(3) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状		bell forter f. E. E. Data	発生的	所面力	圧縮	短期許容	昭木店
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様	曲げモーメント	軸力	応力度	応力度	思ゴゴ电
			ь (mm)	h (mm)	d (mm)	(7132988887)	(kN • m/m)	(kN/m)	$\sigma_{\rm c} (N/mm^2)$	$\sigma_{ca} (N/mm^2)$	σ_{c}/σ_{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-3696	1494	0.32	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9189	2866	0, 90	21.0	0, 05
08 - 22	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-11991	3772	0.87	21.0	0.05
0.5 5 - 2 2	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-9228	8214	1.22	21.0	0,06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	2892	10477	1.40	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3975	10816	1.32	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4089	1466	0, 33	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-11101	2752	1.03	21.0	0.05
① S _s - 3 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-13651	3684	0.94	21.0	0.05
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	10129	6331	1.06	21.0	0,06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	1822	9416	1.22	21.0	0.06
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	4018	10068	1.24	21.0	0.06
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4121	1235	0.31	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-6738	2709	0.74	21.0	0.04
①S _s -31 (H-, V+)	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-9060	3354	0.71	21.0	0.04
	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-10600	6210	1.06	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	4051	8904	1.26	21.0	0, 06
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	6102	9381	1.25	21.0	0,06

表 6.4-7(4) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状	2	an the LL life	発生的	所面力	圧縮	短期許容	限本信
検討ケース	評価位置		部材幅	部材高	有効高		曲げモーメント	軸力	応力度	応力度	10. III. IIII.
			b (mm)	h (mm)	d (mm)	()))	(kN • m/m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ _c /σ _{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5063	1164	0.35	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9071	2541	0, 86	21.0	0.05
② S _s -D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-14506	2864	1.02	21.0	0.05
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-16821	7705	1.46	21.0	0.07
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	3684	10278	1.41	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3490	10943	1. 32	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4981	1381	0, 36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13032	2523	1.24	21.0	0.06
② S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-17332	3210	1.24	21.0	0.06
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	17888	7066	1.43	21.0	0.07
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	8412	8988	1. 47	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	2867	10373	1.23	21.0	0.06

表 6.4-7(5) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

評価位置は下図に示す。

				断面性状		Anti-Arte-11, 194	発生的	所面力	圧縮	短期許容	昭木枯
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様 (引碼鉄館)	曲げモーメント	軸力	応力度	応力度	思ゴ甩
			b (mm)	h (mm)	d (mm)	(91)488/007	(kN · m∕m)	(kN/m)	$\sigma_{\rm c} (N/mm^2)$	$\sigma_{ca} (N/mm^2)$	σ_c / σ_{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5004	1161	0.35	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9588	2517	0, 90	21.0	0.05
③ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-14335	2957	1.00	21.0	0.05
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-14252	7701	1.36	21.0	0.07
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	4178	10368	1.44	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3827	11020	1.34	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4950	1382	0.36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13071	2520	1.24	21.0	0.06
③ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-16695	3302	1. 17	21.0	0.06
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	13656	7010	1. 27	21.0	0.07
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	6650	8972	1.39	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3090	10409	1.24	21.0	0.06

表 6.4-7(6) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

				断面性状		Aug. Autor (1 2 200	発生的	所面力	圧縮	短期許容	限木店
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄管)	曲げモーメント	軸力	応力度	応力度	出现旧
			b (mm)	h (mm)	d (mm)	(91)438/00/7	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_{c}/σ_{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5145	1166	0,36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9135	2726	0.88	21.0	0.05
④ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-12248	3762	0.88	21.0	0.05
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-10373	7063	1.15	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	3933	9953	1.38	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3756	10609	1.29	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5012	1354	0,36	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-14033	2543	1.35	21.0	0.07
④ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-15646	3930	1.07	21.0	0.06
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	11174	7651	1.24	21.0	0.06
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	-3402	10237	1.34	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	-3978	10912	1.33	21.0	0.07

表 6.4-7(7) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

				断面性状		Delis John J. L. John	発生的	所面力	圧縮	短期許容	昭本庙
検討ケース	評価位置		部材幅	部材高	有効高		曲げモーメント	軸力	応力度	応力度	照正阻
			b (mm)	h (mm)	d (mm)	()))	(kN • m/m)	(kN/m)	$\sigma_{\rm c} ({\rm N/mm}^2)$	$\sigma_{ca} (N/mm^2)$	$\sigma_{\rm c}/\sigma_{\rm ca}$
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4305	1139	0.31	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-8532	2490	0.82	21.0	0.04
⑤ S ₅ − D 1	B3F	8	16500	12500	12250	2-D38 @200 2-D38 @200	-11392	2968	0.78	21.0	0.04
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-13166	7848	1. 33	21.0	0.07
	B4F トンネル部	15	16500	12500	12250	2-D38 @200 2-D38 @200	2851	10124	1.35	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3621	10803	1.31	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-3959	1369	0.32	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-10098	2547	0.94	21.0	0.05
⑤ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-11929	3395	0.83	21.0	0.04
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	11925	7144	1.21	21.0	0.06
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	3735	9749	1.35	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	-3388	10450	1.26	21.0	0.06

表 6.4-7(8) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状		Dis. 64-11. 100	発生的	所面力	圧縮	短期許容	限本店
検討ケース	評価位置		部材幅	部材高	有効高	新助任様 (引張鉄銘)	曲げモーメント	軸力	応力度	応力度	1997年11日 1997年11日
			b (mm)	h (mm)	d (mm)	()1 269/10/7	(kN • m/m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_c / σ_{ca}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4220	1134	0.30	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-8173	2493	0.80	21.0	0.04
©S₅−D1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-12252	2788	0.84	21.0	0.04
(H+, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-17653	7963	1. 52	21.0	0.08
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-8135	9461	1.44	21.0	0.07
	ピット部	18	16500	12500	12250	2-D38 @200 2-D38 @200	3099	10807	1. 29	21.0	0.07
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-3892	1367	0.31	21.0	0.02
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9988	2523	0.93	21.0	0.05
© S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-12846	3022	0.88	21.0	0.05
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	18356	7049	1.45	21.0	0.07
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	5946	9840	1.46	21.0	0.07
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	2375	10900	1.27	21.0	0.07

表 6.4-7(9) 南北方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状		04-65-LL-68	発生的	所面力	圧縮	短期許容	照本信
検討ケース	評価位置		部材幅	部材高	有効高	新助任様 (引起鉄管)	曲げモーメント	軸力	応力度	応力度	RETERINE
			b (mm)	h (mm)	d (mm)	(913898/007	(kN • m/m)	(kN/m)	$\sigma_{\rm c} (N/mm^2)$	$\sigma_{ca} (N/mm^2)$	σ_{c}/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5910	1649	0, 29	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17328	3037	0,72	21.0	0.04
① S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	34298	4978	1.37	21.0	0.07
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	63740	7304	2.61	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	57307	8687	2.29	21.0	0.11
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	46927	10090	1.90	21.0	0.10
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	4853	2090	0.30	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	16698	3403	0.71	21.0	0.04
①S _s -D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	33337	5513	1.32	21.0	0.07
(H+, V-)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	63185	8318	2. 55	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	57601	9669	2.30	21.0	0.11
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	46634	10765	1. 93	21.0	0.10
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5857	1622	0, 32	21.0	0, 02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-15179	3075	0, 65	21.0	0.04
①S _s -D1 (H-, V+)	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-34121	4509	1.36	21.0	0.07
	B4F	п	12500	16500	16240	2-D51 @200 2-D51 @200	-66243	7038	2.68	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-57845	8605	2.32	21.0	0,12
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-42322	10425	1.80	21.0	0.09

表	6.4 - 8 (1)	東西方向断面のコンクリー	トの曲げ軸力に対す	る照査結果
---	-------------	--------------	-----------	-------

評価位置は下図に示す。

				断面性状		64-65-11.4V	発生的	新面力	圧縮	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	秋肋仁様 (引張鉄館)	曲げモーメント	軸力	応力度	応力度	100 E. III.
			b (mm)	h (mm)	d (mm)	(JI)REAM/	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	$\sigma_{\rm c}/\sigma_{\rm ca}$
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5854	1759	0.33	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-15804	3223	0, 68	21.0	0.04
① S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-35389	5113	1.40	21.0	0.07
(H-, V-)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-68054	7844	2.73	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-57465	8453	2, 31	21.0	0.11
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-36095	13315	1.89	21.0	0.09
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-1962	1765	0, 22	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	1215	3974	0, 40	21.0	0.02
0.5 - 1.1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	5466	5557	0. 57	21.0	0.03
00, 11	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	10296	10032	1.02	21.0	0.05
	B4F トンネル部	15	12500	16500	16240	2-D51 @200 2-D51 @200	3224	13064	1.21	21.0	0.06
	ピット部	18	12500	16500	16240	2-D51 @200 2-D51 @200	2491	14288	1. 21	21.0	0.06
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	1889	2113	0.23	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	4305	4111	0.48	21.0	0.03
0.5 - 1.2	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	9479	5712	0.67	21.0	0.04
0.03	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	11407	12285	1.22	21. 0	0.06
	B4F トンネル部	15	12500	16500	16240	2-D51 @200 2-D51 @200	11913	13366	1.44	21.0	0.07
	ピット部	18	12500	16500	16240	2-D51 @200 2-D51 @200	11283	14643	1.43	21.0	0.07

表 6.4-8(2) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

評価位置は下図に示す。

検討ケース				断面性状	2	And Anton I I Links	発生的	所面力	圧縮	短期許容	咽木枯
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄管)	曲げモーパト	軸力	応力度	応力度	28030C110L
			b (mm)	h (mm)	d (mm)	(100,200,000)	$(kN \cdot m/m)$	(kN/m)	σ_{c} (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ _c /σ _{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	2190	1998	0.23	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	4842	3886	0.47	21.0	0, 03
08 - 13	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	7547	6203	0.67	21.0	0.04
0.5 s - 1.5	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	11939	11864	1.20	21.0	0.06
	B4F トンネル部	15	12500	16500	16240	2-D51 @200 2-D51 @200	11126	13375	1.42	21.0	0.07
	ピット部	18	12500	16500	16240	2-D51 @200 2-D51 @200	11659	14468	1.43	21.0	0.07
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	1140	2023	0.21	21.0	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	1428	4096	0.41	21. 0	0.02
0.8 - 1.4	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	3033	6408	0.58	21.0	0.03
0.5, 14	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	8952	11745	1.13	21.0	0.06
	B4F トンネル部	15	12500	16500	16240	2-D51 @200 2-D51 @200	8961	12790	1.32	21.0	0.07
	ピット部	18	12500	16500	16240	2-D51 @200 2-D51 @200	8512	13842	1.31	21.0	0.07
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	2277	2140	0.24	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	4344	4242	0.49	21.0	0.03
0.8 - 2.1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-15077	4748	0.72	21.0	0.04
① S _s – 2 1	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	15620	12064	1.30	21. 0	0.07
	B4F トンネル部	15	12500	16500	16240	2-D51 @200 2-D51 @200	14542	13138	1.48	21.0	0,08
	ピット部	18	12500	16500	16240	2-D51 @200 2-D51 @200	12434	14216	1.42	21.0	0.07

表	6.4 - 8 (3)	東西方向断面のコンクリ	リートの	の曲げ軸力に対す	る照査結果
---	-------------	-------------	------	----------	-------

評価位置は下図に示す。

検討ケース				断面性状		Art. 100-11-100	発生的	所面力	圧縮	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	(引起始館)	曲げモーメント	軸力	応力度	応力度	197 ELIE
			b (mm)	h (mm)	d (mm)	(91)1696/1017	$(kN \cdot m/m)$	(kN/m)	σ_{c} (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_c/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-3347	2022	0.28	21.0	0, 02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-8971	3791	0.56	21.0	0.03
0.5 - 2.2	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-19710	5994	0.93	21.0	0.05
0.5 5 - 2 2	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	30698	10194	1.49	21.0	0.08
	B4F トンネル部	14	12500	16500	16240	2-D51 @200 2-D51 @200	29376	10711	1.60	21.0	0.08
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	25912	11607	1. 51	21.0	0.08
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-4526	1765	0.29	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-9941	3045	0.52	21.0	0.03
① S _s - 3 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-23778	4753	0.95	21.0	0, 05
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-47173	7773	1.86	21.0	0.09
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-39748	10255	1. 79	21.0	0.09
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-32383	11987	1.70	21.0	0.09
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	4744	1777	0.27	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	11344	3636	0.60	21.0	0.03
① S _s - 3 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	24557	5625	1.01	21.0	0.05
(H-, V+)	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	45034	9182	1.80	21.0	0, 09
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	43626	9784	1.86	21.0	0.09
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	36123	11059	1.70	21.0	0.09

表	6.4 - 8 (4)	東西方向断面のコンクリ	ートの曲げ軸力に対す	る照査結果
---	-------------	-------------	------------	-------

評価位置は下図に示す。

				断面性状	2	And Andre & L. Linds	発生	所面力	圧縮	短期許容	昭木枯
検討ケース	評価位置		部材幅	部材高	有効高	(引起)	曲げモーメント	軸力	応力度	応力度	思追旭
			b (mm)	h (mm)	d (mm)	(91)268/2007	(kN ∙ m/m)	(kN/m)	σ_{c} (N/mm ²)	σ_{ca} (N/mm ²)	$\sigma_{\rm c}/\sigma_{\rm c a}$
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	6002	1669	0.29	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17364	3104	0, 73	21.0	0.04
② S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	34111	5144	1.36	21.0	0,07
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	65431	7392	2.68	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	58727	8693	2.35	21.0	0.12
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	47377	10079	1.91	21.0	0.10
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5932	1607	0.32	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-14784	3003	0.64	21. 0	0.04
② S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-34388	4338	1.38	21. 0	0.07
(H-, V+)	B4F	п	12500	16500	16240	2-D51 @200 2-D51 @200	-67662	7039	2.74	21.0	0.14
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-57795	8470	2, 32	21. 0	0.12
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-44096	10326	1.84	21.0	0.09

表 6.4-8(5) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

評価位置は下図に示す。

				断面性状		Aug. Artic 1 1, 100	発生的	所面力	圧縮	短期許容	服木店
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄管)	曲げモーメント	軸力	応力度	応力度	2801E11E
			b (mm)	h (mm)	d (mm)	(ULARAD)	(kN ∙ m/m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_c/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5845	1666	0, 29	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17248	3079	0.72	21.0	0.04
③ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	33870	4924	1.36	21.0	0.07
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	62656	7179	2, 56	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	56662	8587	2.26	21.0	0.11
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	46504	9945	1.88	21.0	0.09
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5847	1628	0.32	21.0	0, 02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-15219	2917	0.64	21.0	0.04
③ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-34311	4586	1.37	21.0	0.07
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-65355	7151	2, 64	21.0	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-54899	8843	2.21	21.0	0.11
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-41264	10510	1.78	21.0	0.09

表 6.4-8(6) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

				断面性状		And Andre F T. Links	発生的	新面力	圧縮	短期許容	咽木枯
検討ケース	評価位置		部材幅	部材高	有効高	(引属鉄館)	曲げモーメント	軸力	応力度	応力度	照道旭
			b (mm)	h (mm)	d (mm)	()))	(kN ∙ m/m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_c/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	7341	1698	0.34	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	24058	3221	1.01	21.0	0.05
④ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	52236	5052	2.15	21.0	0.11
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	98622	7288	4.09	21.0	0.20
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	85857	8325	3. 52	21.0	0.17
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	66879	9263	2.68	21.0	0.13
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-7476	1519	0, 36	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-21939	2775	0.90	21.0	0.05
④S _s −D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-50955	4213	2.09	21.0	0.10
⊕S _s −D1 (H−, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-104103	6726	4.26	21.0	0.21
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-91086	8129	3, 76	21.0	0.18
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-70965	9288	2.82	21.0	0.14

表 6.4-8(7) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

				断面性状		Dis // 11,100	発生的	断面力	圧縮	短期許容	昭本庙
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様 (引傷鉄館)	曲げモーメント	軸力	応力度	応力度	HK10010
			b (mm)	h (mm)	d (mm)	(1)1000/007	(kN • m∕m)	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_{c}/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5623	1647	0.28	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	13259	3330	0.61	21.0	0.03
⑤S₅−D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	22000	5624	0.94	21.0	0.05
(H+, V+)	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	41378	8691	1.66	21.0	0.08
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	39841	9406	1.73	21.0	0.09
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	33318	10754	1.61	21.0	0.08
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5577	1600	0.31	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-10674	2952	0.53	21.0	0.03
(5) S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-20031	3764	0.80	21.0	0.04
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-43638	6989	1.72	21.0	0.09
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-40026	8813	1.68	21.0	0.08
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-32802	10314	1. 57	21.0	0.08

表 6.4-8(8) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状	t.		発生的	所面力	圧縮	短期許容	四水店
検討ケース	評価位置		部材幅	部材高	有効高	(引張舞院)	曲げモーメント	軸力	応力度	応力度	RETENT
			b (mm)	h (mm)	d (mm)	(9) 3687 877	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm c}$ (N/mm ²)	$\sigma_{ca} (N/mm^2)$	σ_c/σ_{ca}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5617	1639	0.28	21.0	0,02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	13749	3210	0.61	21.0	0,03
⑥ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	20393	5697	0.91	21.0	0.05
(H+, V+)	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	39620	9275	1.63	21.0	0.08
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	39297	9417	1.72	21.0	0.09
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	33050	10764	1.60	21.0	0.08
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5468	1603	0, 30	21.0	0.02
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	9205	3131	0, 50	21.0	0.03
⑥ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-17103	4711	0.76	21.0	0.04
⊕S _s −D1 (H−, V+)	B4F	12	12500	16500	16240	2-D51 @200 2-D51 @200	-42544	7439	1.68	21.0	0,08
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-39084	8906	1.67	21.0	0.08
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-32170	10437	1.57	21.0	0.08

表 6.4-8(9) 東西方向断面のコンクリートの曲げ軸力に対する照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

検討ケース				断面性状		からかたしため	発生的	所面力	引張	短期許容	昭香宿
検討ケース	評価位置		部材幅	部材高	有効高	(引張鉄館)	曲げモーメント	軸力	応力度	応力度	110. EL 110.
			b (mm)	h (mm)	d (mm)	()1,20,00,007	(kN • m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5195	1141	3	435	0. 01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	6438	1411	13	435	0.03
①S _s -D1	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-9043	1611	11	435	0, 03
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-7966	1815	4	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4016	3691	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	7137	5555	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5185	1183	2	435	0, 01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	6425	1495	10	435	0.03
① S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-9217	1096	24	435	0.06
(H+, V-)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-13110	3549	3	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4511	5178	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	5227	5812	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5093	1370	1	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13341	2466	13	435	0.03
①S _s -D1 (H-, V+)	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-13608	2613	14	435	0.04
	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-5461	2343	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3039	4497	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-2134	5450	0	435	0.00

表 6.4-9(1) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状	t l	Del Arte I L. Lote	発生的	所面力	引張	短期許容	限本結
検討ケース	評価位置		部材幅	部材高	有効高	秋肋仁様 (引起舞銃)	曲げモーメント	軸力	応力度	応力度	HALTENE.
			b (mm)	h (mm)	d (mm)	(7) 3838/307	$(kN \cdot m/m)$	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σs/σsa
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-5109	1407	1	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13532	2771	9	435	0.03
①S _s -D1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-11017	2049	12	435	0.03
(H-, V-)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-5978	1972	1	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3657	4802	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-2004	5452	0	435	0.00
	B1F	1	16500	12500	12250	2-D38 @200 2-D38 @200	167	521	0	435	0.00
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	1607	1644	0	435	0.00
<u>∭S</u> – 1.1	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-3866	2869	0	435	0.00
0.5, 11	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-5077	3594	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-918	4947	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	897	5723	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	3111	1172	0	435	0, 00
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	3609	1558	0	435	0.00
0.8 - 1.2	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-7480	1862	3	435	0.01
① S _s - 1 2	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-4155	2470	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-41	4644	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-367	5375	0	435	0, 00

表 6.4-9(2) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

検討ケース				断面性状		Att- 100- 11- 100	発生團	所面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	(引張鉄館)	曲げモーメント	軸力	応力度	応力度	227 11.110
			b (mm)	h (mm)	d (mm)	() () () () () () () ()	(kN • m∕m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ _s /σ _{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	2917	1159	0	435	0.00
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	3296	1544	0	435	0.00
05 -13	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-6743	1975	1	435	0.01
0.5 5 - 1 5	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-3965	2708	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-325	4577	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	354	5334	0	435	0.00
	B1F	1	16500	12500	12250	2-D38 @200 2-D38 @200	591	626	0	435	0.00
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	2351	1682	0	435	0.00
0.8 - 1.4	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-4088	2485	0	435	0.00
0.5 5 - 1 4	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-7950	3787	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3871	6406	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	411	6058	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4108	1155	1	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9031	2129	4	435	0.01
0.5 - 2.1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-11054	2049	12	435	0.03
① S _s – 2 1	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-10747	3889	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4086	5441	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	3390	5344	0	435	0.00

表 6.4-9(3) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

	評価位置		断面性状			Del- fabr I.L. Halt	発生断面力		引張	短期許容	昭本信
検討ケース			部材幅	部材高	有効高	秋肋仁株 (記辞館)	曲げモーメント	軸力	応力度	応力度	加工工匠
			b (mm)	h (mm)	d (mm)	13132000007	$(kN \cdot m/m)$	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s/σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	3747	966	1	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	4652	1255	4	435	0.01
0.5 - 2.2	B3F	8	16500	12500	12250	2-D38 @200 2-D38 @200	-11102	2530	6	435	0.02
0.5, -22	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-6764	2207	1	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3323	4593	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	6363	6041	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4097	1449	0	435	0.00
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-11085	2740	4	435	0.01
① S _s - 3 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-13573	3616	3	435	0.01
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-7991	3744	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4258	6294	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	3795	7227	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4122	1234	1	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	4836	1583	2	435	0.01
① S _s - 3 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-8082	2340	2	435	0.01
(H-, V+)	B4F	11	16500	12500	12250	2-D38 @200 2-D38 @200	-11213	4742	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-5369	6266	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-1202	6219	0	435	0.00

表 6.4-9(4) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

	評価位置		断面性状			24-25-11-12	発生的	所面力	引張	短期許容	昭本信
検討ケース			部材幅 部材高	有効高	(引張鉄筋)	曲げモーメント	軸力	応力度	応力度	277 III. [[E.	
			b (mm)	h (mm)	d (mm)	()))	(kN・m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	σ_{sa} (N/mm ²)	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5034	1147	2	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	6016	1444	8	435	0, 02
② S _s - D 1	B3F	8	16500	12500	12250	2-D38 @200 2-D38 @200	-10929	1425	25	435	0.06
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-18872	4205	11	435	0, 03
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4011	3785	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	5853	5607	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4978	1370	1	435	0. 01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-12889	2461	11	435	0.03
② S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-17129	3129	20	435	0.05
(H-, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-7491	2196	1	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	4155	4692	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	1976	5337	0	435	0.00

表6.4-9(5) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

評価位置は下図に示す。

	評価位置		断面性状			bel. Mrs. F.L. Lab	発生的	听面力	引張	短期許容	昭木結
検討ケース			部材幅	福 部材高 有効音	有効高	鉄筋性様 (引起鉄銃)	曲げモルト	軸力	応力度	応力度	Reconciliar
				h (mm)	d (mm)	(9) 38 8 (0)	(kN ∙ m/m)	(kN/m)	$\sigma_{\rm s} ({\rm N/mm}^2)$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4979	1145	2	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	6068	1453	9	435	0, 03
③ S ₅ − D 1	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-10266	1488	20	435	0.05
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-15742	4206	4	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-4066	3654	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	6361	5629	0	435	0,00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4956	1371	1	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-12923	2459	11	435	0.03
3 S _s - D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-16484	3220	15	435	0.04
(H-, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-6911	2515	0	435	0, 00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3382	4419	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-1657	5197	0	435	0.00

表6.4-9(6) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

	評価位置		断面性状			an an Line	発生的	所面力	引張	短期許容	昭本信
検討ケース			部材幅	部材幅 部材高 7	有効高		曲げモーメント	軸力	応力度	応力度	REFER
			b (mm)	h (mm)	d (mm)	()))	(kN・m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	5106	1150	2	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	7377	1394	23	435	0,06
④ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	8026	1500	8	435	0, 02
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	6659	1589	3	435	0, 01
	B4F トンネル部	14	16500	12500	12250	2-D38 @200 2-D38 @200	6520	4862	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	7098	5319	0	435	0, 00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	-4984	1339	1	435	0.01
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-13869	2482	15	435	0.04
④ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-15531	3842	6	435	0, 02
(H-, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	8590	2848	1	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	5418	5335	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-5592	6394	0	435	0,00

表6.4-9(7) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

				断面性状		All, 654 / 1, 136	発生的	听面力	引張	短期許容	服木店
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄銃)	曲げモーメント	軸力	応力度	応力度	照正面
				h (mm)	d (mm)	(91)0897/007	(kN ∙ m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4283	1105	1	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	5116	1440	4	435	0.01
⑤ S ₅ − D 1	B3F	9	16500	12500	12250	2-D38 @200 2-D38 @200	-8790	1672	9	435	0.03
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-10556	2993	2	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-3244	4318	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	5521	6233	0	435	0.00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	3325	1114	0	435	0.00
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9901	2441	3	435	0, 01
⑤ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-10407	2321	6	435	0.02
(H-, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-4221	2211	0	435	0.00
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	2887	4725	0	435	0, 00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-4210	5897	0	435	0.00

表6.4-9(8) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

	評価位置			断面性状		246 Arte / 1 124	発生的	所面力	引張	短期許容	昭木結
検討ケース			部材幅	部材高	有効高	新聞任様 (引属鉄館)	曲げモーメント	軸力	応力度	応力度	RETERIE
				h (mm)	d (mm)	(9) 30 80 700 7	$(kN \cdot m/m)$	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	4192	1102	1	435	0.01
	B2F	4	16500	12500	12250	2-D38 @200 2-D38 @200	4826	1422	3	435	0.01
© S ₅−D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-9040	1550	13	435	0.03
(H+, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	-18739	4473	8	435	0.02
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	-8928	6088	0	435	0.00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	4471	6264	0	435	0, 00
	B1F	3	16500	12500	12250	2-D38 @200 2-D38 @200	3223	1140	0	435	0.00
	B2F	6	16500	12500	12250	2-D38 @200 2-D38 @200	-9793	2413	3	435	0.01
⑥ S ₅ − D 1	B3F	7	16500	12500	12250	2-D38 @200 2-D38 @200	-10143	2182	7	435	0.02
(H-, V+)	B4F	10	16500	12500	12250	2-D38 @200 2-D38 @200	12051	3305	3	435	0.01
	B4F トンネル部	13	16500	12500	12250	2-D38 @200 2-D38 @200	4561	4725	0	435	0, 00
	ピット部	16	16500	12500	12250	2-D38 @200 2-D38 @200	-2522	5748	0	435	0.00

表6.4-9(9) 南北方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状		04-05-L1-14	発生的	新面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	(引張鉄筋)	曲げモーメント	軸力	応力度	応力度	177 E. (E.
			b (mm)	h (mm)	d (mm)	()14(2)(0))	(kN • m/m)	(kN/m)	$\sigma_{\rm s} (\rm N/mm^2)$	$\sigma_{sa} (N/mm^2)$	σ _s /σ _{s a}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5884	1626	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17215	2987	5	435	0.02
①S _s -D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	34231	4871	18	435	0.05
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	62330	6993	51	435	0.12
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	56763	8511	21	435	0.05
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	37643	7523	7	435	0.02
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5870	1743	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	16681	3398	2	435	0.01
① S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	31285	5027	12	435	0.03
(H+, V−)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	62954	8125	41	435	0.10
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	57544	9628	15	435	0.04
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	46703	10720	4	435	0.01
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5010	1275	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-12520	2171	3	435	0.01
① S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-28363	3334	21	435	0.05
$(US_{s} - D1)$ (H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-57551	5492	58	435	0.14
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-48881	6660	26	435	0.06
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-35325	7661	4	435	0.01

表 6.4-10(1) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

検討ケース				断面性状		Dife /chr / 1 - 100	発生的	所面力	引張	短期許容	昭本庙
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋住様 (引起鉄錠)	曲げモーメント	軸力	応力度	応力度	RECEIPE
			ь (mm)	h (mm)	d (mm)	(91)109(8)(8))	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm s}$ (N/mm ²)	$\sigma_{sa} (N/mm^2)$	σ _s /σ _{s a}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5204	1532	0	435	0.00
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-15532	3099	2	435	0.01
①S _s -D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-32916	4444	18	435	0.05
(H-, V-)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-66065	7115	55	435	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-57465	8453	25	435	0.06
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-41701	9784	3	435	0.01
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	-537	707	0	435	0.00
08 -11	B2F	4	12500	16500	16240	2-D51 @200 2-D51 @200	-2149	1956	0	435	0.00
	B3F	7	12500	16500	16240	2-D51 @200 2-D51 @200	-2722	2934	0	435	0.00
0.5 5 - 1 1	B4F	10	12500	16500	16240	2-D51 @200 2-D51 @200	-4386	4070	0	435	0.00
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-7121	6645	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-6256	7743	0	435	0.00
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	-1041	730	0	435	0,00
	B2F	4	12500	16500	16240	2-D51 @200 2-D51 @200	-4429	1988	0	435	0.00
0.8 - 1.2	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-8832	3288	0	435	0.00
0.5 5 - 1 2	B4F	10	12500	16500	16240	2-D51 @200 2-D51 @200	-16339	4760	0	435	0.00
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-16287	6867	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-13430	8017	0	435	0.00

表 6.4-10(2) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

検討ケース				断面性状		09-05-L1-FF	発生的	所面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	(引張鉄窑)	曲げモーメント	軸力	応力度	応力度	U.G. FF (16)
			b (mm)	h (mm)	d (mm)	()))	(kN • m/m)	(kN/m)	σ_{s} (N/mm ²)	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	-985	730	0	435	0.00
	B2F	4	12500	16500	16240	2-D51 @200 2-D51 @200	-4024	1958	0	435	0.00
0.8 - 1.3	B3F	7	12500	16500	16240	2-D51 @200 2-D51 @200	-6517	2943	0	435	0.00
0.5 _s -1.5	B4F	10	12500	16500	16240	2-D51 @200 2-D51 @200	-14485	4664	0	435	0,00
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-15084	6765	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-12242	7932	0	435	0.00
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	461	768	0	435	0.00
⊕ S −14	B2F	4	12500	16500	16240	2-D51 @200 2-D51 @200	1675	2133	0	435	0.00
	B3F	7	12500	16500	16240	2-D51 @200 2-D51 @200	4832	3523	0	435	0.00
0.0, 14	B4F	10	12500	16500	16240	2-D51 @200 2-D51 @200	7527	4653	0	435	0.00
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	9490	6887	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	8877	7995	0	435	0.00
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	1072	825	0	435	0, 00
	B2F	4	12500	16500	16240	2-D51 @200 2-D51 @200	-2401	1860	0	435	0.00
0.8 - 2.1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-15077	4748	0	435	0.00
① S _s - 2 1	B4F	10	12500	16500	16240	2-D51 @200 2-D51 @200	-24701	6934	0	435	0,00
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-18826	9121	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	14363	9442	0	435	0.00

表 6.4-10(3) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

検討ケース				断面性状	2	Ani- Arter J. L. 1947	発生的	断面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	新聞任様 (引属鉄管)	曲げモーメント	軸力	応力度	応力度	REFER
			b (mm)	h (mm)	d (mm)	(313200/007	(kN • m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	1	12500	16500	16240	2-D51 @200 2-D51 @200	1645	826	0	435	0.00
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	9493	3071	0	435	0.00
08 - 22	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	18704	4905	1	435	0.01
0.5 5 - 2 2	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	32864	7128	4	435	0.01
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	32202	8433	0	435	0.00
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	26652	9455	0	435	0.00
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	3317	1430	0	435	0.00
① S _s - 3 1	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-9831	2974	0	435	0.00
	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-23539	4683	4	435	0.01
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-46877	7699	15	435	0.04
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-39699	10105	1	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-32322	11734	0	435	0.00
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	4196	1590	0	435	0.00
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-8740	2655	0	435	0.00
① S _s - 3 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	24466	5593	2	435	0.01
$(US_{s} - 31)$ (H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	43788	8526	9	435	0.03
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	43623	9761	2	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	36056	11036	0	435	0.00

表 6.4-10(4) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

評価位置は下図に示す。

				断面性状		Del-Arter J. L. Litte	発生的	所面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	新加工标 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	曲げモーメント	軸力	応力度	応力度	REFERRE
			b (mm)	h (mm)	d (mm)	(7)3888/307	$(kN \cdot m/m)$	(kN/m)	$\sigma_{\rm s}~({\rm N/mm}^2)$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5988	1649	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17277	3051	5	435	0.02
② S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	33787	5061	16	435	0.04
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	64966	7231	54	435	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	58311	8517	24	435	0.06
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	37694	7340	7	435	0, 02
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5059	1266	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-11852	2050	3	435	0.01
② S _s - D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-28993	3264	23	435	0.06
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-58869	5436	61	435	0.15
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-50428	6610	30	435	0.07
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-37275	7557	5	435	0, 02

表 6.4-10(5) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

評価位置は下図に示す。

				断面性状	2	04-65-11-100	発生的	所面力	引張	短期許容	昭本信
検討ケース	評価位置		部材幅	部材高	有効高	新聞任様 (引導鉄管)	曲げモーメント	軸力	応力度	応力度	REFLE
			b (mm)	h (mm)	d (mm)	(31)269/007	(kN ∙ m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5843	1622	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	17092	2958	5	435	0.02
③S _s −D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	33754	4810	18	435	0.05
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	61191	6855	50	435	0.12
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	55989	8410	21	435	0.05
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	45677	9538	6	435	0.02
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-4880	1284	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-15262	2835	2	435	0.01
③ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-34152	4515	19	435	0.05
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-65355	7151	53	435	0.13
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-45816	6703	20	435	0.05
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-33057	7744	2	435	0.01

表 6.4-10(6) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

				断面性状		ALL MARTIN	発生的	断面力	引張	短期許容	吸水病
検討ケース	評価位置		部材幅	部材高	有効高	(引起鉄路)	曲げモーメント	軸力	応力度	応力度	光泉白紅川風
			b (mm)	h (mm)	d (mm)	(91)888/8007	(kN ∙ m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	7341	1698	2	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	24058	3221	15	435	0.04
④S ₅−D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	52236	5052	53	435	0.13
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	98436	7231	134	435	0.31
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	85779	8262	84	435	0.20
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	66879	9263	37	435	0.09
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-7476	1519	2	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-21660	2589	13	435	0.03
④S ₅−D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-50614	4064	62	435	0.15
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-103648	6590	152	435	0.35
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-91086	8129	102	435	0.24
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-70965	9288	40	435	0.10

表 6.4-10(7) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

				断面性状		bel, beter I. L. Likk	発生的	所面力	引張	短期許容	服木店
検討ケース	評価位置		部材幅	部材高	有効高		曲げモーメント	軸力	応力度	応力度	RETENIE
			b (mm)	h (mm)	d (mm)	(91)4(97)007	(kN • m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5633	1627	1	435	0.01
	B2F	5	12500	16500	16240	2-D51 @200 2-D51 @200	12234	2873	1	435	0.01
⑤S _s −D1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	22056	5444	1	435	0.01
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	41038	8292	7	435	0.02
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	39758	9070	2	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	25738	8197	0	435	0.00
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-5013	1407	0	435	0.00
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	-10470	2535	0	435	0.00
⑤S ₅−D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-19996	3715	5	435	0.02
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-42425	6365	17	435	0.04
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-32694	6816	3	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-26362	8061	0	435	0,00

表 6.4-10(8) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状	2	04.65.71.400	発生的	所面力	引張	短期許容	昭本結
検討ケース	評価位置		部材幅	部材高	有効高		曲げモーパント	軸力	応力度	応力度	RETELLE
		_	b (mm)	h (mm)	d (mm)		(kN ∙ m/m)	(kN/m)	$\sigma_{s} (N/mm^{2})$	$\sigma_{sa} (N/mm^2)$	σ_s / σ_{sa}
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	5600	1619	1	435	0.01
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	13655	3106	1	435	0.01
⑥ S ₅ − D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	20583	5487	1	435	0, 01
(H+, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	40017	8236	7	435	0.02
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	39096	9060	2	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	32532	10224	0	435	0.00
	B1F	3	12500	16500	16240	2-D51 @200 2-D51 @200	-4918	1411	0	435	0,00
	B2F	6	12500	16500	16240	2-D51 @200 2-D51 @200	7932	2365	0	435	0.00
6 S _s – D 1	B3F	9	12500	16500	16240	2-D51 @200 2-D51 @200	-18442	3648	3	435	0.01
(H-, V+)	B4F	11	12500	16500	16240	2-D51 @200 2-D51 @200	-41069	6378	15	435	0.04
	B4F トンネル部	13	12500	16500	16240	2-D51 @200 2-D51 @200	-30928	6808	2	435	0.01
	ピット部	16	12500	16500	16240	2-D51 @200 2-D51 @200	-24920	8094	0	435	0,00

表 6.4-10 (9) 東西方向断面の鉄筋の曲げ軸力に対する照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-15(1) 概略配筋図(鉛直断面 曲げ 南北方向)

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-15(2) 概略配筋図(鉛直断面 曲げ 東西方向)

6 - 365

						断面	性状								主鉄筋	i			
1	材料	部材幅	部材高			_	かぶり	d'	有効調	fさ d	鉄筋	ぞ	ž		鉄筋	間隔		鉄角	芳量
部位	No.	b	h		位誰	<u>1</u>	北側	南側	北側 引張	南側 引張	種別	北側	南側	7	比側	F	南側	北側	南側
		(mm)	(mm)		(-)		(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm^2)
					labor La	1段目	250	250	12250	12250	SD490	D38	D38	200	(76本)	200	(76本)	86640	86640
鉛直断面	M1	16500	19500	側	地山	2段目	500	500	12000	12000	SD490	D38	D38	200	(74本)	200	(74本)	84360	84360
(南北方向 B1F)	MI	16500	12500	壁	da da	1段目	250	250	9750	9750	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					· 이 오	2段目	500	500	10000	10000	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					Like ()	1段目	250	250	12250	12250	SD490	D38	D38	200	(37本)	200	(76本)	42180	86640
鉛直断面	мо	16500	19500	側	地山	2段目	500	500	12000	12000	SD490	D38	D38	200	(35本)	200	(74本)	39900	84360
(南北方向 B2F)	MZ	16500	12500	壁	da da	1段目	250	250	9750	9750	SD490	D38	D38	200	(12本)	200	(52本)	13680	59280
					미오	2段目	500	500	10000	10000	SD490	D38	D38	200	(12本)	200	(52本)	13680	59280
					Hhulu	1段目	250	250	12250	12250	SD490	D38	D38	200	(76本)	200	(76本)	86640	86640
鉛直断面 (南北方向 B3F)	112	16500	12500	側	лери	2段目	500	500	12000	12000	SD490	D38	D38	200	(74本)	200	(74本)	84360	84360
	MO	10500	12500	壁	rta 70	1段目	250	250	9750	9750	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					ri£	2段目	500	500	10000	10000	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					Harli	1段目	250	250	12250	12250	SD490	D38	D38	200	(76本)	200	(76本)	86640	86640
鉛直断面	M4	16500	12500	側	лери	2段目	500	500	12000	12000	SD490	D38	D38	200	(74本)	200	(74本)	84360	84360
(南北方向 B4F)	M-1	10500	12500	壁	rta 70	1段目	250	250	9750	9750	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					r1도	2段目	500	500	10000	10000	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
					Harli	1段目	250	250	12250	12250	SD490	D38	D38	200	(76本)	200	(51本)	86640	58140
鉛直断面 (南北方向	МБ	16500	12500	側	ларц	2段目	500	500	12000	12000	SD490	D38	D38	200	(74本)	200	(49本)	84360	55860
B4Fトンネル部)	MO	10500	12500	壁	rta 70	1段目	250	250	9750	9750	SD490	D38	D38	200	(52本)	200	(27本)	59280	30780
					r i 🗠	2段目	500	500	10000	10000	SD490	D38	D38	200	(52本)	200	(27本)	59280	30780
					Harlı	1段目	250	250	12250	12250	SD490	D38	D38	200	(76本)	200	(76本)	86640	86640
鉛直断面	ме	16500	12500	側	- LUCA	2段目	500	500	12000	12000	SD490	D38	D38	200	(74本)	200	(74本)	84360	84360
(南北方向 ピット部)	ato	10500	12500	壁	内空	1段目	250	250	9750	9750	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280
(南北方向 ピット部)					1.132	2段目	500	500	10000	10000	SD490	D38	D38	200	(52本)	200	(52本)	59280	59280

表 6.4-11(1) 南北方向断面の断面諸元一覧(曲げに対する評価)

<u> 鉛直断面 断面諸元位置図</u>

						断面性	状							主鉄	筋			
See 1-	材料	部材幅	部材高			_	かぶり	d'	有効調	fさ d	鉄筋	彳	R.	鉄	筋間隔		鉄角	伤量
前小区	No.	b	h		位置	Ĺ	東側	西側	東側 引張	西側 引張	種別	東側	西側	東側	西	间	東側	西側
		(mm)	(mm)		(-)		(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(1	nm)	(mm^2)	(mm^2)
					Harli	1段目	260	260	16240	16240	SD490	D51	D51	200 (37本) 200	(57本)	74999	115539
And write the former				側	леци	2段目	530	530	15970	15970	SD490	D51	D51	200 (36本) 200	(55本)	72972	111485
鉛直町面 (東西方向 B1F)	M1	12500	16500	壁	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (13本) 200	(33本)	26351	66891
					1.1	2段目	530	530	14030	14030	SD490	D51	D51	200 (13本) 200	(33本)	26351	66891
				F	中壁	1段目	210	210	7790	9790	SD490	D29	D29	200 (19本) 200	(19本)	12206	12206
					+#uli	1段目	260	260	16240	16240	SD490	D51	D51	200 (57本) 200	(57本)	115539	115539
Aut -++ Mar -+-*				側		2段目	530	530	15970	15970	SD490	D51	D51	200 (55本) 200	(55本)	111485	111485
鉛直断面 (東西方向 B2F)	M2	12500	16500	壁	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
					1.1	2段目	530	530	14030	14030	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
				F	中壁	1段目	210	210	7790	9790	SD490	D29	D29	200 (25本) 200	(25本)	16060	16060
					Haili	1段目	260	260	16240	16240	SD490	D51	D51	200 (57本) 200	(57本)	115539	115539
かすぎご				側		2段目	530	530	15970	15970	SD490	D51	D51	200 (55本) 200	(55本)	111485	111485
鉛直断面 (東西方向 B3F)	M3	12500	16500	壁	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
						2段目	530	530	14030	14030	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
				F	中壁	1段目	210	210	7790	9790	SD490	D29	D29	200 (25本) 200	(25本)	16060	16060
					地山	1段目	260	260	16240	16240	SD490	D51	D51	200 (57本) 200	(57本)	115539	115539
秋古紙云				側		2段目	530	530	15970	15970	SD490	D51	D51	200 (55本) 200	(55本)	111485	111485
站直两面 (東西方向 B4F)	M4	12500	16500	堂	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
						2段目	530	530	14030	14030	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
				F	中壁	1段目	210	210	7790	9790	SD490	D29	D29	200 (33本) 200	(33本)	21199	21199
					地山	1段目	260	260	16240	16240	SD490	D51	D51	200 (57本) 200	(57本)	115539	115539
鉛直断面				側		2段目	530	530	15970	15970	SD490	D51	D51	200 (55本) 200	(55本)	111485	111485
 (東西方向 B4F トンネル部) 	M5	12500	16500	堂	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
Dat 1 & 100 mp						2段目	530	530	14030	14030	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
				F	中壁	1段目	190	210	7310	9790	SD490	D22	D22	200 (27本) 200	(27本)	10452	10452
					地山	1段目	260	260	16240	16240	SD490	D51	D51	200 (57本) 200	(57本)	115539	115539
秋古斯王				側		2段目	530	530	15970	15970	SD490	D51	D51	200 (55本) 200	(55本)	111485	111485
90回周囲 (東西方向 ピット部)	M6	12500	16500	壁	内空	1段目	260	260	13760	13760	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
						2段目	530	530	14030	14030	SD490	D51	D51	200 (33本) 200	(33本)	66891	66891
				F	中壁	1段目	190	210	7310	9790	SD490	D22	D22	200 (33本) 200	(33本)	12774	12774

表 6.4-11(2) 東西方向断面の断面諸元一覧(曲げに対する評価)

<u> 鉛直断面 断面諸元位置図</u>

(2) 構造部材のせん断力に対する評価結果

せん断<mark>力</mark>照査の手順を図 6.4-16 に示す。表 6.4-12~表 6.4-13 にせん断力に対す る照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 許容せん断応力度以下である又はコンクリートの負担するせん断力(V_o)と,斜め引張 鉄筋の負担するせん断力(V_o)を合わせた許容せん断力(V_o)が,発生せん断力

(V) 以上であることを確認した。 ($V_a = V_c + V_s \ge V$) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生値は、許容限界以下であることを確認した。 図 6.4-17 に概略配筋図を、表 6.4-14 に断面計算に用いた断面諸元の一覧を示す。

※なお、斜引張鉄筋に期待しない場合にせん断力照査値が1.0以下である場合でも、斜引張鉄筋を配置した場合の せん断力照査のみを実施することもある。

図 6.4-16 せん断力照査フロー

				断面性状		bit. 64-11. 10b	発生	短期許容	吸木店
検討ケース	評価位置		部材幅	部材高	有効高	(計2)断補強欲)	せん断力	せん断力	思宜旭
			b (mm)	h (mm)	d (mm)	(「ビノン」時日755月万月	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1203	8562	0.15
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1271	9484	0.14
① S _s - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1644	12853	0.13
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3356	16896	0.20
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3280	10876	0. 31
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3047	12648	0.25
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1196	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1273	9484	0.14
① S _s - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1617	12853	0.13
(H+, V-)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3415	16896	0. 21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3284	10876	0. 31
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3012	12648	0.24
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1172	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1770	9484	0.19
① S ₅ - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	2104	12853	0.17
(H-, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2977	16896	0.18
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2978	10876	0. 28
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2925	12648	0.24

表 6.4-12(1) 南北方向断面のせん断力照査結果

評価位置は下図に示す。

			断面性状	2		発生	短期許容	四本は	
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様	せん断力	せん断力	照宜個
			b (mm)	h (mm)	d (mm)	(せん町相切助)	V(kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1176	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1778	9484	0.19
① S _s - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	2115	12853	0.17
(H-, V-)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2979	16896	0.18
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2977	10876	0.28
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2924	12648	0.24
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	372	8562	0.05
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	542	9484	0.06
0.8 - 1.1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	709	12853	0.06
	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	1586	16896	0.10
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	1576	10876	0.15
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	1462	12648	0.12
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	797	8562	0.10
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	770	9484	0.09
0.5 - 1.2	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1017	12853	0.08
(∭S ₅ −12	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2859	16896	0.17
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2862	10876	0.27
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2762	12648	0.22

表 6.4-12(2) 南北方向断面のせん断力照査結果

評価位置は下図に示す。

14314 7		an In Hann		断面性状	2	DH- かか 11- おか	発生	短期許容	昭本庙
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	1771 王 胆
			ь (mm)	h (mm)	d (mm)	((())))	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	761	8562	0.09
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	817	9484	0.09
0.8 - 1.3	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1075	12853	0.09
00, 10	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2789	16896	0.17
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2790	10876	0, 26
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2692	12648	0.22
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	586	8562	0.07
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	503	9484	0.06
0.8 - 1.4	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	630	12853	0.05
00, 11	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2283	16896	0.14
	B4F トンネル部	14	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2296	10876	0.22
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2258	12648	0.18
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	953	8562	0.12
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1142	9484	0.13
0.5 - 2.1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1487	12853	0.12
① S _s - 2 1	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2920	16896	0.18
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2916	10876	0.27
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2786	12648	0.23

表 6.4-12(3) 南北方向断面のせん断力照査結果

評価位置は下図に示す。

				断面性状	2		発生	短期許容	四本は
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様	せん断力	せん断力	照查恒
			b (mm)	h (mm)	d (mm)	(ぜん断補強筋)	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	871	8562	0.11
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1189	9484	0.13
0.5 - 2.2	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1462	12853	0.12
05, 22	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	2471	16896	0.15
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	2454	10876	0.23
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2317	12648	0.19
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1028	8562	0.13
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1576	9484	0.17
① S _s - 3 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1771	12853	0.14
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3287	16896	0, 20
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3259	10876	0.30
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3095	12648	0.25
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1048	8562	0.13
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	939	9484	0.10
①S ₅ -31 (H-, V+)	B3F	9	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1259	12853	0.10
	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3505	16896	0.21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3456	10876	0.32
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3196	12648	0.26

表 6.4-12(4) 南北方向断面のせん断力照査結果

評価位置は下図に示す。

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

	会社を一つ 評価位置			断面性状		会社会学 ムート社会	発生	短期許容	昭杏庙
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	W. TELEF
			b (mm)	h (mm)	d (mm)	(())))))))))))))))))	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1180	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1154	9484	0.13
② S _s - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1400	12853	0.11
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3684	16896	0.22
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3609	10876	0.34
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3318	12648	0.27
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1155	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1738	9484	0.19
② S , - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1924	12853	0.15
(H-, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3391	16896	0.21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3372	10876	0.32
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3231	12648	0.26

表6.4-12(5) 南北方向断面のせん断力照査結果

注記 ②:地盤物性のばらつきを考慮(+1g)した解析ケース

評価位置は下図に示す。

				断面性状	2	Adv. Adv. J. 1. 124	発生	短期許容	昭木樹
検討ケース	評価位置		部材幅	部材高	有効高	(北ん断補論館)	せん断力	せん断力	REGUL
			b (mm)	h (mm)	d (mm)	(ビアレド川1冊155月7月)	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1164	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1156	9484	0.13
③ S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1418	12853	0.12
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3519	16896	0.21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3450	10876	0.32
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3189	12648	0.26
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1144	8562	0.14
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1712	9484	0.19
③ S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1946	12853	0.16
(H-, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3118	16896	0.19
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3118	10876	0.29
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3050	12648	0.25

表6.4-12(6) 南北方向断面のせん断力照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

				断面性状		Auto Auto Anto Table	発生	短期許容	四水店
検討ケース	評価位置		部材幅	部材高	有効高	鉄筋仕様 (北仏断補始館)	せん断力	せん断力	思追旭
			b (mm)	h (mm)	d (mm)	(ビバの補加」の方	V (kN/m)	V_{a} (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1250	8562	0.15
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1427	9484	0.16
④ S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1946	12853	0.16
(H+, V+)	B4F	11	16500	12500	11000	8-D51 @200 2-D29 @200	3612	16896	0.22
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3335	10876	0.31
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3020	12648	0.24
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1212	8562	0.15
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1973	9484	0.21
⊕ S _s − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	2526	12853	0.20
(H-, V+)	B4F	11	16500	12500	11000	8-D51 @200 2-D29 @200	3519	16896	0.21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3225	10876	0.30
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2924	12648	0.24

表6.4-12(7) 南北方向断面のせん断力照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

				断面性状		Anto Anto I. I. LAN	発生	短期許容	服木樹
検討ケース	評価位置		部材幅	部材高	有効高	(北ん断補始館)	せん断力	せん断力	REENE
			b (mm)	h (mm)	d (mm)	(0.7017111111111111111111111111111111111	V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1081	8562	0.13
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1106	9484	0.12
⑤ S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1241	12853	0.10
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3161	16896	0.19
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3143	10876	0. 29
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3022	12648	0.24
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1018	8562	0.12
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1425	9484	0.16
(5) S _s - D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1573	12853	0.13
(H-, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3017	16896	0.18
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3018	10876	0.28
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	2957	12648	0.24

表6.4-12(8) 南北方向断面のせん断力照査結果

注記 ⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

	- 57 /m /.L. 00			断面性状	2	Pail Arte / E. Links	発生	短期許容	四木店
検討ケース	評価位置		部材幅	部材高	有効高	(北ム版補論館)	せん断力	せん断力	RETEUR
			b(mm)	h (mm)	d (mm)	(C / C P/ HI JSC/J/) /	V (kN/m)	V_a (kN/m)	V/V_a
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1062	8562	0.13
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1053	9484	0.12
© S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1050	12853	0.09
(H+, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3504	16896	0.21
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3497	10876	0.33
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3314	12648	0.27
	B1F	3	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	997	8562	0.12
	B2F	6	16500	12500	11000	4-D38 @200 4-D32 @200 2-D29 @200	1362	9484	0.15
© S ₅ − D 1	B3F	7	16500	12500	11000	4-D51 @200 2-D35 @200, 2-D32 @200 2-D29 @200	1380	12853	0.11
(H-, V+)	B4F	12	16500	12500	11000	8-D51 @200 2-D29 @200	3379	16896	0.20
	B4F トンネル部	13	16500	12500	11000	4-D41 @200 4-D38 @200 2-D22 @200	3381	10876	0.32
	ピット部	16	16500	12500	11000	4-D51 @200 4-D35 @200 2-D22 @200	3259	12648	0.26

表6.4-12(9) 南北方向断面のせん断力照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

				断面性状		をためたしたた	発生	短期許容	昭杏庙
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	加工工作
			b (mm)	h (mm)	d (mm)	((())))))))))))))))))))))))))))))))))))	V (kN/m)	V_{a} (kN/m)	V/V _a
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1155	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2713	12688	0.22
①S _s -D1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4163	22410	0.19
(H+, V+)	B4F	10	12500	16500	15000	8-D51 @200	5796	27964	0.21
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2277	15552	0.15
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2440	19770	0.13
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1145	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2678	12688	0. 22
①S _s -D1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4118	22410	0.19
(H+, V-)	B4F	10	12500	16500	15000	8-D51 @200	5722	27964	0.21
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2284	15552	0.15
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2435	19770	0.13
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1297	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2782	12688	0.22
① S _s - D 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4349	22410	0.20
(H-, V+)	B4F	10	12500	16500	15000	8-D51 @200	5543	27964	0.20
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2072	15552	0.14
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2301	19770	0.12

表 6.4-13(1) 東西方向断面のせん断力照査結果

評価位置は下図に示す。

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

		预加估量				を生なたという	発生	短期許容	昭杏信
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	ALCOLUMN AND
		_	b(mm)	h (mm)	d (mm)		V (kN/m)	V_a (kN/m)	V/V _a
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1306	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2828	12688	0.23
① S _s - D 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4410	22410	0. 20
(H-, V-)	B4F	10	12500	16500	15000	8-D51 @200	5519	27964	0. 20
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2066	15552	0.14
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2311	19770	0.12
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	516	13741	0.04
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	779	12688	0.07
(0.8) = 1.1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	1131	22410	0.06
00, 11	B4F	10	12500	16500	15000	8-D51 @200	1585	27964	0.06
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	1521	15552	0.10
	ピット部	16	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1539	19770	0.08
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	753	13741	0.06
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	1198	12688	0.10
①S _s -12	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	1776	22410	0.08
	B4F	10	12500	16500	15000	8-D51 @200	2497	27964	0. 09
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	1827	15552	0, 12
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1862	19770	0.10

表 6.4-13(2) 東西方向断面のせん断力照査結果

評価位置は下図に示す。

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

検討ケーフ	河东内黑		断面性状		建窑什堆	発生	短期許容	昭香値	
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	And the last
			b (mm)	h (mm)	d (mm)		V (kN/m)	V_{a} (kN/m)	V/V _a
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	710	13741	0.06
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	1107	12688	0.09
0.8 - 1.3	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	1634	22410	0.08
0.5, 15	B4F	10	12500	16500	15000	8-D51 @200	2465	27964	0.09
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	1769	15552	0.12
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1802	19770	0.10
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	429	13741	0.04
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	834	12688	0.07
OS - 14	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	1317	22410	0.06
	B4F	10	12500	16500	15000	8-D51 @200	1861	27964	0.07
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	1859	15552	0.12
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1922	19770	0.10
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	648	13741	0.05
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	1269	12688	0.11
① S _s - 2 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	1875	22410	0.09
	B4F	10	12500	16500	15000	8-D51 @200	2424	27964	0.09
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	1522	15552	0.10
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1669	19770	0.09

表 6.4-13 (3) 東西方向断面のせん断力照査結果

評価位置は下図に示す。

鉛直断面照查位置図

1401 k - 7 部価格				断面性状		AH 公5 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	発生	短期許容	昭本値
検討ケース	評価位置		部材幅	部材高	有効高	(せん断補強館)	せん断力	せん断力	2012.10
			b (mm)	h (mm)	d (mm)	(())))))))))))))))))	V (kN/m)	V_{a} (kN/m)	V/V _a
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	782	13741	0.06
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	1621	12688	0.13
05 - 22	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	2481	22410	0.12
0.5 8 22	B4F	10	12500	16500	15000	8-D51 @200	3519	27964	0.13
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	1891	15552	0, 13
	ピット部	16	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	1934	19770	0.10
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1137	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2321	12688	0.19
① S _s - 3 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3798	22410	0.17
(H+, V+)	B4F	10	12500	16500	15000	8-D51 @200	5128	27964	0.19
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2136	15552	0.14
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2215	19770	0.12
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1031	13741	0.08
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2319	12688	0.19
① S _s - 3 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3651	22410	0.17
(H-, V+)	B4F	10	12500	16500	15000	8-D51 @200	5347	27964	0.20
	B4F トンネル部	13	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2446	15552	0.16
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2411	19770	0.13

表 6.4-13(4) 東西方向断面のせん断力照査結果

評価位置は下図に示す。

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

	評価位置		断面性状			雜館什样	発生	短期許容	照查值
検討ケース			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断力 V(kN/m)	せん断力 V _a (kN/m)	V/V _a
② S _s - D 1 (H+, V+)	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1153	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2648	12688	0.21
	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4272	22410	0,20
	B4F	10	12500	16500	15000	8-D51 @200	5991	27964	0.22
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2247	15552	0.15
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2459	19770	0.13
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1293	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2723	12688	0.22
② S _s - D 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4427	22410	0.20
(H-, V+)	B4F	10	12500	16500	15000	8-D51 @200	5785	27964	0.21
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2175	15552	0,14
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2470	19770	0.13

表 6.4-13 (5) 東西方向断面のせん断力照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

評価位置は下図に示す。

		断面性状			DH-05-11.405	発生	短期許容	昭本信	
検討ケース	評価位置	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断力 V (kN/m)	せん断力 V _a (kN/m)	V/V a	
③S _s -D1 (H+, V+)	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1159	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2722	12688	0.22
	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4165	22410	0.19
	B4F	10	12500	16500	15000	8-D51 @200 56		27964	0.21
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2301	15552	0.15
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2446	19770	0.13
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1298	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2796	12688	0.23
③S。-D1 (H-, V+)	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	4365	22410	0.20
	B4F	10	12500	16500	15000	8-D51 @200	5327	27964	0.20
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2050	15552	0.14
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2226	19770	0.12

表 6.4-13(6) 東西方向断面のせん断力照査結果

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

評価位置は下図に示す。

		断面性状				発生	短期許容	四大肉	
検討ケース	評価位置		部材幅 部材高 有効		有効高	 (せん断補強節)	せん断力	せん断力	思宜旭
		b (mm)	h (mm) d (mm)		(2704/111)2007	V (kN/m)	V_{a} (kN/m)	V/V _a	
	B1F	B1F 3		16500	15000	4-D38 @200 4-D29 @200	1435	13741	0.11
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	3694	12688	0.30
④ S _s − D 1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	5972	22410	0.27
(H+, V+)	B4F	10	12500	16500	15000	8-D51 @200	8220	27964	0.30
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2274	15552	0.15
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2786	19770	0.15
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1611	13741	0.12
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	3786	12688	0.30
④ S ₅ − D 1	B3F	9	12500	16500	15000	4-D51 0200 4-D38 0200	6340	22410	0.29
(H-, V+)	B4F	10	12500	16500	15000	8-D51 @200	8498	27964	0.31
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2529	15552	0.17
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	3269	19770	0.17

表 6.4-13(7) 東西方向断面のせん断力照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース 評価位置は下図に示す。

検討ケース	評価位置		断面性状 部材幅 部材高 有効高 b (mm) b (mm)		鉄筋仕様 (せん断補強筋)	発生 せん断力 V (hV/m)	発生 短期許容 せん断力		
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	v (KN/m) 1193	v _a (KN/m/ 13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2379	12688	0.19
⑤S₅−D1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3571	22410	0.16
(H+, V+)	B4F	10	12500	16500	15000	8-D51 @200	5065	27964	0.19
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200, D35 @200 2-D29 @200	2664	15552	0.18
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2774	19770	0.15
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1316	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2406	12688	0.19
⑤S _s −D1	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3725	22410	0.17
(H-, V+)	B4F	10	12500	16500	15000	8-D51 @200	4972	27964	0.18
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2468	15552	0.16
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2620	19770	0.14

表 6.4-13(8) 東西方向断面のせん断力照査結果

注記 ⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

		断面性状			ha her ti inte	発生	短期許容	昭木店	
検討ケース	評価位置		部材幅	部材高	有効高	(北仏断補論館)	せん断力	せん断力	HE JELIE
		b (mm)	h (mm) d (mm)		(0.7019111132007	V (kN/m)	V_a (kN/m)	V/V _a	
⑥ S _s - D 1 (H+, V+)	B1F	B1F 3		16500	15000	4-D38 @200 4-D29 @200	1191	13741	0.09
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2312	12688	0.19
	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3541	22410	0.16
	B4F	10	12500	16500	15000	8-D51 @200 50		27964	0.19
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2776	15552	0.18
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2872	19770	0.15
	B1F	3	12500	16500	15000	4-D38 @200 4-D29 @200	1305	13741	0.10
	B2F	6	12500	16500	15000	4-D38 @200 3-D29 @200 D32 @200	2305	12688	0.19
(i) S _s - D 1 (H-, V+)	B3F	9	12500	16500	15000	4-D51 @200 4-D38 @200	3719	22410	0.17
	B4F	10	12500	16500	15000	8-D51 @200	4981	27964	0.18
	B4F トンネル部	15	12500	16500	15000	4-D41 @200 D38 @200,D35 @200 2-D29 @200	2511	15552	0.17
	ピット部	18	12500	16500	15000	4-D51 @200 2-D32 @200 2-D29 @200	2707	19770	0.14

表 6.4-13 (9) 東西方向断面のせん断力照査結果

注記 ⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

<u>B2F</u>

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-17(1) 概略配筋図(鉛直断面 せん断)

B4F

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-18(2) 概略配筋図(鉛直断面 せん断)

B4F トンネル部

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-19(3) 概略配筋図(鉛直断面 せん断)

			断面性状		せん断補強筋					
部位	材料No.	部材幅 b	部材高 h	有効高さ d	位置	鉄筋種別	径	本数	s	鉄筋量
		(mm)	(mm)	(mm)	(-)	(-)	(mm)	(本)	(mm)	(mm^2)
				11000	東側壁	SD490	D38	2	200	2280
her						SD490	D32	2	200	1588
鉛圓町面 (南北方向 B1F)	M1	16500	12500		中壁	SD490	D29	2	200	1285
					而側辟	SD490	D38	2	200	2280
						SD490	D32	2	200	1588
					审侧辟	SD490	D38	2	200	2280
かすがて					术阅生	SD490	D32	2	200	1588
鉛圓町面 (南北方向 B2F)	M2	16500	12500	11000	中壁	SD490	D29	2	200	1285
					西側壁	SD490	D38	2	200	2280
						SD490	D32	2	200	1588
	M3		12500	11000	東側壁	SD490	D51	2	200	4054
		16500				SD490	D35	1	200	957
かす販売						SD490	D32	1	200	794
站直两面 (南北方向 B3F)					中壁	SD490	D29	2	200	1285
						SD490	D51	2	200	4054
					西側壁	SD490	D35	1	200	957
						SD490	D32	1	200	794
かすがブ	M4	16500	12500	11000	東側壁	SD490	D51	4	200	8108
站直两面 (南北方向 B4F)					中壁	SD490	D29	2	200	1285
					西側壁	SD490	D51	4	200	8108
					東側壁	SD490	D41	2	200	2680
約古地元					ENAN	SD490	D38	2	200	2280
50回前回 (南北方向 B4Fトンネル部)	M5	16500	12500	11000	中壁	SD490	D22	2	200	774
					西側壁	SD490	D41	2	200	2680
						SD490	D38	2	200	2280
					東側壁	SD490	D51	2	200	4054
公百版五			12500	11000	THE	SD490	D35	2	200	1913
(南北方向 ピット部)	M6	16500			中壁	SD490	D22	2	200	774
					西側壁	SD490	D51	2	200	4054
						SD490	D35	2	200	1913

表 6.4-14(1) 南北方向断面の断面諸元一覧表(せん断に対する評価)

<u> 鉛直断面 断面諸元位置図</u>

			断面性状		せん断補強筋										
部位	材料 No.	部材幅 b	部材高 h	有効高さ d	位置	鉄筋種別	径	本数	s	鉄筋量					
		(mm)	(mm)	(mm)	(-)	(-)	(mm)	(本)	(mm)	(mm^2)					
					北加陸	SD490	D38	2	200	2280					
鉛直断面	M1	12500	16500	15000	北阴型	SD490	D29	2	200	1285					
(東西方向 B1F)	MI	12300	10500	13000	古(川路	SD490	D38	2	200	2280					
					HIME	SD490	D29	2	200	1285					
						SD490	D38	2	200	2280					
ha sinter set					北側壁	SD490	D32	1	200	794					
鉛直断面 (東西方向 B2F)	M2	12500	16500	15000		SD490	D29	1	200	642					
					南側辟	SD490	D38	2	200	2280					
					HIME	SD490	D29	2	200	1285					
鉛直断面 (東西方向 B3F)					北側辟	SD490	D51	2	200	4054					
	M3	12500	16500	15000	北側壁	SD490	D38	2	200	2280					
					南側辟	SD490	D51	2	200	4054					
					HIME	SD490	D38	2	200	2280					
鉛直断面	M4	12500	16500	15000	北側壁	SD490	D51	4	200	8108					
(東西方向 B4F)		12500	10000	10000	南側壁	SD490	D51	4	200	8108					
						SD490	D41	2	200	2680					
					北側壁	SD490	D35	1	200	957					
鉛直断面	M5	12500	16500	15000		SD490	D29	1	200	642					
(東西方向 B4Fトンネル部)	MO	12000	10000	10000		SD490	D41	2	200	2680					
					南側壁	SD490	D38	1	200	1140					
						SD490	D29	1	200	642					
						SD490	D51	2	200	4054					
					北側壁	SD490	D32	1	200	794					
鉛直断面	MG	12500	16500	15000		SD490	D29	1	200	642					
(東西方向 ピット部)	MO	12500	10000	10000		SD490	D51	2	200	4054					
											南側壁	SD490	D32	1	200
						SD490	D29	1	200	642					

表 6.4-14(2) 東西方向断面の断面諸元一覧表(せん断に対する評価)

<u> 鉛直断面 断面諸元位置図</u>

- 6.4.3 水平断面に対する耐震評価結果
 - (1) 検討ケースの選定

図 6.4-20 に水平断面検討ケース選定フローを,表 6.4-15 に水平断面設計に用いる地盤 反力抽出結果を示す。

水平断面の設計に用いる地震時地盤反力の抽出については、検討ケース①(基本ケース) については基準地震動全ケース(12ケース)の抽出結果を記載する。また、検討ケース②~ ⑥の抽出結果については、検討ケース①(基本ケース)において地震時地盤反力が最大となる基準地震動について抽出(5ケース)及び6.4.1 (1) で示した鉛直断面の照査値及びせん断力が最大となる解析ケース④S_s-D1(H+,V+)と④S_s-D1(H-,V+)について抽出(2ケース)を行う。

上記により抽出した検討ケース①~⑥の地震時地盤反力の最大値を用いて水平断面の静的 フレーム解析を実施する。

図 6.4-20 水平断面の設計に用いる地震時地盤反力の抽出フロー

表 6.4-15(1) 水平断面設計に用いる地盤反力(B1F 南北方向)

水平断面NS方向 B1F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	151			144		
S _s – D 1	+-	139					
	-+	130			124		
		141					
S _s -11		101					
$S_{s} - 12$		158					
S _s -13		147					
$S_{s} - 14$		124					
S _s -21		135					
S _s -22		142					
	++	121					
$5_{s} = 31$	-+	<u>173</u>	170	173	148	179	177

表 6.4-15(2) 水平断面設計に用いる地盤反力(B1F 東西方向)

水平断面E₩方向B1F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	110			141		
S _s – D 1	+-	119					
	-+	<u>267</u>	130	356	153	137	136
		146					
S _s -11		79					
$S_{s} - 12$		92					
S _s -13		91					
$S_{s} - 14$		76					
$S_{s} - 21$		101					
S _s -22		124					
, , , , ,	++	140					
$5_{s} - 31$	-+	97					

表 6.4-15(3) 水平断面設計に用いる地盤反力(B2F 南北方向)

水平断面NS方向 B2F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	<u>586</u>	616	599	529	524	566
S - D 1	+-	579					
S _s -D1	-+	420			389		
		439					
S _s -11		279					
$S_{s} - 12$		454					
S _s -13		432					
$S_{s} - 14$		350					
$S_{s} - 21$	S _s -21						
S _s - 2 2		509					
	++	387					
$3_{s} - 31$	-+	575					

表 6.4-15(4) 水平断面設計に用いる地盤反力(B2F 東西方向)

水平断面EW方向 B2F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	336			480		
S _s – D 1	+-	<u>351</u>	318	348	485	227	231
	-+	268			392		
		280					
S _s -11		183					
$S_{s} - 12$		211					
S _s -13		202					
$S_{s} - 14$		177					
S _s -21		210					
S _s -22		218					
,	++	173					
$5_{s} - 31$	-+	276					

表 6.4-15(5) 水平断面設計に用いる地盤反力(B3F 南北方向)

水平断面NS方向 B3F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
S _s – D 1	++	632			736		
	+-	643					
	-+	843			960		
		<u>851</u>	943	883	958	711	790
S _s -11		397					
$S_{s} - 12$		506					
S _s -13		532					
$S_{s} - 14$		400					
S _s -21		715					
S _s -22		670					
, , , ,	++	815					
$5_{s} - 31$	-+	541					

表 6.4-15(6) 水平断面設計に用いる地盤反力(B3F 東西方向)

水平断面E₩方向 B3F

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	<u>430</u>	445	440	426	351	391
S D 1	+-	423					
S _s -D1	-+	354			386		
		370					
S _s -11		236					
$S_{s} - 12$		342					
S _s -13		340					
$S_{s} - 14$		249					
$S_{s} - 21$	21						
S _s - 2 2		363					
,	++	288					
$3_{s} - 31$	-+	384					

表 6.4-15(7) 水平断面設計に用いる地盤反力(B4F 南北方向)

水平断面NS方向 B4F

検討	ケース		地盤反力度(kN/m ²)								
地震動		1	2	3	4	5	6				
	++	<u>649</u>	816	679	687	528	748				
S _s – D 1	+-	600									
	-+	547			579						
		473									
S _s -11		307									
$S_{s} - 12$		405									
S _s -13		419									
$S_{s} - 14$		341									
S _s -21		562									
S _s -22		548									
,	++	558									
$5_{s} - 31$	-+	502									

表 6.4-15(8) 水平断面設計に用いる地盤反力(B4F 東西方向)

水平断面E₩方向 B4F

検討	ケース		地盤反力度 (kN/m ²)							
地震動		1	2	3	4	5	6			
	++	861			1136					
S D 1	+-	906								
$S_s - DI$	-+	<u>1034</u>	4 1029 1026 1199 625 3	614						
		1033								
S _s -11		327								
$S_{s} - 12$		513								
S _s -13		506								
$S_{s} - 14$		343								
$S_{s} - 21$		514								
S _s -22		720								
, , , ,	++	813								
$5_{s} - 31$	-+	601								

表 6.4-15(9) 水平断面設計に用いる地盤反力(B4Fトンネル部 南北方向)

検討	ケース		地盤反力度 (kN/m ²)							
地震動		1	2	3	4	5	6			
S _s – D 1	++	323			337					
	+-	366								
	-+	355			322					
		344								
S _s - 1 1		247								
$S_{s} - 12$		289								
S _s -13		301								
$S_{s} - 14$		250								
$S_{s} - 21$		<u>398</u>	405	392	360	359	367			
S _s -22		329								
	++	333								
$3_{s} - 31$	-+	300								

水平断面NS方向 B4Fトンネル部

表 6.4-15(10) 水平断面設計に用いる地盤反力(B4Fトンネル部 東西方向) 水平断面EW方向 B4Fトンネル部

検討	ケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	308			418		
S _s – D 1	+-	326					
	-+	359			440		
		<u>408</u>	414	403	505	338	341
S _s -11		268					
$S_{s} - 12$		268					
S _s -13		268					
$S_{s} - 14$		233					
S _s -21		279					
S _s -22		339					
	++	299					
$5_{s} - 31$	-+	205					

表 6.4-15(11) 水平断面設計に用いる地盤反力(ピット部 南北方向)

水平断面NS方向 ピット部

検許	fケース			地盤反力周	度(kN/m ²)		
地震動		1	2	3	4	5	6
	++	383			342		
S D 1	+-	427					
S _s – D 1	-+	401			329		
		392					
S _s -11		282					
$S_{s} - 12$		328					
$S_{s} - 1 3$		342					
$S_{s} - 14$		292					
S _s -21		<u>441</u>	456	434	360	417	423
S _s -22		401					
,	++	385					
$5_{s} - 31$	-+	349					

表 6.4-15(12) 水平断面設計に用いる地盤反力(ピット部 東西方向) 水平断面EW方向 ピット部

検討ケース		地盤反力度 (kN/m ²)					
地震動		1	2	3	4	5	6
S _s – D 1	++	342			387		
	+-	377					
	-+	382			420		
		<u>419</u>	429	406	416	403	373
S _s - 1 1		290					
S _s -12		328					
S _s -13		319					
S _s -14		272					
S _s -21		293					
S _s -22		351					
S _s - 3 1	++	244					
	-+	244					

(2) 地震時断面力図

(1) 設計荷重の設定において決定した地盤反力を作用させた場合における断面力図を 図 6.4-22~図 6.4-27 に示す。

図 6.4-21 はり要素の方向(水平断面)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-22(1) B1F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-WE_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-22(2) B1F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s)
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (3) B2F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.81s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_2021-EW_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2021-EW_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2021-EW_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22(4) B2F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V-), t=53.97s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (5) B3F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.85s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

 $\label{eq:scalar} \begin{array}{l} \mbox{To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max. f23} \\ \mbox{Step: 101} \end{array}$

せん断力 (kN/m)

 図 6.4-22(6) B3F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=19.51s)
(検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_4011-WE_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_4011-WE_OG-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-22(7) B4F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=68.74s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

曲げモーメント (kN・m/m)

To2_VS_HS_4031-WE_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4031-WE_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (8) B4F 側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.87s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_5211-NS_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max. f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (9) B4F トンネル部側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5041-WE_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

To2_VS_HS_5041-WE_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_5041-WE_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (10) B4F トンネル部側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=53.93s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_6211-SN_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_6211-SN_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_6211-SN_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22(11) ピット部側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_6041-WE_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

To2_VS_HS_6041-WE_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_6041-WE_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-22(12) ピット部側壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

(+:圧縮, -:引張)

軸力 (kN/m)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

せん断力 (kN/m)

 図 6.4-22(13) 東側壁 B1F(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-EW_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (14) 東側壁 B1F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s)

(検討ケース③:地盤物性のばらつきを考慮(-1)した解析ケース)

To2_VS_HS_2011-NS_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2011-NS_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)
To2_VS_HS_2011-NS_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-22(15) 北側壁 B2F(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=53.81s)
(検討ケース②: 地盤物性のばらつきを考慮(+1g)した解析ケース) To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (16) 北側壁 B2F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V-), t=53.80s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_5211-SN_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

To2_VS_HS_5211-SN_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_5211-SN_0G-L_+1Sig_B4F-TN_Ss-21_max. f23 Step: 101

せん断力 (kN/m)

図 6.4-22 (17) 南側壁 B4F トンネル部(開口部)コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1))した解析ケース)

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

10000 kN/m 5000 kN/m

軸力(kN/m)

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-22(18) 南側壁 B4F トンネル部(開口部)コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

せん断力 (kN/m)

 図 6.4-23(1) B1F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-SN_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_1031-SN_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-SN_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (2) B1F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=22.30s)

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

To2_VS_HS_2011-N_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_2011-N_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_2011-N_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-23 (3) B2F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.81s)
(検討ケース②: 地盤物性のばらつきを考慮(+1σ) した解析ケース) To2_VS_HS_2021-N_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2021-N_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2021-N_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (4) B2F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V-), t=53.80s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3031-N_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_3031-N_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_3031-N_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (5) B3F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.85s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3011-N_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_3011-N_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3011-N_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-23 (6) B3F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=19.51s)
(検討ケース②: 地盤物性のばらつきを考慮(+1σ) した解析ケース) To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-23(7) B4F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=68.69s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max. f23 Step: 101

To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (8) B4F 中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=68.69s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_5211-S_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5211-S_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

軸力 (kN/m)

 $\label{eq:step:loss_step$

せん断力 (kN/m)

図 6.4-23 (9) B4F トンネル部中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5041-S_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5041-S_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_5041-S_TS-L_B4F-TN_Ss-D1--_max. f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (10) B4F トンネル部中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_6211-S_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_6211-S_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_6211-S_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (11) ピット部中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_6041-S_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

To2_VS_HS_6041-S_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_6041-S_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-23(12) ピット部中壁コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V-), t=23.33s)
(検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_1321-NS_0G-Non-L_B1F_Ss-31-+_max. f23 Step: 101

せん断力 (kN/m)

 図 6.4-23(13) 中壁 B1F(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-NS_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_1031-NS_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-NS_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-23(14) 中壁 B1F(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V+), t=22.30s)
(検討ケース③: 地盤物性のばらつきを考慮(-1σ)した解析ケース)

To2_VS_HS_2011-S_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2011-S_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

軸力(kN/m)

せん断力 (kN/m)

図 6.4-23 (15) 中壁 B2F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.81s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_2021-S_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2021-S_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_2021-S_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (16) 中壁 B2F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V-), t=53.80s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_3031-S_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_3031-S_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3031-S_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (17) 中壁 B3F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.85s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

曲げモーメント (kN・m/m)

To2_VS_HS_3011-S_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

 $\label{eq:scalar} \begin{array}{l} \mbox{To2_VS_HS}_{3011-S}\mbox{OG-L}_{+1}\mbox{Sig_B3F}_{Ss-D1++}\mbox{max. f23} \\ \mbox{Step: 101} \end{array}$

せん断力 (kN/m)

図 6.4-23 (18) 中壁 B3F (開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=19.51s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5211-SN_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

To2_VS_HS_5211-SN_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

 $\label{eq:scalar} \begin{array}{l} \mbox{To2_VS_HS_5211-SN_0G-L_+1Sig_B4F-TN_Ss-21_max. f23} \\ \mbox{Step: 101} \end{array}$

せん断力 (kN/m)

図 6.4-23 (19) 中壁 B4F トンネル部(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_5041-SN_TS-L_B4F-TN_Ss-D1--_max. f23 Step: 101

せん断力 (kN/m)

図 6.4-23 (20) 中壁 B4F トンネル部(開口部) コンクリートの曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-24(1) B1F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (2) B1F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s) (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース) To2_VS_HS_2011-NS_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_2011-NS_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2011-NS_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-24 (3) B2F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.81s)
(検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_2021-NS_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24(4) B2F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V-), t=53.80s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3031-SN_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (5) B3F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.85s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3011-SN_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24(6) B3F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=19.51s) (検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_4011-EW_OG-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_4011-EW_OG-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_4011-EW_OG-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24(7) B4F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=68.74s) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_4031-WE_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4031-WE_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-24 (8) B4F 側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.87s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max. f23 Step: 101

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

 図 6.4-24 (9) B4Fトンネル部側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_5041-EW_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5041-EW_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_5041-EW_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-24(10) B4F トンネル部側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V-), t=53.93s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_6211-NS_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

To2_VS_HS_6211-NS_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_6211-NS_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (11) ピット部側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_6041-EW_0G-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

To2_VS_HS_6041-EW_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_6041-EW_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

図 6.4-24(12) ピット部側壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V-), t=60.50s) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max.f23 Step: 101

To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max. f23 Step: 101

軸力 (kN/m)
To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max. f23 Step: 101

せん断力 (kN/m)

 図 6.4-24(13) 東側壁 B1F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=9.54s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-24(14) 東側壁 B1F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V+), t=80.79s)
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース) $\label{eq:scalar} \begin{array}{l} \mbox{To2}\mbox{VS}\mbox{HS}\mbox{2011}\mbox{-SN}\mbox{OG-L}\mbox{+1Sig}\mbox{B2F}\mbox{Ss-D1}\mbox{++}\mbox{max.f23} \\ \mbox{Step: 101} \end{array}$

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

10000 kN/m 5000 kN/m

軸力 (kN/m)

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-24(15) 北側壁 B2F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=53.81s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (16) 北側壁 B2F (開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V-), t=53.80s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max. f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (17) 南側壁 B4F トンネル部 (開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-24 (18) 南側壁 B4F トンネル部(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(1) B1F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=9.54s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1032-WE_OG-L_-1Sig_B1F_Ss-D1-+_min.f23 Step: 101

To2_VS_HS_1032-WE_OG-L_-1Sig_B1F_Ss-D1-+_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1032-WE_OG-L_-1Sig_B1F_Ss-D1-+_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (2) B1F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s) (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

To2_VS_HS_2012-EW_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2012-EW_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2012-EW_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25 (3) B2F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.99s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

軸力(kN/m)

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (4) B2F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s -D1 (H+, V-), t=53.97s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3031-EW_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_3031-EW_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_3031-EW_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (5) B3F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=69.00s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-25(6) B3F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=26.86s) (検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_4012-EW_OG-L_+1Sig_B4F_Ss-D1++_min.f23 Step: 101

To2_VS_HS_4012-EW_OG-L_+1Sig_B4F_Ss-D1++_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-25 (7)	B4F 中壁鉄筋の曲げ軸力照査に用いる断面力図
(S _s	-D1 (H+, V+) , t =68.74s)
(検討ケース②:地格	釜物性のばらつきを考慮(+1σ)した解析ケース

To2_VS_HS_4032-WE_TS-L_B4F_Ss-D1-+_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_4032-WE_TS-L_B4F_Ss-D1-+_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4032-WE_TS-L_B4F_Ss-D1-+_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (8) B4F 中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.87s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

 図 6.4-25(9) B4Fトンネル部中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=69.04s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min. f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(10) B4F トンネル部中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V-), t=53.93s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

6 - 529

To2_VS_HS_6212-EW_OG-L_+1Sig_pit_Ss-21_min.f23 Step: 101

To2_VS_HS_6212-EW_OG-L_+1Sig_pit_Ss-21_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_6212-EW_OG-L_+1Sig_pit_Ss-21_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (11) ピット部中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=69.05s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

曲げモーメント (kN・m/m)

To2_VS_HS_6042-EW_OG-L_+1Sig_pit_Ss-D1--_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_6042-EW_OG-L_+1Sig_pit_Ss-D1--_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(12) ピット部中壁鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

軸力 (kN/m)
To2_VS_HS_1322-WE_OG-Non-L_B1F_Ss-31-+_min. f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(13) 中壁 B1F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-31(H-, V+), t=9.54s)
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1032-WE_OG-L_-1Sig_B1F_Ss-D1-+_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1032-WE_OG-L_-1Sig_B1F_Ss-D1-+_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-25(14) 中壁 B1F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V+), t=80.79s)
(検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース) To2_VS_HS_2012-EW_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

To2_VS_HS_2012-EW_0G-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

軸力(kN/m)

せん断力 (kN/m)

 図 6.4-25 (15) 中壁 B2F (開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.99s)
(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

軸力(kN/m)

To2_VS_HS_2022-EW_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(16) 中壁 B2F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V-), t=53.97s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3032-EW_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

To2_VS_HS_3032-EW_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_3032-EW_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(17) 中壁 B3F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H-, V+), t=69.00s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_3012-EW_OG-L_+1Sig_B3F_Ss-D1++_min.f23 Step: 101

To2_VS_HS_3012-EW_OG-L_+1Sig_B3F_Ss-D1++_min.f23

Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3012-EW_OG-L_+1Sig_B3F_Ss-D1++_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-25(18) 中壁 B3F(開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1(H+, V+), t=26.86s)
(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5212-EW_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (19) 中壁 B4F トンネル部 (開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-21, t=69.04s)

(検討ケース②:地盤物性のばらつきを考慮(+1))した解析ケース)

To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5042-EW_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-25 (20) 中壁 B4F トンネル部 (開口部)鉄筋の曲げ軸力照査に用いる断面力図 (S_s-D1 (H-, V-), t=53.93s)

> (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1321-SN_0G-Non-L_B1F_Ss-31-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(1) B1F 側壁のせん断照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-EW_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(2) B1F 側壁のせん断照査に用いる断面力図 (S_s-D1(H-, V+), t=80.79s)
(検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース) To2_VS_HS_2011-NS_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2011-NS_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2011-NS_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(3) B2F 側壁のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=53.81s)
(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) To2_VS_HS_2022-WE_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2022-WE_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_2022-WE_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(4) B2F 側壁のせん断照査に用いる断面力図 (S_s-D1(H+, V-), t=53.97s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3031-NS_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_3031-NS_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3031-NS_TS-L_B3F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(5) B3F 側壁のせん断照査に用いる断面力図 (S_s-D1(H-, V+), t=53.85s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3011-NS_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_3011-NS_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3011-NS_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(6) B3F 側壁のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=19.51s)
(検討ケース②:地盤物性のばらつきを考慮(+1₀)した解析ケース)

To2_VS_HS_4011-EW_OG-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_4011-EW_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

軸力 (kN/m)

 $\label{eq:scalar} \begin{array}{l} \mbox{To2}\mbox{VS}\mbox{HS}\mbox{4011}\mbox{-}\mbox{EW}\mbox{0G-L}\mbox{+}\mbox{1Sig}\mbox{B4F}\mbox{Ss-D1}\mbox{+}\mbox{+}\mbox{max}\mbox{f23} \\ \mbox{Step: 101} \end{array}$

せん断力 (kN/m)

 図 6.4-26(7) B4F 側壁のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=68.74s)
(検討ケース②:地盤物性のばらつきを考慮(+1₀)した解析ケース)

曲げモーメント (kN・m/m)

To2_VS_HS_4031-EW_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_4031-EW_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-26 (8) B4F 側壁のせん断照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.87s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_5211-N_0G-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

To2_VS_HS_5211-N_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-26 (9)	B4F トンネル部側壁のせん断照査に用いる断面力図
	$(S_{s} - 2 1, t = 66.28s)$

(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース)

To2_VS_HS_5041-W_TS-L_B4F-TN_Ss-D1--_max. f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_5041-W_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

軸力(kN/m)

To2_VS_HS_5041-W_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-26(10) B4Fトンネル部側壁のせん断照査に用いる断面力図 (S_s-D1(H-, V-), t=53.93s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_6211-NS_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

To2_VS_HS_6211-NS_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)
To2_VS_HS_6211-NS_0G-L_+1Sig_pit_Ss-21_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-26 (11) ピット部側壁のせん断照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_6041-NS_0G-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_6041-NS_0G-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

せん断力 (kN/m)

図 6.4-26(12) ピット部側壁のせん断照査に用いる断面力図 (S_s-D1(H-, V-), t=23.33s) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max.f23 Step: 101

To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1321-WE_OG-Non-L_B1F_Ss-31-+_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-26(13) 東側壁 B1F(開口部)のせん断照査に用いる断面力図 (S_s-31(H-, V+), t=9.54s)
(検討ケース⑤: 原地盤において非液状化の条件を仮定した解析ケース)

To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_1031-WE_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-26(14) 東側壁 B1F(開口部)のせん断照査に用いる断面力図 (S_s-D1(H-, V+), t=80.79s)
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

曲げモーメント (kN・m/m)

To2_VS_HS_2011-SN_OG-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2011-SN_0G-L_+1Sig_B2F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-26(15) 北側壁 B2F(開口部)のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=53.81s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_2021-SN_TS-L_B2F_Ss-D1+-_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-26(16) 北側壁 B2F(開口部)のせん断照査に用いる断面力図 (S_s-D1(H+, V-), t=53.80s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_5211-NS_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

To2_VS_HS_5211-NS_0G-L_+1Sig_B4F-TN_Ss-21_max. f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5211-NS_OG-L_+1Sig_B4F-TN_Ss-21_max.f23 Step: 101

図 6.4-26 (17) 南側壁 B4F トンネル部 (開口部)のせん断照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5041-NS_TS-L_B4F-TN_Ss-D1--_max.f23 Step: 101

図 6.4-26 (18) 南側壁 B4F トンネル部 (開口部)のせん断照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_1322-N_0G-Non-L_B1F_Ss-31-+_min.f23 Step: 101

To2_VS_HS_1322-N_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

軸力 (kN/m)

せん断力 (kN/m)

 図 6.4-27(1) B1F 中壁のせん断照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) To2_VS_HS_1031-EW_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (2) B1F 中壁のせん断照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s) (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース) To2_VS_HS_2012-N_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2012-N_OG-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_2012-N_0G-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-27 (3) B2F 中壁のせん断照査に用いる断面力図 (S_s-D1 (H+, V+), t=53.81s)
(検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

軸力(kN/m)

To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-27(4) B2F 中壁のせん断照査に用いる断面力図 (S_s-D1(H+, V-), t=53.97s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min. f23 Step: 101

せん断力 (kN/m)

 図 6.4-27(5) B3F 中壁のせん断照査に用いる断面力図 (S_s-D1(H-, V+), t=53.85s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3011-EW_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27(6) B3F 中壁のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=26.86s) (検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

軸力(kN/m)

(+: 圧縮, -: 引張)

To2_VS_HS_4011-N_0G-L_+1Sig_B4F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

 図 6.4-27(7) B4F 中壁のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=68.69s)
(検討ケース②:地盤物性のばらつきを考慮(+1₀)した解析ケース) To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_4031-N_TS-L_B4F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27(8) B4F 中壁のせん断照査に用いる断面力図
(S_s-D1(H-, V+), t=68.69s)
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により)

地盤を強制的に液状化させることを仮定した解析ケース)

To2_VS_HS_5212-S_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_5212-S_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (9) B4Fトンネル部中壁のせん断照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (10) B4Fトンネル部中壁のせん断照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

 $\label{eq:scalar} To2_VS_HS_6211-S_0G-L_+1Sig_pit_Ss-21_max.\ f23$ Step: 101

To2_VS_HS_6211-S_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)
To2_VS_HS_6211-S_OG-L_+1Sig_pit_Ss-21_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (11) ピット部中壁のせん断照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_6041-S_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

(+: 圧縮, -: 引張)

軸力(kN/m)

To2_VS_HS_6041-S_OG-L_+1Sig_pit_Ss-D1--_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27(12) ピット部中壁のせん断照査に用いる断面力図 (S_s-D1(H-, V-), t=23.33s) (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) To2_VS_HS_1322-N_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

To2_VS_HS_1322-N_OG-Non-L_B1F_Ss-31-+_min.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1322-N_OG-Non-L_B1F_Ss-31-+_min. f23 Step: 101

せん断力 (kN/m)

 図 6.4-27(13) 中壁 B1F(開口部)のせん断照査に用いる断面力図 (S_s-31(H-, V+), t=8.74s)
 (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

6 - 611

To2_VS_HS_1031-EW_OG-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_1031-EW_0G-L_-1Sig_B1F_Ss-D1-+_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (14) 中壁 B1F (開口部)のせん断照査に用いる断面力図 (S_s-D1 (H-, V+), t=80.79s)

(検討ケース③:地盤物性のばらつきを考慮(-1)した解析ケース)

To2_VS_HS_2012-N_0G-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2012-N_0G-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_2012-N_0G-L_+1Sig_B2F_Ss-D1++_min.f23 Step: 101

せん断力 (kN/m)

 図 6.4-27(15) 中壁 B2F(開口部)のせん断照査に用いる断面力図 (S_s-D1(H+, V+), t=53.81s)
 (検討ケース②:地盤物性のばらつきを考慮(+1g)した解析ケース) To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

曲げモーメント (kN・m/m)

To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

軸力(kN/m)

To2_VS_HS_2022-E_TS-L_B2F_Ss-D1+-_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27(16) 中壁 B2F(開口部)のせん断照査に用いる断面力図 (S_s-D1(H+, V-), t=53.97s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_3032-N_TS-L_B3F_Ss-D1-+_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (17) 中壁 B3F (開口部)のせん断照査に用いる断面力図 (S_s-D1 (H-, V+), t=53.85s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) $\label{eq:scalar} \begin{array}{l} \mbox{To2}\mbox{VS}\mbox{HS}\mbox{3011}\mbox{-}\mbox{EW}\mbox{0G}\mbox{-}\mbox{L}\mbox{+}\mbox{1Sig}\mbox{B3F}\mbox{Ss}\mbox{-}\mbox{D1}\mbox{+}\mbox{-}\mbox{max}\mbox{f23} \\ \mbox{Step: 101} \end{array}$

曲げモーメント (kN・m/m)

To2_VS_HS_3011-EW_OG-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

軸力 (kN/m)

To2_VS_HS_3011-EW_0G-L_+1Sig_B3F_Ss-D1++_max.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (18) 中壁 B3F (開口部)のせん断照査に用いる断面力図 (S_s-D1 (H+, V+), t=26.86s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5212-S_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

To2_VS_HS_5212-S_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5212-S_OG-L_+1Sig_B4F-TN_Ss-21_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (19) 中壁 B4F トンネル部 (開口部)のせん断照査に用いる断面力図 (S_s-21, t=66.28s)

(検討ケース②:地盤物性のばらつきを考慮(+1)した解析ケース)

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

(+: 圧縮, -: 引張)

軸力 (kN/m)

To2_VS_HS_5042-S_TS-L_B4F-TN_Ss-D1--_min.f23 Step: 101

せん断力 (kN/m)

図 6.4-27 (20) 中壁 B4F トンネル部 (開口部)のせん断照査に用いる断面力図 (S_s-D1 (H-, V-), t=60.50s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) (3) 水平断面の曲げ軸力に対する評価結果

コンクリートの曲げ軸力に対する照査結果を表 6.4-16 に,鉄筋の曲げ軸力に対する 照査結果を表 6.4-17 に示す。また,照査結果表における決定ケースの識別方法につい て図 6.4-28 に示す。

本立坑において,水平断面の設計断面は立坑高さ方向に6断面存在し,各断面において 用いる地震時荷重を(1)にて選定している。

地震時荷重の載荷方法(両押し,片押し),地震時荷重の方向及び常時土水圧の大小に より1つの設計断面に対し1地震波につき16ケースの解析を行い,側壁及び中壁の応力 度照査を行っている。

照査表においては、1 地震波に対し16 ケースの解析を行い、照査値が最大となる組合 せに対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。

図 6.4-29 に概略配筋図を,表 6.4-18 に断面計算に用いた断面諸元の一覧を示す。

図 6.4-28 照査結果表における決定ケースの識別方法

25.84	検討ケース	地館日	決定ケース 寺荷重	(泛佈	断面性状			建窑井梯	発生問	听面力	圧縮	短期許容	照查值
断面	検討ケース	載荷	方向	常時 土水圧	位置	部材幅	部材高 h(mm)	有効高	(引張鉄筋)	曲げモーメント	軸力	応力度	応力度	
	⑤S ₅ -31 (H-, V+)	両押し	->	最大	5	1000	3000	2780	D38 @200 D29 @200	-1041	508	1.07	21.0	0.06
側壁 B1F	③ S _s -D1 (H-, V+)	両押し	↓ ↑	最大	11	1000	3000	2780	D38 @200 D32 @200	-2231	710	2.27	21. 0	0.11
AMER DOF	②S _s -D1 (H+, V+)	両押し	$\rightarrow \leftarrow$	最大	17	1000	3000	2780	D38 @200 D29 @200	-3322	1013	3.45	21.0	0.17
BUME D2F	④ S _s -D 1 (H+, V-)	両押し	\rightarrow	最大	2	1000	3000	2780	D38 @200 D32 @200	-3104	1180	3.15	21. 0	0.15
御御 臣2日	④S _s -D1 (H-, V+)	両押し		最大	17	1000	3000	2790	D51 @200 D38 @200	-5020	1598	4.04	21.0	0.20
bd 37 por	② S _s -D1 (H+, V+)	両押し	$\rightarrow \leftarrow$	最大	17	1000	3000	2790	D51 @200 D38 @200	-3619	1431	2.94	21.0	0.14
ANIRE DAE	②S ₅ -D1 (H+, V+)	両押し	\rightarrow	最大	11	1000	3000	2790	2-D51 @200	-5904	2354	4.44	21.0	0.22
PGE DI	④S _s -D1 (H-, V+)	両押し	\rightarrow \leftarrow	最大	11	1000	3000	2790	2-D51 @200	-7778	2743	5.81	21.0	0.28
側壁 B4F	$@S_{s} = 2.1$	両押し		最大	5	1000	3000	2780	D41 @200 D29 @200	-3499	2038	3.37	21.0	0.17
トンネル部	<pre>④S_s-D1 (H-, V-)</pre>	両押し	\rightarrow	最大	11	1000	3000	2780	D41 @200 D38 @200	-3920	2072	3.63	21.0	0.18
御御をどったが	$@S_{s} = 2.1$	両押し	$\rightarrow \leftarrow$	最大	16	1000	3000	2790	D51 @200 D29 @200	-3754	2324	3.23	21.0	0.16
16132 こうし助	② S _s -D1 (H-, V-)	両押し	↓ ↑	最大	11	1000	3000	2790	D51 @200 D35 @200	-3548	2159	3.00	21.0	0.15
東側壁 B1F	⑤S _s -31 (H-, V+)	両押し	→ <i>←</i>	最大	3	533	3000	2780	2-D38 @200	503	1132	1.16	21.0	0.06
(開口部)	③ S _s -D1 (H-, V+)	両押し	Ť	最大	2	533	3000	2780	2-D38 @200	-1869	731	3. 39	21.0	0.17
北側壁 B2F	$O_{s_s}^{O} = D 1$ (H+, V+)	両押し	$\rightarrow \leftarrow$	最大	5	556	3000	2780	2-D38 @200	-2612	1137	4.51	21.0	0.22
(開口部)	④ S ₈ -D1 (H+, V-)	両押し	$\rightarrow \leftarrow$	最大	5	556	3000	2780	2-D38 @200	-2305	1114	3.97	21. 0	0.19
南側壁 B4F	② S _s - 2 1	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2780	2-D41 @200	-3097	2085	5.86	21. 0	0.28
(開口部)	④ S _s - D 1 (H-, V-)	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2780	2-D41 @200	-2826	2059	5.34	21.0	0.26

表 6.4-16(1) 水平断面(側壁)のコンクリートの曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

③:地盤物性のばらつきを考慮(-1g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

29-94	検討ケース	地震	決定ケース 寺荷重		運佈		断面性状	t	建筑什样	発生断面力		圧縮	短期許容	照查值
断面	検討ケース	載荷 方法	方向	常時 土水圧	位置	部材幅 b (mm)	部材高 h(mm)	有効高 d (mm)	(引張鉄筋)	曲 げモーメント (kN・m/m)	軸力 (kN/m)	运力度 σ_(N/mm ²)	応力度 σ(N/mm ²)	σε/σερ
delle pue	(5) S _s - 3 1 (H-, V+)	両押し		最大	21	1000	1500	1310	D29 @200	-54	1177	0.87	21.0	0.05
中型 BIF	③ S ₅ - D 1 (H-, V+)	両押し	->	最大	21	1000	1500	1310	D29 @200	-45	905	0.68	21.0	0.04
rfr.Bk . DOD	② S _s -D1 (H+, V+)	片押し	~	最大	21	1000	1500	1310	D29 @200	-369	3732	3. 23	21.0	0.16
4°95 D2F	④ S _s -D1 (H+, V-)	片押し	÷	最大	21	1000	1500	1310	D29 @200	-328	3316	2. 87	21.0	0.14
山縣 B3E	④S _s -D1 (H-, V+)	片押し	←	最大	21	1000	1500	1310	D29 @200	-382	5699	4.49	21.0	0.22
T SK Dor	$(2) S_s - D 1$ (H+, V+)	片押し	-	最大	21	1000	1500	1310	D29 @200	-282	4169	3. 29	21.0	0.16
白殿 日4日	② S _s -D1 (H+, V+)	片押し	←	最大	21	1000	1500	1310	D29 @200	-381	5734	4.51	21.0	0.22
4.37 Dat.	④ S _s -D1 (H-, V+)	片押し	~	最大	21	1000	1500	1310	D29 @200	-286	4393	3.45	21.0	0.17
中壁 B4F	$@S_{*} = 2.1$	片押し	→	最大	19	1000	1000	810	D22 @200	-84	3156	3. 45	21.0	0.17
トンネル部	④S _s -D1 (H-, V-)	片押し	\rightarrow	最大	19	1000	1000	810	D22 @200	-83	2878	3.18	21.0	0.16
révillés set a Liver	\odot S _s - 2 1	片押し	→	最大	19	1000	1000	810	D22 @200	-97	3545	3, 89	21.0	0.19
十変 こうし助	② S _s -D1 (H-, V-)	片押し	\rightarrow	最大	19	1000	1000	810	D22 @200	-84	3224	3. 51	21.0	0.17
中璧 B1F	(5) S ₃ - 3 1 (H-, V+)	両押し		最大	19	462	1500	1310	2-D29 @200	-39	1180	1.71	21.0	0.09
(開口部)	③ S _s - D 1 (H-, V+)	両押し	→←	最大	19	462	1500	1310	2-D29 @200	-32	907	1. 32	21.0	0.07
中壁 B2F	$(2) S_s - D 1$ (H+, V+)	片押し	\rightarrow	最大	19	385	1500	1310	2-D29 @200	-156	3604	6.47	21.0	0.31
(開口部)	$(4) S_{s} - D 1$ (H+, V-)	片押し	\rightarrow	最大	19	385	1500	1310	2-D29 @200	-139	3200	5.74	21.0	0. 28
中壁 B3F	@S ₈ -D1 (H-, V+)	片押し	*	最大	19	462	1500	1310	2 D29 @200	241	5702	8.49	21.0	0.41
(開口部)	$\bigcirc S_{s} - D 1 \\ (H+, V+)$	片押し	\rightarrow	最大	19	462	1500	1310	2-D29 @200	-177	4171	6. 22	21.0	0.30
中壁 B4F	② S _s - 2 1	両押し	→←	最大	21	476	1000	810	2-D22 @200	-40	3208	6.47	21.0	0.31
 マンイル部 (開口部) 	④ S _s - D 1 (H-, V-)	両押し	→←	最大	21	476	1000	810	2-D22 @200	-32	2923	5.84	21.0	0. 28

表 6.4-16(2) 水平断面(中壁)のコンクリートの曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

③:地盤物性のばらつきを考慮(-1g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース ⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

12-94		地震的	決定ケーフ 寺荷重	(现体		断面性状	t	供能仕能	発生	所面力	引張	短期許容	照查值
断面	検討ケース	載荷	方向	常時 土水圧	位置	部材幅	部材高 h(mm)	有効高	(引張鉄筋)	曲げモーメント (LN + m(m)	軸力	応力度	応力度	
	©S ₅ − 3 1	両押し	-> e	最大	6	1000	11 (mm) 3000	2780	D38 @200	1021	(KN/m) 0	σ _s (N/mm ⁻) 49	σ _{sa} (N/mm ⁻) 435	σ _s /σ _{s a} 0.12
側壁 B1F	(H^-, V^+) ($3S_5^-D1$ (H^-, V^+)	両押し	Ļ	最大	11	1000	3000	2780	D29 @200 D38 @200 D32 @200	-2154	0	97	435	0.23
	(H^{-}, V^{+}) ($B_{s}^{-} D 1$ (H^{+}, V^{+})	両押し	->	最大	15	1000	3000	2780	D38 @200 D29 @200	3209	0	153	435	0.36
側壁 B2F	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	両押し		最大	15	1000	3000	2780	D38 @200 D29 @200	2823	0	135	435	0.32
anan por	④S _s -D1 (H-, V+)	両押し		最大	6	1000	3000	2790	D51 @200 D38 @200	4984	0	136	435	0.32
16d 2£191	② S _s -D1 (H+, V+)	両押し		最大	6	1000	3000	2790	D51 @200 D38 @200	3574	0	98	435	0.23
御殿 BAE	② S _s -D1 (H+, V+)	両押し	÷	最大	11	1000	3000	2790	2-D51 0200	-5647	0	127	435	0.30
04.37 D.11.	④ S ₃ -D 1 (H-, V+)	両押し	↓ ↑	最大	2	1000	3000	2790	2-D51 @200	-7539	0	169	435	0.39
側壁 B4F	(2) S _s = 2 1	両押し	→ ←	最大	17	1000	3000	2780	D41 @200 D29 @200	-2899	0	124	435	0.29
トンネル部	④S ₅ -D1 (H-, V-)	両押し	↓ ↑	最大	11	1000	3000	2780	D41 @200 D38 @200	-3696	0	132	435	0.31
御郎をビュトが	② S _s - 2 1	両押し		最大	16	1000	3000	2790	D51 @200 D32 @200	3285	0	99	435	0.23
161 1 C - V - 1 202 190	② S _s -D1 (H-, V-)	両押し	↓ ↑	最大	11	1000	3000	2790	D51 @200 D35 @200	-3305	0	95	435	0.22
東側壁 B1F	(5) S ₅ - 3 1 (H-, V+)	両押し	↓ ↑	最大	2	533	3000	2780	2-D38 @200	-534	0	40	435	0.10
(開口部)	③S _s -D1 (H-, V+)	両押し	↓ ↑	最大	2	533	3000	2780	2-D38 @200	-1811	0	133	435	0.31
北側壁 B2F	$(2)S_{s} - D1$ (H+, V+)	両押し	→←	最大	5	556	3000	2780	2-D38 @200	-2396	0	168	435	0.39
(開口部)	④ S ₈ -D1 (H+, V-)	両押し	$\rightarrow \leftarrow$	最大	5	556	3000	2780	2-D38 @200	-2097	0	147	435	0.34
南側壁 B4F	$2 S_s - 2 1$	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2780	2-D41 @200	-1806	0	126	435	0.29
(開口部)	④ S _s -D 1 (H-, V-)	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2780	2-D41 @200	-1633	0	114	435	0.27

表 6.4-17(1) 水平断面(側壁)の鉄筋の曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

③:地盤物性のばらつきを考慮(-1 g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

on at		+40 202 B	決定ケース	(12/2		断面性状	:	04-57 11-400	発生的	所面力	引張	短期許容	服委储
断面	検討ケース	載荷	方向	常時 土水圧	存面	部材幅	部材高	有効高	(引張鉄筋)	曲げモルト	軸力	応力度	応力度	110.000.000
	©S 31	万法	1			b (mm)	h (mm)	d (mm)		(kN • m/m)	(kN/m)	σ _s (N/mm [*])	σ _{sa} (N/mm*)	σ_s/σ_{sa}
中璧 B1F	(H-, V+)	両押し	Ť	最小	21	1000	1500	1310	D29 @200	16	-101	21	435	0.05
	③S ₅ -D1 (H-, V+)	両押し	Ť	最小	21	1000	1500	1310	D29 @200	30	-587	100	435	0. 23
rfrikk pop	$(2) S_{s} - D 1$ (H+, V+)	両押し	↓ ↑	最小	21	1000	1500	1310	D29 @200	261	93	54	435	0.13
T M Der	④ S _s -D 1 (H+, V-)	両押し	↓ ↑	最小	21	1000	1500	1310	D29 @200	283	-190	104	435	0.24
talla non	④ S _s - D 1 (H-, V+)	両押し	↓ ↑	最大	21	1000	1500	1310	D29 @200	-298	693	5	435	0.02
4-3 <u>7</u> D21	② S _s -D 1 (H+, V+)	両押し	Ť	最大	21	1000	1500	1310	D29 @200	-385	562	25	435	0, 06
the DAD	② S _s -D1 (H+, V+)	両押し	Ť	最小	19	1000	1500	1310	D29 @200	-18	-478	80	435	0.19
Ψ' E Dir	④ S _s - D 1 (H-, V+)	両押し	↓ ↑	最小	19	1000	1500	1310	D29 @200	44	-1026	173	435	0.40
中壁 B4F	$(2)S_s - 21$	両押し	↓ ↑	最小	19	1000	1000	810	D22 @200	-50	1107	0	435	0.00
トンネル部	④ S ₅ -D1 (H-, V-)	両押し	↓ ↑	最小	19	1000	1000	810	D22 @200	-40	730	0	435	0.00
山豚 どっトが	$@S_{s} - 21$	両押し	↓ ↑	最小	19	1000	1000	810	D22 @200	-39	1215	0	435	0.00
中国につい助	② S _s -D1 (H-, V-)	両押し	Ť	最小	19	1000	1000	810	D22 @200	-37	982	0	435	0.00
中璧 B1F	$(5) S_{s} - 3 1$ (H-, V+)	両押し	Ť	最小	20	462	1500	1310	2-D29 @200	8	-101	21	435	0.05
(開口部)	③ S _s -D1 (H-, V+)	両押し	↓ ↑	最小	20	462	1500	1310	2-D29 @200	21	-587	108	435	0.25
中壁 B2F	$(2) S_s - D 1$ (H+, V+)	両押し	↓ ↑	最小	19	385	1500	1310	2-D29 @200	-163	93	46	435	0.11
(開口部)	④ S _s - D 1 (H+, V-)	両押し	↓ ↑	最小	19	385	1500	1310	2-D29 @200	-169	-190	111	435	0.26
中壁 B3F	$(4) S_s - D 1$ (H-, V+)	両押し	↓ ↑	最小	19	462	1500	1310	2-D29 @200	-81	273	0	435	0.00
(開口部)	$(2) S_s - D 1$ (H+, V+)	両押し	↓ ↑	最小	19	462	1500	1310	2-D29 @200	-80	107	10	435	0, 03
中壁 B4F トンネル部	$\odot S_{s} = 2.1$	両押し	↓ ↑	最小	21	476	1000	830	2-D22 @200	3	1107	0	435	0.00
(開口部)	④ S _s -D1 (H-, V-)	両押し	↓ ↑	最小	21	476	1000	810	2-D22 @200	-5	730	0	435	0, 00

表 6.4-17(2) 水平断面(中壁)の鉄筋の曲げ軸力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース

③:地盤物性のばらつきを考慮(-1g)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース ⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

<u>B2F</u>

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-29(1) 概略配筋図(水平断面 曲げ)

B4F

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-30(2) 概略配筋図(水平断面 曲げ)

B4F トンネル部

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-31(3) 概略配筋図(水平断面 曲げ)

図 6.4-29(4) 概略配筋図(水平断面 開口部)

6 - 635

					断面性状				主鉄筋							
	林彩	部材幅	部材高		かぶり	d'	有効高	ізd	鉄笛	彳	Σ.	鉄筋	間隔	鉄角	65量	
部位	No.	р	h	位置	地山側	内空側	地山側 引張	内空側 引張	種別	地山側	内空側	地山側	内空側	地山側	内空側	
		(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm^2)	
水平断面	MI	1000	2000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	5700	5700	
(B1F 南北側壁)	MI	1000	3000	2段目	470	470	2530	2530	SD490	D29	D29	200	200	3212	3212	
水平断面	M2	1000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	5700	5700	
(B1F 東西側壁)	312	1000	3000	2段目	490	490	2510	2510	SD490	D32	D32	200	200	3971	3971	
水平断面	M3	1000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	5700	5700	
(B2F 北側壁)	мJ	1000	3000	2段目	470	470	2530	2530	SD490	D32	D29	200	200	3971	3212	
水平断面	M4	1000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	5700	5700	
(B2F 南側壁)		1000	0000	2段目	470	470	2530	2530	SD490	D29	D29	200	200	3212	3212	
水平断面	M5	1000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	5700	5700	
(B2F 東西側壁)	110	1000	0000	2段目	490	490	2510	2510	SD490	D32	D32	200	200	3971	3971	
水平断面	MG	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(B3F 南北側壁)	ato	1000	0000	2段目	470	470	2530	2530	SD490	D38	D38	200	200	5700	5700	
水平断面	M7	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(B3F 東西側壁)	311	1000	0000	2段目	490	490	2510	2510	SD490	D35	D32	200	200	4783	3971	
水平断面	M8	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(B4F 南北側壁)	ato	1000	0000	2段目	460	460	2540	2540	SD490	D51	D51	200	200	10135	10135	
水平断面	MQ	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(B4F 東西側壁)	310	1000	0000	2段目	480	480	2520	2520	SD490	D51	D51	200	200	10135	10135	
水平断面	M10	1000	3000	1段目	220	220	2780	2780	SD490	D41	D41	200	200	6700	6700	
(B4Fトンネル部 北側壁)		1000	0000	2段目	470	470	2530	2530	SD490	D35	D29	200	200	4783	3212	
水平断面	M11	1000	3000	1段目	220	220	2780	2780	SD490	D41	D41	200	200	6700	6700	
(B4Fトンネル部 南側壁)		1000	0000	2段目	470	470	2530	2530	SD490	D38	D29	200	200	5700	3212	
水平断面	M12	1000	3000	1段目	220	220	2780	2780	SD490	D41	D41	200	200	6700	6700	
(B4Fトンネル部 東西側壁)	M12	1000	0000	2段目	490	490	2510	2510	SD490	D38	D38	200	200	5700	5700	
水平断面	M13	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(ピット部 南北側壁)	M10	1000	3000	2段目	470	470	2530	2530	SD490	D32	D29	200	200	3971	3212	
水平断面	M14	1000	3000	1段目	210	210	2790	2790	SD490	D51	D51	200	200	10135	10135	
(ピット部 東西側壁)	3117	1000	3000	2段目	490	490	2510	2510	SD490	D35	D35	200	200	4783	4783	
水平断面 (中壁 部材高1500mm)	M15	1000	1500	1段目	190	190	1310	1310	SD490	D29	D29	200	200	3212	3212	
水平断面 (中壁 部材高1000mm)	M16	1000	1000	1段目	170	190	830	810	SD490	D22	D22	200	200	1936	1936	

表 6.4-18(1) 断面諸元一覧表(曲げに対する評価)

※中壁は地山側=東側、内空側=西側として記載

B4F

<u>B4F(トンネル部)</u>

<u>ピット部</u>

					断面性状							主鉄筋			
	材料	部材幅	部材高		かぶり	d'	有効調	fさ d	鉄筋	径		鉄筋間隔		鉄筋量	
部位	No.	b	h	位置	地山側	内空側	地山側 引張	内空側 引張	種別	地山側	内空側	地山側	内空側	地山側	内空側
		(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm^2)
水平断面	M1	2000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	11400	11400
(北側壁B2F開口部)		2000	0000	2段目	470	470	2530	2530	SD490	D38	D38	200	200	11400	11400
水平断面	¥0	2000	2000	1段目	220	220	2780	2780	SD490	D41	D41	200	200	13400	13400
(南側壁B4Fトンネル部 (開口部))	MZ	2000	3000	2段目	470	470	2530	2530	SD490	D41	D41	200	200	13400	13400
水平断面	МЗ	1000	3000	1段目	220	220	2780	2780	SD490	D41	D41	200	200	6700	6700
(南側壁B4Fトンネル部(開口部))	mo		3000	2段目	470	470	2530	2530	SD490	D41	D41	200	200	6700	6700
水平断面	ма	2000	1500	1段目	190	190	1310	1310	SD490	D29	D29	200	200	6424	6424
(中壁B1F, B2F, B3F開口部)	31.1	2000	1500	2段目	350	350	1150	1150	SD490	D29	D29	200	200	6424	6424
水平断面	M5	2000	1000	1段目	170	190	830	810	SD490	D22	D22	200	200	3871	3871
(中壁B4Fトンネル部 (開口部))	10	2000	1000	2段目	320	340	680	660	SD490	D22	D22	200	200	3871	3871
水平断面	ме	1000	1000	1段目	170	190	830	810	SD490	D22	D22	200	200	1936	1936
(中壁B4Fトンネル部 (開口部))	MO	1000	1000	2段目	320	340	680	660	SD490	D22	D22	200	200	1936	1936
水平断面	M7	2000	3000	1段目	220	220	2780	2780	SD490	D38	D38	200	200	11400	11400
(東側壁B1F開口部)	<i>m1</i>	2000	5000	2段目	490	490	2510	2510	SD490	D38	D38	200	200	11400	11400

表 6.4-18(2) 断面諸元一覧表(曲げに対する評価)

※中壁は地山側=東側、内空側=西側として記載

水平断面 開口部 断面諸元位置図

立坑南北方向

立坑東西方向

(4) 水平断面のせん断力に対する評価結果

表 6.4-19にせん断力に対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 許容せん断応力度以下である又はコンクリートの負担するせん断力(V_o)と,斜め引張 鉄筋の負担するせん断力(V_o)を合わせた許容せん断力(V_a)が,発生せん断力

(V) 以上であることを確認した。 ($V_a = V_c + V_s \ge V$) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生値は、許容限界以下であることを確認した。

図 6.4-32 に概略配筋図を,表 6.4-20 に断面計算に用いた断面諸元の一覧を示す。

20-21	検討ケース	伸震	決定ケース 幸荷重		117 Au:		断面性状	:	会生命214-11年	発生	短期許容	昭杏储
断面	検討ケース	載荷	方向	常時 土水圧	計価 位置	部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	37 / 37
	⑤S₅−31	両押し		最大	6	1000	3000	a (mm) 2690	D16 @200×400	602	v a (KN/III) 2672	0, 23
側壁 B1F	(H-, V+) (3) S _s - D 1	両押し	Ļ	最大	10	1000	3000	2669	D16 @200×400	1069	2651	0.41
	(H-, V+) (2) S ₃ - D 1	両押し		最大	16	1000	3000	2690	D16 @200×400	1848	2672	0.70
側壁 B2F	(H+, V+) (H, V+) (H, V+)	両押し	Ļ	最小	1	1000	3000	2669	D16 @200×400	1638	2651	0.62
	(H^+, V^-) (H^-, V^+)	両押し	→←	最大	16	1000	3000	2696	D25 @200×400	2897	5333	0.55
側壁 B3F	(Π^{-}, V^{+}) (Π^{-}, V^{+}) (Π^{+}, V^{+})	両押し	→←	最大	16	1000	3000	2696	D25 @200×400	2080	5333	0.40
	(11+, 1+) $(2)S_{s} - D1$ (H+, V+)	両押し	↓ ↑	最大	10	1000	3000	2655	D19 @200×200	3028	5813	0.53
側壁 B4F	$(4) S_{s} - D 1$ (H-, V+)	両押し	↓ ↑	最大	10	1000	3000	2655	D19 @200×200	3834	5813	0.66
側壁 B4F	② S _s - 2 1	片押し	-	最大	4	1000	3000	2699	D19 @200×400	2136	3439	0.63
トンネル部	@S _s -D1 (H-, V-)	片押し	Ļ	最大	10	1000	3000	2656	D19 @200×400	2114	3384	0.63
Int Bits 1.0 1. 201	(2) S _s - 2 1	両押し	→←	最大	4	1000	3000	2727	D22 @200×400	2308	4352	0.54
個壁 ビツト部	② S _s -D1 (H-, V-)	両押し	$\rightarrow \leftarrow$	最大	4	1000	3000	2727	D22 @200×400	2136	4352	0.50
東側壁 B1F	$(5)S_{s} - 31$ (H-, V+)	両押し	↓ ↑	最大	3	533	3000	2645	8-D19 @200	334	1538	0.22
(開口部)	③ S _s -D1 (H-, V+)	両押し	↓ ↑	最大	3	533	3000	2645	8-D19 @200	811	1538	0.53
北側壁 B2F	$\bigcirc S_{s} - D I \\ (H+, V+)$	両押し	$\rightarrow \leftarrow$	最大	6	556	3000	2655	12-D25 @200	1784	3392	0. 53
(開口部)	$(4) S_{s} - D 1 (H+, V-)$	両押し	$\rightarrow \leftarrow$	最大	6	556	3000	2655	12-D25 @200	1572	3392	0. 47
南側壁 B4F	2 S _s - 2 1	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2655	12-D25 @200	1901	3727	0.52
(開口部)	$(4) S_{s} - D 1$ (H-, V-)	両押し	$\rightarrow \leftarrow$	最大	16	476	3000	2655	12-D25 @200	1708	3727	0.46

表 6.4-19 (1) 水平断面(側壁)のせん断力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤: 原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

25-14	検対ケース	抽露	決定ケース 幸荷重	(±₹655		断面性状	:	建 缸 什	発生	短期許容	照杏值
断面	検討ケース	載荷	方向	常時 土木圧	位置	部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	37 /37
	$(5)S_{s} - 31$ (H - V +)	「方掘」	-	最小	19	1000	1500	1310	D16 @200×400	V (KN/m) 12	V a (KN/m) 1301	0.01
中璧 B1F	$(\Pi, V+)$ ($\Pi, V+$) ($\Pi, V+$)	両押し	↓ ↑	最大	19	1000	1500	1310	D16 @200×400	11	1301	0.01
de Phil pop	②S,-D1 (H+, V+)	片押し	-	最小	19	1000	1500	1310	D16 @200×400	91	1301	0.07
中璧 826	④ S _s - D 1 (H+, V-)	片押し	Ť	最小	19	1000	1500	1310	D16 @200×400	89	1301	0.07
dallik Doc	@S _s -D1 (H-, V+)	片押し	<i>(</i>	最小	19	1000	1500	1310	D16 @200×400	86	1301	0.07
T IK Dor	$(2) S_{s} - D 1$ (H+, V+)	両押し	↓ ↑	最大	19	1000	1500	1310	D16 @200×400	102	1301	0.08
diate RAF	$(2) S_{s} - D 1$ (H+, V+)	片押し	÷	最大	19	1000	1500	1310	D16 @200×400	85	1301	0.07
1.27 D.U.	$(4) S_{s} - D 1$ (H-, V+)	片押し	←	最大	19	1000	1500	1310	D16 @200×400	62	1301	0.05
中璧 B4F	$(2)S_s - 21$	片押し	\rightarrow	最小	19	1000	1000	810	D16 @200×400	16	804	0.02
トンネル部	$(4) S_{s} - D 1$ (H -, V -)	片押し	\rightarrow	最小	19	1000	1000	810	D16 @200×400	17	804	0.03
休暇 ビットが	$(2)S_s - 21$	片押し	\rightarrow	最大	19	1000	1000	810	D16 @200×400	19	804	0.03
THE C V PHP	② S _s -D1 (H-, V-)	片押し	\rightarrow	最大	19	1000	1000	810	D16 @200×400	16	804	0.02
中璧 B1F	$(5 S_s - 3 1)$ (H-, V+)	片押し	←	最小	19	462	1500	1230	3-D16 @200	12	347	0.04
(開口部)	$(3) S_{s} - D 1$ (H-, V+)	両押し	↓ ↑	最大	19	462	1500	1230	3-D16 @200	11	347	0.04
中壁 B2F	$(2) S_s - D 1$ (H+, V+)	片押し	<i>~</i>	最小	19	385	1500	1230	2-D16 @200	91	289	0.32
(開口部)	$(4) S_{s} - D 1$ (H+, V-)	片押し	Ť	最小	19	385	1500	1230	2-D16 @200	89	289	0.31
中壁 B3F	$(4) S_{s} - D 1$ (H-, V+)	片押し	<i>~</i>	最小	19	462	1500	1230	3-D16 @200	86	347	0.25
(開口部)	$\begin{array}{c} @S_{s} - D 1 \\ (H+, V+) \end{array}$	両押し	↓ ↑	最大	19	462	1500	1230	3-D16 @200	102	347	0.30
中壁 B4F トンネル部	② S _s - 2 1	片押し	\rightarrow	最小	21	476	1000	735	4-D16 @200	16	243	0.07
(開口部)	$(4) S_s - D 1$ (H-, V-)	片押し	\rightarrow	最小	21	476	1000	755	4-D16 @200	17	250	0.07

表 6.4-19(2) 水平断面(中壁)のせん断力に対する照査結果

注記 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④: 超温初住のはらうさを考慮(10) じに呼切り ス
 ④: 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

評価位置は下図に示す。

水平断面照查位置図

B2F

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-32(1) 概略配筋図(水平断面 せん断)

B4F

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-33(2) 概略配筋図(水平断面 せん断)
B4F トンネル部

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-34(3) 概略配筋図(水平断面 せん断)

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-32(4) 概略配筋図(水平断面 せん断 南北方向)

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-32(5) 概略配筋図(水平断面 せん断 東西方向)

⊠ 6.4-32 (6)

6 - 646

			断面	性状			4	せん断補強筋	ճ	
÷1111-1-	材料	部材幅	部材高	有効高	ið d	みかぎロロ	17			冲标目.
是内立	No.	b	h	地山側	内空側	<u></u> 軟肋 悝 別	佺	sь	s	<u></u>
		(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm^2)
水平断面 (B1F 南北側壁)	M1	1000	3000	2690	2690	SD345	D16	400	200	497
水平断面 (B1F 東西側壁)	M2	1000	3000	2669	2669	SD345	D16	400	200	497
水平断面 (B2F 北側壁)	M3	1000	3000	2677	2690	SD345	D16	400	200	497
水平断面 (B2F 南側壁)	M4	1000	3000	2690	2690	SD345	D16	400	200	497
水平断面 (B2F 東西側壁)	M5	1000	3000	2669	2669	SD345	D16	400	200	497
水平断面 (B3F 南北側壁)	M6	1000	3000	2696	2696	SD345	D25	400	200	1267
水平断面 (B3F 東西側壁)	M7	1000	3000	2700	2711	SD345	D25	400	200	1267
水平断面 (B4F 南北側壁)	M8	1000	3000	2665	2665	SD345	D19	200	200	1433
水平断面 (B4F 東西側壁)	M9	1000	3000	2655	2655	SD345	D19	200	200	1433
水平断面 (B4Fトンネル部 北側壁)	M10	1000	3000	2676	2699	SD345	D19	400	200	716
水平断面 (B4Fトンネル部 南側壁)	M11	1000	3000	2665	2699	SD345	D19	400	200	716
水平断面 (B4Fトンネル部 東西側壁)	M12	1000	3000	2656	2656	SD345	D19	400	200	716
水平断面 (ピット部 南北側壁)	M13	1000	3000	2717	2727	SD345	D22	400	200	968
水平断面 (ピット部 東西側壁)	M14	1000	3000	2700	2700	SD345	D22	400	200	968
水平断面 (中壁 部材高1500mm)	M15	1000	1500	1310	1310	SD345	D16	400	200	497
水平断面 (中壁 部材高1000mm)	M16	1000	1000	830	810	SD345	D16	400	200	497

表 6.4-20(1) 断面諸元一覧表(せん断に対する評価)

※中壁は地山側=東側、内空側=西側として記載

B4F

水平断面 断面諸元位置図

<u>B4F(トンネル部)</u>

M12

M12

 ${\times}$

M11

M16 🖂

M10

M7 M6 M7 M7

<u>B3F</u>

<u>ピット部</u>

			断面	性状			4	せん断補強筋	6		
र्भय निर्म	材料	部材幅	部材高	有効高	ið d	みたか金石口	17	_		种标目。	
市り1公	No.	b	h	地山側	内空側	軟肋性別	笆	sь	s	3八川/里	
		(mm)	(mm)	(mm)	(mm)	(-)	(mm)	(mm)	(mm)	(mm^2)	
水平断面 (北側壁B2F開口部)	M1	2000	3000	2655	2655	SD345	D25	6本	200	3040	
水平断面 (南側壁B4Fトンネル部(開口部))	M2	2000	3000	2655	2655	SD345	D25	8本	200	4054	
水平断面 (南側壁B4Fトンネル部(開口部))	M3	1000	3000	2655	2655	SD345	D25	4本	200	2027	
水平断面 (中壁B1F, B2F, B3F開口部)	M4	2000	1500	1230	1230	SD345	D16	2本	200	397	
水平断面 (中壁B4Fトンネル部(開口部))	M5	2000	1000	755	735	SD345	D16	2本	200	397	
水平断面 (中壁B4Fトンネル部(開口部))	M6	1000	1000	755	735	SD345	D16	2本	200	397	
水平断面 (東側壁B1F開口部)	M7	2000	3000	2645	2645	SD345	D19	4本	200	1146	

表 6.4-20(2) 断面諸元一覧表(せん断に対する評価)

※中壁は地山側=東側、内空側=西側として記載

水平断面 開口部 断面諸元位置図

立坑南北方向

立坑東西方向

6.4.4 頂版及びスラブに対する耐震評価結果

(1) 設計荷重の設定

表 6.4-21 に頂版及びスラブにおける各検討ケースの最大鉛直加速度を示す。

頂版及びスラブの設計荷重としては頂版・スラブ位置における鉛直加速度を重力加速度で 除した設計鉛直震度となる。

地盤ケース①の12ケース及び地盤ケース④の2ケースについて,各スラブの最大鉛直加速 度を抽出し,その値を設計荷重として頂版・スラブの設計を行う。

表 6.4-21(1) 頂版における各検討ケースの最大鉛直加速度

頂版

項版							
検討	ケース			鉛直加速	度 (m/s²)		
地震動		1	2	3	4	5	6
	++	3. 30			3.26		
6 D 1	+-	3.45					
$S_s - DI$	-+	3. 49			3. 30		
		3. 29					
$S_{s} - 1 1$		2.69					
$S_{s} - 12$		3.13					
$S_{s} - 1 3$		3.10					
$S_{s} - 14$		2.61					
$S_{s} - 21$		3. 30					
$S_{s} - 22$		3.44					
S 9.1	++	1. 30					
$5_{s} = 31$	-+	1.27					

表 6.4-21 (2) スラブ (B1F) における各検討ケースの最大鉛直加速度 B1F

検討	ケース			鉛直加速	度 (m/s²)		
地震動		1	2	3	4	5	6
	++	3. 30			3. 25		
S D 1	+-	3.45					
5 _s -D1	-+	3. 49			3. 30		
		3. 29					
S _s -11		2.68					
$S_{s} - 12$		3.13					
S _s -13		3.10					
$S_{s} - 14$		2.61					
$S_{s} - 21$		3. 30					
S _s -22		3. 44					
S 2.1 ++		1. 30					
$S_{s} - 31$ -+		1.27					

表 6.4-21 (3) スラブ (B2F) における各検討ケースの最大鉛直加速度 B2F

検討	ケース			鉛直加速	度 (m/s²)		
地震動		1	2	3	4	5	6
	++	3. 29			3. 25		
6 D 1	+-	3.44					
$S_s - DI$	-+	3. 48			3. 29		
	_	3. 28					
$S_{s} - 1 1$		2.68					
$S_{s} - 12$		3.12					
$S_{s} - 1 3$		3.09					
$S_{s} - 14$		2.61					
$S_{s} - 21$		3. 29					
$S_{s} - 22$		3. 43					
S 9.1	++	1.29					
$S_{s} = 31$	-+	1.26					

表 6.4-21(4) スラブ(B3F)における各検討ケースの最大鉛直加速度 B3F

検討	ケース			鉛直加速	度 (m/s²)		
地震動		1	2	3	4	5	6
	++	3. 28			3. 23		
S D 1	+-	3. 43					
$S_s - DI$	-+	3. 47			3. 28		
	_	3. 27					
S _s -11		2.67					
$S_{s} - 12$		3.12					
S _s -13		3.09					
$S_{s} - 14$		2.60					
$S_{s} - 21$		3.27					
S _s -22		3. 41					
S _ 2 1	++	1. 29					
$5_{s} - 31$	-+	1.25					

表 6.4-21 (5) スラブ (B4F) における各検討ケースの最大鉛直加速度 B4F

検討	ケース			鉛直加速	度 (m/s²)		
地震動		1	2	3	4	5	6
	++	3. 21			3.17		
	+-	3. 37					
$S_s - DI$	-+	3.40			3. 22		
	_	3.19					
S _s -11		2.61					
$S_{s} - 12$		3.08					
S _s -13		3.06					
$S_{s} - 14$		2.57					
$S_{s} - 21$		3.15					
S _s -22		3. 32					
S _ 2 1 ++		1.27					
$5_{s} - 31$	-+	1.22					

(2) 断面力図

(1)設計荷重の設定にて決定した検討ケースに対し、コンクリートの曲げ軸力に対する 照査,鉄筋の曲げ軸力に対する照査,せん断力に対する照査の3つの照査項目それぞれに 対して,応力度照査に用いる断面力(曲げモーメント,軸力,せん断力)の分布を床版毎 に図示する。

図 6.4-35 応力の方向(シェル要素)

Output Set: /To2_VS-Slab_OG-L_001_Top-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

760. 722. 683. 645. 606. 568.

529. 491. 452. 337. 298. 260. 221. 183. 144. 106. 67. 29. -10.

Output Set: ./To2_VS-Slab_OG-L_002_Top-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: /To2_VS-Slab_OG-L_001_Top-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS-Slab_OG-L_002_Top-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)

Output Set: /To2_VS-Slab_OG-L_001_Top-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_002_Top-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_001_Top-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qy)

Output Set: ./To2_VS-Slab_OG-L_011_B1F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

510. 479. 448. 417. 386. 355. 324.

293. 262. 231. 200. 169. 138. 107. 76. 45. 14. -17. -48. -79. -110.

Output Set: ./To2_VS-Slab_OG-L_012_B1F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_011_B1F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS-Slab_OG-L_012_B1F-E_03_Ss-D1++.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_011_B1F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_012_B1F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_011_B1F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qy)

せん断力V_y (kN/m)

Output Set: /To2_VS-Slab_OG-L_021_B2F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS-Slab_OG-L_022_B2F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_021_B2F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS-Slab_OG-L_022_B2F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)

530

503. 475. 448. 420. 393.

320. 302.

284. 266. 248. 230. 212. 194. 176. 158. 140. 122. 104.

86. 68. 50. 32.

14. -4. -22. -40. Output Set: /To2_VS-Slab_OG-L_021_B2F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_022_B2F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_021_B2F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qy)

 図 6.4-36(3) スラブ(B2F)の設計に用いる断面力図 (S_s-D1(H-, V+), t=44.31s)
 (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) Output Set: ./To2_VS-Slab_OG-L_031_B3F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

550. 522. 493. 465. 436. 408. 379. 351. 322. 294. 265. 237. 208. 180. 151. 123. 94. 66. 37. 9 -20

Output Set: ./To2_VS-Slab_OG-L_032_B3F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_031_B3F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: /To2_VS-Slab_OG-L_032_B3F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)

Output Set: /To2_VS-Slab_OG-L_031_B3F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_032_B3F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_031_B3F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qy)

せん断力V_y (kN/m)

Output Set: ./To2_VS-Slab_OG-L_041_B4F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

200. 182. 163. 145. 126. 108. 89. 71.

52. 34. 15. -4. -22.

-41. -59. -78. -96. -115. -133. -152. -170.

Output Set: /To2_VS-Slab_OG-L_042_B4F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_041_B4F-W_03_Ss-D1++.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS-Slab_OG-L_042_B4F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)

Output Set: /To2_VS-Slab_OG-L_041_B4F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_042_B4F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_041_B4F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(Qy)

せん断力V_y (kN/m)

 図 6.4-36(5) スラブ(B4F)の設計に用いる断面力図 (S_s-D1(H-, V+), t=44.31s)
 (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース) (3) 頂版・スラブの曲げに対する評価結果

コンクリートの曲げ照査結果を表 6.4-22 に,鉄筋の曲げ照査結果を表 6.4-23 に示 す。

立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。

図 6.4-37 に概略配筋図を,表 6.4-24 に断面計算に用いた断面諸元の一覧を示す。

| _ | <u>H</u> | | | | | | | | | | | |
|---|----------|----|-----------------------------------|--------|-------------|--------|----------|------------------|-----------|---------------------------------|----------------------------------|----------------------------------|
| | 評価位置 | | 検討ケース | 部材幅 | 断面性状
部材高 | 有劾高 | 鉄筋仕様 | 発生
曲げモーメント | 新面力
軸力 | 圧縮
応力度 | 短期許容
応力度 | 照查値 |
| | | | | b (mm) | h (mm) | d (mm) | (5)版跃肋) | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm c} ({\rm N/mm}^2)$ | $\sigma_{\rm ca} ({\rm N/mm}^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| | 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D32 @200 | 381 | 0 | 1.09 | 21.0 | 0.06 |
| | B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D32 @200 | 321 | 0 | 0.89 | 21.0 | 0.05 |
| | B2F | 6 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D35 @200 | 318 | 0 | 0.81 | 21.0 | 0.04 |
| | B3F | 8 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1770 | D38 @200 | 521 | 0 | 1.25 | 21.0 | 0.06 |
| | B4F | 10 | ① S _s -D 1
(H-, V+) | 1000 | 1000 | 750 | D51 @200 | 87 | 0 | 0.72 | 21.0 | 0.04 |

表 6.4-22(1) 南北方向のコンクリートの曲げに対する照査結果

| 評価位置 | | 検討ケース | 部材幅 | 断面性状
部材高 | 有劾高 | 鉄筋仕様 | 発生的 曲げモーメント | 所面力
軸力 | 圧縮
応力度 | 短期許容
応力度 | 照查値 |
|---|---|-----------------------------------|--------|-------------|--------|----------|-------------|-----------|---------------------------------|------------------------|----------------------------------|
| 1. 1. Jacob | | DAHAP | b (mm) | h (mm) | d (mm) | (引張鉄筋) | (kN • m/m) | (kN/m) | $\sigma_{\rm c} ({\rm N/mm}^2)$ | $\sigma_{ca} (N/mm^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 755 | 0 | 2.02 | 21.0 | 0.10 |
| B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 506 | 0 | 1.35 | 21.0 | 0.07 |
| B2F | 6 | ① S _s -D 1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 528 | 0 | 1.41 | 21.0 | 0.07 |
| B3F | 8 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1800 | D38 @200 | 544 | 0 | 1.25 | 21.0 | 0.06 |
| B4F | 9 | ① S _s -D 1
(H-, V+) | 1000 | 1000 | 800 | D51 @200 | 191 | 0 | 1.30 | 21.0 | 0.07 |

表 6.4-22(2) 東西方向のコンクリートの曲げに対する照査結果

| Γ | 誕価位置 | | 検討ケース | 部材幅 | 断面性状 | 有劲高 | 鉄筋仕様 | 発生調 | 所面力
軸力 | 引張
応力度 | 短期許容
応力度 | 照查值 |
|---|------------------|----|---------------------------------|--------|--------|--------|----------|------------|-----------|-------------------------|-----------------------|---------------------------------|
| L | b i find far her | | 1901/ // | b (mm) | h (mm) | d (mm) | (引張鉄筋) | (kN • m/m) | (kN/m) | $\sigma_{s} (N/mm^{2})$ | $\sigma_{sa}(N/mm^2)$ | σ _s /σ _{sa} |
| | 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D32 @200 | 381 | 0 | 59 | 435 | 0.14 |
| | B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D32 @200 | 321 | 0 | 49 | 435 | 0.12 |
| | B2F | 6 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D35 @200 | 318 | 0 | 41 | 435 | 0.10 |
| | B3F | 8 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1770 | D38 @200 | 521 | 0 | 57 | 435 | 0.14 |
| | B4F | 10 | ①S _s -D1
(H-, V+) | 1000 | 1000 | 750 | D51 @200 | 87 | 0 | 14 | 435 | 0.04 |

表 6.4-23(1) 南北方向の鉄筋の曲げに対する照査結果

| 評価位置 | ę | 検討ケース | 部材幅 | 断面性状
部材高 | さ
有効高 | 鉄筋仕様 | 発生的
曲げモーメント | 所面力
軸力 | 引張
応力度 | 短期許容
応力度 | 照查值 |
|----------------|---|-----------------------------------|--------|-------------|----------|----------|----------------|-----------|---------------------------------|------------------------|---------------------------------|
| in the part is | - | | b (mm) | h (mm) | d (mm) | (引張鉄筋) | (kN · m/m) | (kN/m) | $\sigma_{\rm s}~({\rm N/mm}^2)$ | $\sigma_{sa} (N/mm^2)$ | σ _s /σ _{sa} |
| 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 755 | 0 | 114 | 435 | 0.27 |
| B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 506 | 0 | 76 | 435 | 0.18 |
| B2F | 6 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D32 @200 | 528 | 0 | 79 | 435 | 0.19 |
| B3F | 8 | ① S _s -D 1
(H-, V+) | 1000 | 2000 | 1800 | D38 @200 | 544 | 0 | 58 | 435 | 0.14 |
| B4F | 9 | ① S _s -D 1
(H-, V+) | 1000 | 1000 | 800 | D51 @200 | 191 | 0 | 29 | 435 | 0.07 |

表 6.4-23(2) 東西方向の鉄筋の曲げに対する照査結果

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-37(1) 概略配筋図(頂版・スラブ 曲げ 南北方向)

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-37(2) 概略配筋図(頂版・スラブ 曲げ 東西方向)

| | | | | | 断面 | 性状 | | | | | | | 主鉄筋 | i | | | |
|------|-------------------|-----|------|------|------|------|----------|----------|-------|------|------|-----|-----|------|------|----------|----------|
| | | 材料 | 部材幅 | 部材高 | かぶり | d' | 有効高 | ið d | 鉄筋 | ŕ | Ł | 段 | :数 | 鉄筋 | 間隔 | 鉄角 | |
| | 部位 | No. | р | h | 上側 | 下側 | 上側
引張 | 下側
引張 | 種別 | 上側 | 下側 | 上側 | 下側 | 上側 | 下側 | 上側 | 下側 |
| | | | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (-) | (mm) | (mm) | (-) | (-) | (mm) | (mm) | (mm^2) | (mm^2) |
| | 頂版
(南北方向) | M1 | 1000 | 2000 | 290 | 210 | 1710 | 1790 | SD490 | D35 | D32 | 1 | 1 | 200 | 200 | 4783 | 3971 |
| 南 | スラブ
(南北方向 B1F) | M2 | 1000 | 2000 | 210 | 210 | 1790 | 1790 | SD490 | D32 | D32 | 1 | 1 | 200 | 200 | 3971 | 3971 |
| 北方 | スラブ
(南北方向 B2F) | M3 | 1000 | 2000 | 210 | 210 | 1790 | 1790 | SD490 | D35 | D35 | 1 | 1 | 200 | 200 | 4783 | 4783 |
| 向 | スラブ
(南北方向 B3F) | M4 | 1000 | 2000 | 230 | 230 | 1770 | 1770 | SD490 | D38 | D38 | 1 | 1 | 200 | 200 | 5700 | 5700 |
| | スラブ
(南北方向 B4F) | M5 | 1000 | 1000 | 250 | 250 | 750 | 750 | SD490 | D51 | D51 | 1 | 1 | 200 | 200 | 10135 | 10135 |
| | 頂版
(東西方向) | MG | 1000 | 2000 | 260 | 180 | 1740 | 1820 | SD490 | D41 | D32 | 1 | 1 | 200 | 200 | 6700 | 3971 |
| 東 | スラブ
(東西方向 B1F) | M7 | 1000 | 2000 | 180 | 180 | 1820 | 1820 | SD490 | D32 | D32 | 1 | 1 | 200 | 200 | 3971 | 3971 |
| (西方) | スラブ
(東西方向 B2F) | M8 | 1000 | 2000 | 180 | 180 | 1820 | 1820 | SD490 | D32 | D32 | 1 | 1 | 200 | 200 | 3971 | 3971 |
| 问 | スラブ
(東西方向 B3F) | M9 | 1000 | 2000 | 200 | 200 | 1800 | 1800 | SD490 | D38 | D38 | 1 | 1 | 200 | 200 | 5700 | 5700 |
| | スラブ
(東西方向 B4F) | M10 | 1000 | 1000 | 200 | 200 | 800 | 800 | SD490 | D51 | D51 | 1 | 1 | 200 | 200 | 10135 | 10135 |

表 6.4-24 断面諸元一覧表(曲げに対する評価)

頂版・スラブ 断面諸元位置図

(4) 頂版・スラブのせん断力に対する評価結果

表 6.4-25 にせん断力に対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 許容せん断応力度以下である又はコンクリートの負担するせん断力(V_c)と,斜め引張 鉄筋の負担するせん断力(V_s)を合わせた許容せん断力(V_a)が,発生せん断力

(V) 以上であることを確認した。 ($V_a = V_c + V_s \ge V$) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生値は、許容限界以下であることを確認した。

図 6.4-38 に概略配筋図を,表 6.4-26 に断面計算に用いた断面諸元の一覧を示す。

| 評価位置 | | | | 断面性状 | | 04. http://1.100 | | 発生 | 短期許容 | 服本植 | |
|------|---|---------------------------------|--------|--------|--------|------------------|--------------|--------------|----------|--------------|------------------|
| | | 検討ケース | 部材幅 | 部材高 | 有効高 | (社人断補強館) | せん断力 | | | せん断力 | 黑田胆 |
| | | | b (mm) | h (mm) | d (mm) | (セルロの前面の方 | V_x (kN/m) | V_y (kN/m) | V (kN/m) | V_a (kN/m) | V/V _a |
| 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1710 | D16 @200×400 | 68 | 508 | 513 | 1698 | 0.31 |
| B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D16 @200×400 | 71 | 470 | 476 | 1778 | 0.27 |
| B2F | 6 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1790 | D16 @200×400 | 194 | 668 | 696 | 1778 | 0.40 |
| B3F | 8 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1770 | D16 @200×400 | 336 | 133 | 362 | 1758 | 0.21 |
| B4F | 9 | ①S _s -D1
(H-, V+) | 1000 | 1000 | 750 | D16 @200×400 | 280 | 33 | 283 | 745 | 0.38 |

表 6.4-25(1) 南北方向のせん断に対する照査結果

| 評価位置 | | 検討ケース | 断面性状
部材幅 部材高 有効高 | | 鉄筋仕様 | | 発生
せん断力 | 短期許容
せん断力 | 照查值 | | |
|------|---|---------------------------------|---------------------|--------|--------|--------------|--|--------------|----------------|-----------|------|
| | | | b (mm) | h (mm) | d (mm) | (せん断補強筋) | V_{x} (kN/m) V_{y} (kN/m) V (kN/m) | | V_{a} (kN/m) | V/V_{a} | |
| 頂版 | 2 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1740 | D16 @200×400 | 68 | 508 | 513 | 1728 | 0.30 |
| B1F | 4 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D16 @200×400 | 71 | 470 | 476 | 1807 | 0.27 |
| B2F | 6 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1820 | D16 @200×400 | 194 | 668 | 696 | 1807 | 0.39 |
| B3F | 8 | ①S _s -D1
(H-, V+) | 1000 | 2000 | 1800 | D16 @200×400 | 336 | 133 | 362 | 1788 | 0.21 |
| B4F | 9 | ①S _s -D1
(H-, V+) | 1000 | 1000 | 800 | D16 @200×400 | 280 | 33 | 283 | 794 | 0.36 |

表 6.4-25(2) 東西方向のせん断に対する照査結果

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-38(1) 概略配筋図(頂版及びスラブ せん断 南北方向)

*1本節にて設計した鉄筋を赤塗り及び赤字にて示す。
 図 6.4-38(2) 概略配筋図(頂版及びスラブ せん断 東西方向)

| | | | | 断 | 面性状 | せん断補強筋 | | | | | |
|------------------|-------------------|-----|------|------|------|--------|-------|------|------|------|----------|
| | 立心 | | 部材幅 | 部材高 | 有効高 | iさ d | 鉄筋 | 仅 | | | 始故書 |
| | 市内立 | No. | b | h | 上側引張 | 下側引張 | 種別 | 1£ | Sb | 5 | <u></u> |
| | | | (mm) | (mm) | (mm) | (mm) | (-) | (mm) | (mm) | (mm) | (mm^2) |
| | 頂版
(南北方向) | M1 | 1000 | 2000 | 1710 | 1790 | SD345 | D16 | 400 | 200 | 497 |
| 南北方 | スラブ
(南北方向 B1F) | M2 | 1000 | 2000 | 1790 | 1790 | SD345 | D16 | 400 | 200 | 497 |
| | スラブ
(南北方向 B2F) | M3 | 1000 | 2000 | 1790 | 1790 | SD345 | D16 | 400 | 200 | 497 |
| 问 | スラブ
(南北方向 B3F) | M4 | 1000 | 2000 | 1770 | 1770 | SD345 | D16 | 400 | 200 | 497 |
| | スラブ
(南北方向 B4F) | M2 | 1000 | 1000 | 750 | 750 | SD345 | D16 | 400 | 200 | 497 |
| | 頂版
(東西方向) | M6 | 1000 | 2000 | 1740 | 1820 | SD345 | D16 | 400 | 200 | 497 |
| 東 | スラブ
(東西方向 B1F) | M7 | 1000 | 2000 | 1820 | 1820 | SD345 | D16 | 400 | 200 | 497 |
| ^采 西方向 | スラブ
(東西方向 B2F) | M8 | 1000 | 2000 | 1820 | 1820 | SD345 | D16 | 400 | 200 | 497 |
| | スラブ
(東西方向 B3F) | M9 | 1000 | 2000 | 1800 | 1800 | SD345 | D16 | 400 | 200 | 497 |
| | スラブ
(東西方向 B4F) | M10 | 1000 | 1000 | 800 | 800 | SD345 | D16 | 400 | 200 | 497 |

表 6.4-26 断面諸元一覧表(せん断に対する評価)

頂版・スラブ 断面諸元位置図

- 6.4.5 底版に対する耐震評価結果
 - (1) 設計荷重の設定

表 6.4-27 に底版における各検討ケースの最大地盤反力を示す。

底版の設計荷重は,2次元有効応力解析において底版下面に発生する地盤反力である。

地盤ケース①の12ケース及び地盤ケース④の2ケースについて,底版下面の最大地盤反力 を抽出し,その値を設計荷重として底版の設計を行う。

表 6.4-27(1) 南北方向における各検討ケースの最大地盤反力

| 底版 | NS方向 |
|----|------|
|----|------|

| 検討 | ケース | 地盤反力 (kN/m) | | | | | | | | |
|--------------------|-----|-------------|---|---|------|---|---|--|--|--|
| 地震動 | | 1 | 2 | 3 | 4 | 5 | 6 | | | |
| | ++ | 7166 | | | 7097 | | | | | |
| S D 1 | +- | 7148 | | | | | | | | |
| $S_s = D I$ | -+ | 7154 | | | 7118 | | | | | |
| | | 7860 | | | | | | | | |
| $S_{s} - 1 1$ | | 6754 | | | | | | | | |
| S _s -12 | | 7163 | | | | | | | | |
| S _s -13 | | 7210 | | | | | | | | |
| S _s -14 | | 6696 | | | | | | | | |
| S $_{\rm s}-2$ 1 | | 7069 | | | | | | | | |
| $S_{s} - 22$ | | 7298 | | | | | | | | |
| S 9.1 | ++ | 5498 | | | | | | | | |
| $S_{s} = 31$ | -+ | 5490 | | | | | | | | |

表 6.4-27(2) 東西方向における各検討ケースの最大地盤反力

底版 E₩方向

| 検討 | ケース | 地盤反力 (kN/m) | | | | | | | | |
|--------------------|--------------------|-------------|---|---|------|---|---|--|--|--|
| 地震動 | | 1 | 2 | 3 | 4 | 5 | 6 | | | |
| | ++ | 9651 | | | 8887 | | | | | |
| S D 1 | +- | 10035 | | | | | | | | |
| $S_s - DI$ | -+ | 9437 | | | 8913 | | | | | |
| | | 9385 | | | | | | | | |
| S _s -11 | | 9034 | | | | | | | | |
| $S_{s} - 12$ | S _s -12 | | | | | | | | | |
| S _s -13 | | 9514 | | | | | | | | |
| S _s -14 | | 8966 | | | | | | | | |
| $S_{s} - 21$ | | 9270 | | | | | | | | |
| S _s -22 | | 9867 | | | | | | | | |
| S _ 2 1 | ++ | 7232 | | | | | | | | |
| $S_{s} = 31$ | -+ | 7248 | | | | | | | | |

(2) 断面力図

(1)設計荷重の設定にて決定した検討ケースに対し、コンクリートの曲げ軸力に対する 照査,鉄筋の曲げ軸力に対する照査,せん断力に対する照査の3つの照査項目それぞれに 対して,応力度照査に用いた断面力(曲げモーメント,軸力,せん断力)の分布を示す。

図 6.4-39 応力の方向(シェル要素)

Output Set: JTo2_VS-Slab_OG-L_053_B5F-W_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(Mx)

-10. -186. -361. -537.

-712. -888. -1063. -1239. -1414. -1590. -1765. -1941. -2116. -2292 -2467. -2643. -2818. -2994. -3169. -3345. -3520.

Output Set: ./To2_VS-Slab_OG-L_054_B5F-E_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_053_B5F-W_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(My)

Output Set: /To2_VS-Slab_OG-L_054_B5F-E_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_y (kN・m/m)
Output Set: //To2_VS-Slab_OG-L_053_B5F-W_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: ./To2_VS-Slab_OG-L_054_B5F-E_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_053_B5F-W_NS_04_Ss-D1--.neu_outset-4_STEP101, Elemental Contour: MSHELL(Qy)

せん断力V_y (kN/m)

Output Set: ./To2_VS-Slab_OG-L_051_B5F-W_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS-Siab_OG-L_052_B5F-E_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント M_x (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_051_B5F-W_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS-Slab_OG-L_052_B5F-E_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(My)

曲げモーメントM_y (kN・m/m)

Output Set: ./To2_VS-Slab_OG-L_051_B5F-W_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Qx)

Output Set: /To2_VS-Slab_OG-L_052_B5F-E_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Qx)

せん断力V_x (kN/m)

Output Set: ./To2_VS-Slab_OG-L_051_B5F-W_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Qy)

せん断力V_y (kN/m)

(3) 底版の曲げに対する評価結果

コンクリートの曲げ照査結果を表 6.4-28 に,鉄筋の曲げ照査結果を表 6.4-29 に示 す。

立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。

図 6.4-41 に概略配筋図を,表 6.4-30 に断面計算に用いた断面諸元の一覧を示す。

| | | | | | 断面性状 | | M. Mr. 11, 130 | 発生的 | 断面力 | 圧縮 | 短期許容 | 昭本樹 |
|--------|----|----|------------------------------------|--------|--------|--------|---|------------------|--------|---------------------------------------|------------------------|----------------------------------|
| 評価信 | 之置 | | 検討ケース | 部材幅 | 部材高 | 有効高 | (引き)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) | 曲げモルト | 軸力 | 応力度 | 応力度 | 照直恒 |
| | | | | b (mm) | h (mm) | d (mm) | (分)加速大用力) | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm c}$ (N/mm ²) | $\sigma_{ca} (N/mm^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| ric HG | | 12 | ① S _s - D 1
(H-, V-) | 1000 | 3000 | 2770 | D38 @200 | -2691 | 0 | 3.16 | 21.0 | 0.16 |
| JES NX | | 12 | ① S _s -D 1
(H+, V-) | 1000 | 3000 | 2770 | D38 @200 | -2695 | 0 | 3.16 | 21.0 | 0.16 |

表 6.4-28(1) 南北方向のコンクリートの曲げに対する照査結果

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

| | | | | | | | | | | _ | | |
|--------|-----|----|---------------------------------|--------|--------|--------|---|------------|--------|---------------------------------|---------------------------------|----------------------------------|
| | | | | | 断面性状 | | bile frite LL 1944 | 発生的 | 所面力 | 圧縮 | 短期許容 | 昭本荷 |
| 評価 | 西位置 | | 検討ケース | 部材幅 | 部材高 | 有効高 | (引進)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) | 曲げモーメント | 軸力 | 応力度 | 応力度 | 198 JEL HEL |
| | | | | b (mm) | h (mm) | d (mm) | (9] 嵌麸肋) | (kN • m/m) | (kN/m) | $\sigma_{\rm c} ({\rm N/mm}^2)$ | $\sigma_{\rm c a} (\rm N/mm^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| rác H | | 12 | ①S _s -D1
(H-, V-) | 1000 | 3000 | 2800 | D38 @200 | -3520 | 0 | 3.96 | 21.0 | 0.19 |
| JES. N | K | 12 | $(] S_{s} - D 1 (H+, V-)$ | 1000 | 3000 | 2800 | D38 @200 | -3506 | 0 | 3.94 | 21.0 | 0.19 |

表 6.4-28(2) 東西方向のコンクリートの曲げに対する照査結果

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

| | | | | 断面性状 | - | bits http://1.100 | 発生的 | 鼾面力 | 引張 | 短期許容 | 服本结 |
|---------|----|---------------------------------|--------|--------|--------|-------------------|------------------|--------|---------------------------------|------------------------|--------------------------|
| 評価位置 | | 検討ケース | 部材幅 | 部材高 | 有効高 | 新助任様 (引起始数) | 曲げモイント | 軸力 | 応力度 | 応力度 | 138 II 10 |
| | | | b (mm) | h (mm) | d (mm) | (与门近或大肋) | (kN \cdot m/m) | (kN/m) | $\sigma_{\rm s}~({\rm N/mm}^2)$ | $\sigma_{sa} (N/mm^2)$ | σ_s / σ_{sa} |
| 底版 | 12 | ①S _s -D1
(H-, V-) | 1000 | 3000 | 2770 | D38 @200 | -2691 | 0 | 184 | 435 | 0.43 |
| New NIX | 12 | ①S _s -D1
(H+, V-) | 1000 | 3000 | 2770 | D38 @200 | -2695 | 0 | 184 | 435 | 0.43 |

表 6.4-29(1) 南北方向の鉄筋の曲げに対する照査結果

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

| | | | | 断面性状 | | Ad 44-11 134 | 発生的 | 所面力 | 引張 | 短期許容 | 昭木店 |
|-----------|----|------------------------------------|--------|--------|--------|--------------|------------------|--------|---------------------------------|------------------------|------------------------|
| 評価位置 | | 検討ケース | 部材幅 | 部材高 | 有効高 | (引息)
(引息) | 曲げモーメント | 軸力 | 応力度 | 応力度 | 思定胆 |
| | | | b (mm) | h (mm) | d (mm) | (du xu te) | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm s}~({\rm N/mm}^2)$ | $\sigma_{sa} (N/mm^2)$ | σ_s/σ_{sa} |
| 125 195 | 12 | ① S _s - D 1
(H-, V-) | 1000 | 3000 | 2800 | D38 @200 | -3520 | 0 | 237 | 435 | 0.55 |
| ness fulk | 12 | $(]S_{s} - D1 (H+, V-)$ | 1000 | 3000 | 2800 | D38 @200 | -3506 | 0 | 236 | 435 | 0.55 |

表 6.4-29(2) 東西方向の鉄筋の曲げに対する照査結果

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-41(1) 概略配筋図(底版 曲げ 南北方向)

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。

図 6.4-41(2) 概略配筋図(底版 曲げ 東西方向)

| | | | | | 断面 | 性状 | | | | | | | 主鉄筋 | i | | | |
|----------|--------------|------|---------------|------|------|------|----------|----------|-------|------|------|-----|-----|------|------|----------|----------|
| | | オナギト | 实际和同 | 郊材宮 | かぶり | d' | 有効高 | ið d | 斜笛 | ŕ | 圣 | 段 | 数 | 鉄筋 | 間隔 | 鉄角 | <u></u> |
| | 部位 | No. | ын сүсца
b | h | 上側 | 下側 | 上側
引張 | 下側
引張 | 種別 | 上側 | 下側 | 上側 | 下側 | 上側 | 下側 | 上側 | 下側 |
| | | | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (-) | (mm) | (mm) | (-) | (-) | (mm) | (mm) | (mm^2) | (mm^2) |
| 南北
方向 | 底版
(南北方向) | M1 | 1000 | 3000 | 230 | 250 | 2770 | 2750 | SD490 | D38 | D38 | 1 | 1 | 200 | 200 | 5700 | 5700 |
| 東西
方向 | 底版
(東西方向) | M2 | 1000 | 3000 | 200 | 220 | 2800 | 2780 | SD490 | D38 | D41 | 1 | 1 | 200 | 200 | 5700 | 6700 |

表 6.4-30 断面諸元一覧表(曲げに対する評価)

(4) 底版のせん断力に対する評価結果

表 6.4-31 にせん断力に対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 許容せん断応力度以下である又はコンクリートの負担するせん断力(V_o)と,斜め引張 鉄筋の負担するせん断力(V_o)を合わせた許容せん断力(V_a)が,発生せん断力

(V) 以上であることを確認した。 ($V_a = V_c + V_s \ge V$) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生値は、許容限界以下であることを確認した。

図 6.4-42 に概略配筋図を,表 6.4-32 に断面計算に用いた断面諸元の一覧を示す。

| 評価位置 | | 検討ケース | 部材幅 | 断面性状
部材高 | 有劾高 | 鉄筋仕様 | | 発生
せん断力 | | 短期許容
せん断力 | 照査値 |
|-------------|----|---------------------------------|--------|-------------|--------|--------------|--------------|--------------|----------|----------------|------------------|
| | | | b (mm) | h (mm) | d (mm) | (せん町補強筋) | V_x (kN/m) | V_y (kN/m) | V (kN/m) | V_{a} (kN/m) | V/V _a |
|
ай
Ш | 12 | ①S _s -D1
(H-, V-) | 1000 | 3000 | 2770 | D16 @200×400 | 15 | 1233 | 1234 | 2751 | 0.45 |
| JES: NX | 12 | ①S _s -D1
(H+, V-) | 1000 | 3000 | 2770 | D16 @200×400 | 32 | 1244 | 1245 | 2751 | 0.46 |

表 6.4-31(1) 南北方向のせん断に対する照査結果

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

| Γ | 評価位置 | | 検討ケース | 部材幅 | 断面性状
部材高 | 有効高 | 鉄筋仕様 | | 発生
せん断力 | | 短期許容
せん断力 | 照查值 |
|---|--------------------|----|-----------------------------------|--------|-------------|--------|--------------|--------------|--------------|----------|----------------|---------|
| | to 1. That For her | | 18017 | b (mm) | h (mm) | d (mm) | (せん断補強筋) | V_x (kN/m) | V_y (kN/m) | V (kN/m) | V_{a} (kN/m) | V/V_a |
| | 成馬 | 12 | ①S _s -D1
(H-, V-) | 1000 | 3000 | 2800 | D16 @200×400 | 15 | 1233 | 1234 | 2781 | 0.45 |
| | JESTIX | 12 | ① S _s -D 1
(H+, V-) | 1000 | 3000 | 2800 | D16 @200×400 | 32 | 1244 | 1245 | 2781 | 0.45 |

表 6.4-31(2) 東西方向のせん断に対する照査結果

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。 図 6.4-42(1) 概略配筋図(底版 せん断 南北方向)

*1 本節にて設計した鉄筋を赤塗り及び赤字にて示す。

図 6.4-42(2) 概略配筋図(底版 せん断 東西方向)

| | | | | 断 | 面性状 | | | t | せん断補強 | 筋 | |
|----------|--------------|-----|------|------|------|------|-------|------|-------|------|----------|
| | 动动 | 材料 | 部材幅 | 部材高 | 有効高 | iさ d | 鉄筋 | 仅 | | | 建放量 |
| | 고마디다 | No. | b | h | 上側引張 | 下側引張 | 種別 | 住 | Sb | 5 | 邺肋里 |
| | | | (mm) | (mm) | (mm) | (mm) | (-) | (mm) | (mm) | (mm) | (mm^2) |
| 南北
方向 | 底版
(南北方向) | M1 | 1000 | 3000 | 2770 | 2750 | SD345 | D16 | 400 | 200 | 497 |
| 東西
方向 | 底版
(東西方向) | M2 | 1000 | 3000 | 2800 | 2780 | SD345 | D16 | 400 | 200 | 497 |

表 6.4-32 断面諸元一覧表(せん断に対する評価)

底版 断面諸元位置図

E

6 - 695

í

M2

- 6.4.6 版部材が側壁を固定することによる隅角部の評価結果
 - (1) 検討ケースの選定

版部材が側壁を固定することによる隅角部の評価については,立坑南北及び東西方向に対 し検討を行う。

図 6.4-43 に示す選定フローに従い選定された検討ケースを,表 6.4-33 に示す。

立坑東西方向については、解析ケース④における S_s -D1 (H-, V+) が立坑鉛直断 面の照査値最大を示すことは 6.4.2 (1) で示しており、立坑東西方向は解析ケース④の基 準地震動 S_s -D1 (H-, V+) における照査結果を示す。

立坑南北方向については、解析ケース①における $S_s - D1$ (H+, V-) が立坑鉛直断 面の照査値最大を示すことから、立坑南北方向は解析ケース①の基準地震動 $S_s - D1$ (H+, V-) における照査結果を示す。

図 6.4-43 検討ケース選定フロー

| 東西方向 B4F | | 0 | | 1 | | | |
|-----------------------------|--------------------|--|-------------|------------------------------------|-------------|-------------|-------------|
| | | 動的解析 | | 両端固 | 定梁 | | |
| 対象地般 | 対象地電波 | +4.31 | 鉄筋 | +< ⇒1 | | 地盤反力 | |
| ×1 >×+=0.000 | AI SANGAR IX | 横訂 ケース | 照査値 | 使 前
ケース | 西側壁 | 東側壁 | 最大 |
| | | | (-) | | (kN/m) | (kN/m) | (kN/m) |
| | | $(]S_s-D1 (H+, V+)$ | 0.12 | $(]S_s - D1 (H+, V+)$ | 3945 | 4210 | 4210 |
| | | $(]S_s - D_1 (H+, V-)$ | 0,10 | $(I) S_{s} - D I (H+, V-)$ | 4807 | 4535 | 4807 |
| | | $(\widehat{1}S_{s}-D1(H-,V+))$ | <u>0.14</u> | $(I) S_{s} - D I (H-, V+)$ | 3712 | 4990 | 4990 |
| | | $\widehat{\mathbb{O}}$ S _s -D1 (H-, V-) | 0.13 | <u> ①S_s-D1 (H-, V-)</u> | <u>3921</u> | <u>5798</u> | <u>5798</u> |
| | | $(] S_{s} - 1 1$ | 0.00 | ① S _s -11 | 2849 | 2802 | 2849 |
| 解析ケース① | 全地雪波 | $(1) S_s = 1 2$ | 0,00 | ① S _s -12 | 3275 | 3144 | 3275 |
| л+и / ···· | 土地成议 | $(] S_s - 1 3$ | 0.00 | ① S _s -13 | 3197 | 3212 | 3212 |
| | | (]) S _s - 1 4 | 0.00 | (]) S _s - 1 4 | 2628 | 2614 | 2628 |
| | | $(]S_{s} - 21$ | 0,00 | ① S _s -21 | 3384 | 3354 | 3384 |
| | | $(1) S_s - 2 2$ | 0.01 | ① S _s - 2 2 | 3417 | 4684 | 4684 |
| | | $(]S_s - 31 (H+, V+)$ | 0.04 | $(I) S_{s} - 3 1 (H+, V+)$ | 2375 | 4350 | 4350 |
| | | $(]S_{s} - 31 (H-, V+)$ | 0.03 | $(]S_s - 31 (H-, V+)$ | 2823 | 2931 | 2931 |
| | | $OS_{s} - D1 (H-, V+)$ | 0.15 | - | - | - | - |
| | 解析ケース① | $3S_{s} - D1(H-, V+)$ | 0.13 | - | - | - | - |
| 解析ケース2~⑥ | における | $() S_{s} - D 1 (H-, V+)$ | 0,35 | $() S_{s} - D 1 (H-, V+)$ | 4785 | 5548 | 5548 |
| | 照宜뗕取入地晨波 | $(5 S_s - D_1 (H-, V+))$ | 0.04 | - | - | - | - |
| | | (6) S _s - D 1 (H-, V+) | 0.04 | _ | - | - | - – |
| 解析ケース①~⑥
における
照査値最大地盤 | 両端固定梁
地盤反力最大地震波 | (④S _s −D1 (H−, V−) | 0. 33 | | | | |
| 検討 | サケース | $(4)S_{s} - D1 (H-, V+)$ | 0.35 | | | | |

表 6.4-33(1) 検討ケース(立坑東西方向)

| 表 6.4-33(2) 検討ケース(立坑南北 | (万可) |
|------------------------|------|
|------------------------|------|

| 南北方向 B3F | | | | | | | |
|-----------------------------|--------------------|--|-------------|-----------------------------------|-------------|-------------|--------|
| | | 動的解析 | | 両端固 | 定梁 | | |
| 计色地般 | 计免训雪波 | 14 = 1 | 鉄筋 | 16 - 1 | | 地盤反力 | |
| 八 豕 中巴油藍 | 州 家地展放 | 検討
ケース | 照査値 | 検討
ケース | 北側壁 | 南側壁 | 最大 |
| | | | (-) | | (kN/m) | (kN/m) | (kN/m) |
| | | $\widehat{\mathbb{O}}$ S _s -D1 (H+, V+) | 0.03 | (]) S _s -D1 (H+, V+) | 1899 | 1280 | 1899 |
| | | $\underline{(I)} S_{s} - D I (H+, V-)$ | <u>0.06</u> | $(]) S_{s} - D 1 (H+, V-)$ | 1887 | 1320 | 1887 |
| | | $(IS_s - DI (H-, V+))$ | 0.04 | (]) S _s -D1 (H-, V+) | 2336 | 1399 | 2336 |
| | | \bigcirc S _s -D1 (H-, V-) | 0.03 | $(]S_s - D_1 (H-, V-)$ | 2293 | 1383 | 2293 |
| | | ① S _s -11 | 0,00 | ① S _s -11 | 1419 | 968 | 1419 |
| 解析ケース① | 全地電波 | ①S _s -12 | 0.01 | ① S _s -12 | 1779 | 1179 | 1779 |
| 1117 × 3 | LARK | ① S _s -1 3 | 0.01 | ① S _s -13 | 1859 | 1214 | 1859 |
| | | ① S _s -14 | 0.00 | ① S _s -14 | 1440 | 1062 | 1440 |
| | | $(]S_s - 2 1$ | 0.03 | <u>(1) S_s - 2 1</u> | <u>2349</u> | <u>1430</u> | 2349 |
| | | ① S _s -2 2 | 0.02 | ① S _s -22 | 2114 | 1358 | 2114 |
| | | (I) S $_{s}$ $-$ 3 1 (H+, V+) | 0.01 | (1) S _s - 3 1 (H+, V+) | 2256 | 976 | 2256 |
| | | $(]S_{s} - 31 (H-, V+)$ | 0.01 | $(]S_{s} - 31 (H-, V+)$ | 1701 | 1170 | 1701 |
| | | $OS_s - D1$ (H+, V-) | 0.04 | - | - | - | - |
| | 解析ケース① | $\Im S_s - D 1 (H+, V-)$ | 0.05 | - | - | - | - |
| 解析ケース2~⑥ | における | (4) S _s - D 1 (H+, V-) | 0.03 | () S _s -D1 (H+, V-) | 2157 | 1360 | 2157 |
| | 照宜恒取入地晨放 | $(5S_s - D_1 (H+, V-))$ | 0.02 | - | - | - | - |
| | | $(6S_s - D_1 (H+, V-))$ | 0.03 | - | - | - | - |
| 解析ケース①~⑥
における
照査値最大地盤 | 両端固定梁
地盤反力最大地震波 | ① S _s - 2 1 | 0.03 | | | | |
| 検討 | 対ケース | $(I)S_{s} - DI (H+, V-)$ | 0.06 | | | | |

(2) 断面力図

(1) 検討ケースの選定にて選定された検討ケースにおける断面力図を以下に示す。

頂版,底版及びスラブ位置を固定支持とした側壁の両端固定はり要素の断面力図を図 6.4 -46に、境界条件を固定支持とした頂版,底版及びスラブ(シェル要素)の断面力図を図 6.4-47に示す。

負:引張

図 6.4-44 はり要素の方向(側壁の両端固定はり)

図 6.4-45 応力の方向(シェル要素)

曲げモーメント(kN・m/m) 図 6.4-46(1) 南側壁の検討に用いる地震時断面力 (S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

 曲げモーメント(kN・m/m)
 図 6.4-46(2) 北側壁の検討に用いる地震時断面力 (S_s-D1(H+, V-))
 (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

 曲げモーメント(kN・m/m)
 図 6.4-46(3) 東側壁の検討に用いる地震時断面力 (S_s-D1(H-, V+))
 (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

Output Set: ./To2_VS_Fixed-Slab_OG-L_001_Top-W_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: //To2_VS_Fixed-Slab_OG-L_002_Top-E_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント
$$M_x$$
 (kN・m/m)
(S $_s$ -D1 (H+, V-), t=44.31s)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

Output Set: ./To2_VS_Fixed-Slab_TS-L_001_Top-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: /To2_VS_Fixed-Slab_TS-L_002_Top-E_03_Ss-D1++.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメントM_y(kN・m/m)

 $(S_{s}-D1 (H-, V+), t=44.31s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (1) 頂版の断面力図

Output Set: ./To2_VS_Fixed-Slab_OG-L_011_B1F-W_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_OG-L_012_B1F-E_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント
$$M_x$$
 (kN・m/m)
(S $_s$ -D1 (H+, V-) , t=44.31s)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

Output Set: ./To2_VS_Fixed-Slab_TS-L_011_B1F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_012_B1F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメントM_y(kN・m/m)

 $(S_{s}-D1 (H-, V+), t=44.31s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (2) スラブ (B1F) の断面力図

Output Set: ./To2_VS_Fixed-Slab_OG-L_021_B2F-W_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_OG-L_022_B2F-E_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

曲げモーメント
$$M_x$$
 (kN・m/m)
(S $_s$ -D1 (H+, V-) , t=44.31s)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

Output Set: ./To2_VS_Fixed-Slab_TS-L_021_B2F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_022_B2F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

 $(S_s - D_1 (H-, V+), t = 44.31s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (3) スラブ (B2F) の断面力図

Output Set: ./To2_VS_Fixed-Slab_OG-L_032_B3F-E_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_TS-L_031_B3F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_032_B3F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_{y} (kN・m/m)

(S $_{\rm s}-{\rm D}\ 1~({\rm H}-,~{\rm V}+)$, t =44.31s)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (4) スラブ (B3F) の断面力図

Output Set: ./To2_VS_Fixed-Slab_OG-L_041_B4F-W_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_OG-L_042_B4F-E_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_TS-L_041_B4F-W_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_042_B4F-E_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_v (kN・m/m)

 $(S_s - D1 (H-, V+), t = 44.31s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (5) スラブ (B4F) の断面力図

Output Set: ./To2_VS_Fixed-Slab_OG-L_053_B5F-W_NS_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_OG-L_054_B5F-E_NS_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

11 . 38

Output Set: ./To2_VS_Fixed-Slab_TS-L_053_B5F-W_NS_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_054_B5F-E_NS_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメント M_v (kN・m/m)

 $(S_{s}-D1 (H-, V+), t=45.96s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47 (6) 底版 (南北方向) の断面力図

Output Set: /To2_VS_Fixed-Slab_OG-L_051_B5F-W_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_OG-L_052_B5F-E_EW_02_Ss-D1+-.neu_outset-2_STEP101, Elemental Contour: MSHELL(Mx)

Output Set: ./To2_VS_Fixed-Slab_TS-L_051_B5F-W_EW_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

Output Set: ./To2_VS_Fixed-Slab_TS-L_052_B5F-E_EW_03_Ss-D1-+.neu_outset-3_STEP101, Elemental Contour: MSHELL(My)

曲げモーメントM_y (kN・m/m)

 $(S_{s} - D 1 (H-, V+), t = 45.96s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 6.4-47(7) 底版(東西方向)の断面力図

(3) 評価結果

版部材が側壁を固定することによる隅角部の評価結果について,表 6.4-34 に頂版, 底版及びスラブ主鉄筋の曲げに対する評価結果を,表 6.4-35 に側壁鉛直鉄筋の評価結 果を示す。

立坑における許容応力度法による照査を行った結果,評価位置において鉄筋の引張応力 度が許容応力度以下であることを確認した。

以上より,版部材が側壁を固定することによる隅角部の発生値は,許容限界以下である ことを確認した。

| | | | -day 6 1, 1 127 | 断面性状 | <u>`</u> | 鉄筋仕様 | 発生問 | 所面力 | 引張 | 短期許容 | 照查値 |
|------------------------|-----|--------------|-----------------|--------------------------|---------------|----------|---------------------|--------------|-------------------------------|-------------------------------|------|
| 検討ケース | | 評価位置 | 部/祈幅
b (mm) | 部
部
術
高

 | 有効局
d (mm) | (引張鉄筋) | 曲げモーメント
(kN・m/m) | 軸力
(kN/m) | 応力度
α (N/mm ²) | 応刀度
α (N/mm ²) | σ./σ |
| | | シェル解析 (固定支持) | 1000 | 3000 | 2750 | D38 @200 | 2615 | 0 | 180 | 435 | 0.42 |
| | 底版 | 拘束効果による曲げ | 1000 | 3000 | 2750 | D38 @200 | 872 | 0 | 60 | 435 | 0.14 |
| | | 合計 | 1000 | 3000 | 2750 | D38 @200 | 3487 | 0 | 240 | 435 | 0.56 |
| | | シェル解析 (固定支持) | 1000 | 2000 | 1710 | D35 @200 | -144 | 0 | 20 | 435 | 0.05 |
| | 頂版 | 拘束効果による曲げ | 1000 | 2000 | 1710 | D35 @200 | -318 | 0 | 43 | 435 | 0.10 |
| | | 合計 | 1000 | 2000 | 1710 | D35 @200 | -462 | 0 | 63 | 435 | 0.15 |
| | | シェル解析 (固定支持) | 1000 | 2000 | 1790 | D32 @200 | -209 | 0 | 32 | 435 | 0.08 |
| | B1F | 拘束効果による曲げ | 1000 | 2000 | 1790 | D32 @200 | -964 | 0 | 148 | 435 | 0.35 |
| ① S _s - D 1 | | 合計 | 1000 | 2000 | 1790 | D32 @200 | -1173 | 0 | 180 | 435 | 0.42 |
| (H+, V-) | | シェル解析 (固定支持) | 1000 | 2000 | 1790 | D35 @200 | -285 | 0 | 37 | 435 | 0.09 |
| | B2F | 拘束効果による曲げ | 1000 | 2000 | 1790 | D35 @200 | -1310 | 0 | 167 | 435 | 0.39 |
| | | 合計 | 1000 | 2000 | 1790 | D35 @200 | -1595 | 0 | 204 | 435 | 0.47 |
| | | シェル解析 (固定支持) | 1000 | 2000 | 1770 | D38 @200 | -310 | 0 | 34 | 435 | 0.08 |
| | B3F | 拘束効果による曲げ | 1000 | 2000 | 1770 | D38 @200 | -1667 | 0 | 182 | 435 | 0.42 |
| | | 合計 | 1000 | 2000 | 1770 | D38 @200 | -1977 | 0 | 216 | 435 | 0.50 |
| | | シェル解析 (固定支持) | 1000 | 1000 | 750 | D51 @200 | -97 | 0 | 16 | 435 | 0.04 |
| | B4F | 拘束効果による曲げ | 1000 | 1000 | 750 | D51 @200 | -1251 | 0 | 201 | 435 | 0.47 |
| | | 合計 | 1000 | 1000 | 750 | D51 @200 | -1348 | 0 | 217 | 435 | 0.50 |

表 6.4-34(1) 頂版,中床版及び底版(南北方向)の評価結果

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

| | 評価位置 | | 断面性状 | | みもなか 乙二十分 | 発生断面力 | | 引張 | 短期許容 | 昭杏値 | |
|-------------------------|------|--------------|---------------|---------------|-----------|----------|----------------------|---------------|------------------------------|-------------------------------|---------------------|
| 検討ケース | | | 部材幅
b (mm) | 部材高
b (mm) | 有効高 | (引張鉄筋) | 曲げモーメント
(IcN・m/m) | 軸力
(IrN/m) | 応力度
(N(2) | 応力度
- (N/m ²) | a /a |
| (€ S ₅ −D 1
(H−, V+) | 底版 | シェル解析(固定支持) | 1000 | 3000 | 2780 | D41 @200 | (KN • m/m)
2867 | (KN/III) | σ _s (N/mm)
166 | σ _{sa} (N/mm)
435 | 0 s7 0 s a
0. 39 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2780 | D41 @200 | 768 | 0 | 45 | 435 | 0.11 |
| | | 合計 | 1000 | 3000 | 2780 | D41 @200 | 3635 | 0 | 211 | 435 | 0.49 |
| | 頂版 | シェル解析 (固定支持) | 1000 | 2000 | 1740 | D41 @200 | -337 | 0 | 32 | 435 | 0.08 |
| | | 拘束効果による曲げ | 1000 | 2000 | 1740 | D41 @200 | -227 | 0 | 22 | 435 | 0.06 |
| | | 合計 | 1000 | 2000 | 1740 | D41 @200 | -564 | 0 | 54 | 435 | 0.13 |
| | B1F | シェル解析 (固定支持) | 1000 | 2000 | 1820 | D32 @200 | -284 | 0 | 43 | 435 | 0.10 |
| | | 拘束効果による曲げ | 1000 | 2000 | 1820 | D32 @200 | -854 | 0 | 128 | 435 | 0.30 |
| | | 合計 | 1000 | 2000 | 1820 | D32 @200 | -1138 | 0 | 171 | 435 | 0.40 |
| | B2F | シェル解析 (固定支持) | 1000 | 2000 | 1820 | D32 @200 | -235 | 0 | 36 | 435 | 0.09 |
| | | 拘束効果による曲げ | 1000 | 2000 | 1820 | D32 @200 | -1008 | 0 | 151 | 435 | 0.35 |
| | | 合計 | 1000 | 2000 | 1820 | D32 @200 | -1243 | 0 | 187 | 435 | 0.43 |
| | B3F | シェル解析 (固定支持) | 1000 | 2000 | 1800 | D38 @200 | -130 | 0 | 14 | 435 | 0.04 |
| | | 拘束効果による曲げ | 1000 | 2000 | 1800 | D38 @200 | -2376 | 0 | 254 | 435 | 0.59 |
| | | 合計 | 1000 | 2000 | 1800 | D38 @200 | -2506 | 0 | 268 | 435 | 0.62 |
| | B4F | シェル解析 (固定支持) | 1000 | 1000 | 800 | D51 @200 | -124 | 0 | 19 | 435 | 0.05 |
| | | 拘束効果による曲げ | 1000 | 1000 | 800 | D51 @200 | -1304 | 0 | 193 | 435 | 0.45 |
| | | 合計 | 1000 | 1000 | 800 | D51 @200 | -1428 | 0 | 212 | 435 | 0.49 |

表 6.4-34(2) 頂版,中床版及び底版(東西方向)の評価結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

| 検討ケース | 評価位置 | | 部材幅
b(mm) | 断面性状
部材高
h (mm) | ;
有効高
d (mm) | 鉄筋仕様
(引張鉄筋) | 発生
曲げモーメント
(kN・m/m) | 所面力
軸力
(kN/m) | 引張
応力度
α (N/mm ²) | 短期許容
応力度
α (N/mm ²) | 照査値
σ/σ |
|------------------------------------|-----------|-----------|--------------|-----------------------|--------------------|--------------------------|---------------------------|---------------------|-------------------------------------|---------------------------------------|------------|
| | 南側壁B1F | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -3575 | 1351 | 0 , 00 100 7 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -1173 | 0 | 47 | 435 | 0.11 |
| | | 合計 | - | - | - | _ | - | - | 47 | 435 | 0.11 |
| | 北側壁B1F | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 5185 | 1183 | 2 | 435 | 0.01 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 735 | 0 | 29 | 435 | 0.07 |
| | | 合計 | - | - | - | - | - | - | 31 | 435 | 0. 08 |
| | 南側壁B2F | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -9681 | 2331 | 4 | 435 | 0.01 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -1173 | 0 | 47 | 435 | 0.11 |
| | | 合計 | - | - | - | - | - | - | 51 | 435 | 0.12 |
| | 北側壁B2F | 有劾応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 6425 | 1495 | 10 | 435 | 0. 03 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 1595 | 0 | 63 | 435 | 0.15 |
| | | 合計 | - | - | - | - | - | - | 73 | 435 | 0.17 |
| | | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -9217 | 1096 | 24 | 435 | 0.06 |
| | 南側壁B3F | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -1560 | 0 | 62 | 435 | 0.15 |
| | | 合計 | - | - | - | - | - | - | 86 | 435 | 0.20 |
| ① S _s - D 1
(H+, V-) | 北側壁B3F | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 2648 | 1238 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 1978 | 0 | 78 | 435 | 0.18 |
| | | 合計 | - | - | - | I | - | - | 78 | 435 | 0.18 |
| | 南側壁B4F | 有劾応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -13110 | 3549 | 3 | 435 | 0.01 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -1579 | 0 | 63 | 435 | 0.15 |
| | | 合計 | - | - | - | - | - | - | 66 | 435 | 0.16 |
| | 北側壁B4F | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 6478 | 2507 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 1978 | 0 | 78 | 435 | 0.18 |
| | | 合計 | - | - | I | I | - | I | 78 | 435 | 0.18 |
| | 南側壁B4F-TN | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -4511 | 5178 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -1579 | 0 | 63 | 435 | 0.15 |
| | | 合計 | - | - | - | - | - | - | 63 | 435 | 0.15 |
| | 北側壁B4F-TN | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 4219 | 5222 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 1557 | 0 | 62 | 435 | 0.15 |
| | | 合計 | - | - | - | - | - | - | 62 | 435 | 0.15 |
| | 南側壁ピット部 | 有効応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | -1109 | 6060 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | -3487 | 0 | 138 | 435 | 0.32 |
| | | 合計 | - | - | - | _ | - | - | 138 | 435 | 0. 32 |
| | 北側壁ピット部 | 有劾応力解析 | 16500 | 12500 | 12250 | 2-D38 @200
2-D38 @200 | 5227 | 5812 | 0 | 435 | 0.00 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2750 | 2-D38 @200 | 3447 | 0 | 136 | 435 | 0.32 |
| | | 合計 | - | - | - | _ | - | - | 136 | 435 | 0.32 |

表 6.4-35(1) 側壁鉛直鉄筋(南北方向)の評価結果

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース
| 検討ケース | | 評価位置 | 部材幅 | 断面性状
部材高 | ,
有効高 | 鉄筋仕様
(引張鉄筋) | 発生!
曲げモーメント | 所面力
軸力 | 引張
応力度 | 短期許容
応力度 | 照査値 |
|------------|------------|---------------|--------|-------------|----------|--------------------------|--------------------|----------------|-------------------------|---|--------------------------|
| | | 有効広力解析 | b (mm) | h (mm) | d (mm) | 2-D51 @200 | (kN • m/m)
5566 | (kN/m)
1564 | $\sigma_{s} (N/mm^{2})$ | σ_{sa} (N/mm ²)
435 | σ_s / σ_{sa} |
| | 東側壁B1F | 均重効果にとろ曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | 1138 | 0 | 27 | 435 | 0.07 |
| | | 合計 | - | - | - | | - | _ | 28 | 435 | 0.07 |
| | 西側壁B1F | 有效応力解析 | 12500 | 16500 | 16240 | 2-D51 @200 | -7476 | 1519 | 2 | 435 | 0. 01 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200
2-D51 @200 | -763 | 0 | - 18 | 435 | 0.05 |
| | | 合計 | _ | _ | _ | _ | - | | 20 | 435 | 0, 05 |
| | 東側壁B2F | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200 | 16489 | 2377 | 9 | 435 | 0.03 |
| | |
拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200
2-D51 @200 | 1243 | 0 | 29 | 435 | 0.07 |
| | |
合計 | _ | _ | _ | _ | - | - | 38 | 435 | 0.09 |
| |
西側壁B2F | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200 | -21660 | 2589 | 13 | 435 | 0.03 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | -1130 | 0 | 27 | 435 | 0.07 |
| | | 合計 | - | - | - | - | - | - | 40 | 435 | 0.10 |
| | | 有劾応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | 35935 | 3550 | 36 | 435 | 0.09 |
| | 東側壁B3F | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | 1973 | 0 | 46 | 435 | 0.11 |
| | | 合計 | - | - | - | - | - | - | 82 | 435 | 0.19 |
| | 西側壁B3F | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | -50614 | 4064 | 62 | 435 | 0.15 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | -2506 | 0 | 58 | 435 | 0.14 |
| (4)S. −D 1 | | 合計 | - | _ | - | _ | _ | - | 120 | 435 | 0.28 |
| (H-, V+) | | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | 69485 | 5898 | 83 | 435 | 0. 20 |
| | 東側壁B4F | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | 3153 | 0 | 73 | 435 | 0.17 |
| | | 合計 | - | - | - | _ | - | - | 156 | 435 | 0.36 |
| | 西側壁B4F | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | -103648 | 6590 | 152 | 435 | 0.35 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | -3884 | 0 | 90 | 435 | 0.21 |
| | | 合計 | - | - | - | - | - | - | 242 | 435 | 0.56 |
| | 東側壁B4F-TN | 有劾応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | 67399 | 8041 | 46 | 435 | 0.11 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | 3153 | 0 | 73 | 435 | 0.17 |
| | | 合計 | - | - | - | - | - | - | 119 | 435 | 0.28 |
| | 西側壁B4F-TN | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | -91086 | 8129 | 102 | 435 | 0.24 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | -3884 | 0 | 90 | 435 | 0.21 |
| | | 合計 | - | - | - | - | - | - | 192 | 435 | 0.45 |
| | 東側壁ピット部 | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | 52648 | 8481 | 20 | 435 | 0.05 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | 3635 | 0 | 84 | 435 | 0.20 |
| | | 습카 | - | - | - | - | - | - | 104 | 435 | 0.24 |
| | 西側壁ピット部 | 有効応力解析 | 12500 | 16500 | 16240 | 2-D51 @200
2-D51 @200 | -70965 | 9288 | 40 | 435 | 0.10 |
| | | 拘束効果による曲げ | 1000 | 3000 | 2740 | 2-D51 @200 | -2413 | 0 | 56 | 435 | 0.13 |
| | | 合計 | - | - | - | - | - | - | 96 | 435 | 0.23 |

表 6.4-35(2) 側壁鉛直鉄筋(東西方向)の評価結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

6.4.7 基礎地盤の支持性能に対する評価結果

表 6.4-36 及び表 6.4-37 に基礎地盤の支持性能<mark>評価</mark>結果を,図 6.4-49 及び図 6.4-51 に接地圧分布図を示す。

立坑の最大接地圧について,立坑南北方向は①S_s-22で994 kN/m²であり,基礎地 盤の極限支持力度5796 kN/m²以下である。また立坑東西方向は①S_s-D1(H+,V -)で1240 kN/m²であり,基礎地盤の極限支持力度6139 kN/m²以下である。

以上のことから、立坑の基礎地盤は、基準地震動S。に対し、支持性能を有する。

| 検討ケース | 評価
位置 | 最大
接地圧
(kN/m ²) | 極限
支持力度
(kN/m ²) |
|--|----------|-----------------------------------|------------------------------------|
| (1) $S_s - D 1$ (H+, V+) | 1 | 971 | 5796 |
| (1) $S_s - D 1$ (H+, V-) | 1 | 957 | 5796 |
| (1) $S_s - D_1$ (H-, V+) | 3 | 919 | 5796 |
| (1) $S_{s} - D 1$ (H-, V-) | 1 | 941 | 5796 |
| ① S _s -11 | 3 | 872 | 5796 |
| ① S _s -12 | 1 | 892 | 5796 |
| ① S _s -13 | 3 | 868 | 5796 |
| (1) $S_s - 1.4$ | 3 | 867 | 5796 |
| (1) $S_s - 21$ | 1 | 936 | 5796 |
| ① S _s -22 | 1 | 994 | 5796 |
| (1) $S_s - 31$ (H+, V+) | 1 | 853 | 5796 |
| (1) $S_s - 31$ (H-, V+) | 1 | 867 | 5796 |
| ② $S_s - D_1$ (H+, V+) | 1 | 948 | 5796 |
| ② $S_s - D_1$ (H-, V+) | 3 | 899 | 5796 |
| $③ S_{s} - D1$ (H+, V+) | 1 | 954 | 5796 |
| $③ S_{s} - D1$ (H-, V+) | 3 | 902 | 5796 |
| (4) $S_{s} - D 1$ (H+, V+) | 1 | 907 | 5796 |
| (4) $S_{s} - D 1$ (H-, V+) | 3 | 952 | 5796 |
| (5) $S_{s} - D 1$ (H+, V+) | 1 | 990 | 5796 |
| (5) S _s -D1 (H-, V+) | 3 | 935 | 5796 |
| $\bigcirc S_{s} - D 1 \qquad (H+, V+)$ | 1 | 972 | 5796 |
| $6 S_{s} - D 1 (H-, V+)$ | 3 | 904 | 5796 |

表 6.4-36 基礎地盤の支持性能評価結果(南北方向)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1σ)した解析ケース ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1g)して非液状化の条件を仮定した解析ケース

6 - 718

図 6.4-49 (2) 接地圧分布図 (① S_s-D1 (H+, V-))

図 6.4-49(5) 接地圧分布図(① S_s-11)

図 6.4-49 (12) 接地圧分布図 (① S_s-31 (H-, V+))

図 6.4-49 (13) 接地圧分布図 (② S_s-D1 (H+, V+))

図 6.4-49 (14) 接地圧分布図 (② S_s-D1 (H-, V+))

| 検討ケース | 評価
位置 | 最大
接地圧
(kN/m ²) | 極限
支持力度
(kN/m ²) |
|------------------------------|----------|-----------------------------------|------------------------------------|
| (1) $S_s - D 1$ (H+, V+) | 1 | 1224 | 6139 |
| (1) $S_s - D_1$ (H+, V-) | 1 | 1240 | 6139 |
| (1) $S_s - D_1$ (H-, V+) | 3 | 1150 | 6139 |
| ① S _s D1 (H-, V-) | 3 | 1217 | 6139 |
| ① S _s -11 | 1 | 928 | 6139 |
| ① S _s -12 | 1 | 1050 | 6139 |
| ① S _s -13 | 1 | 1045 | 6139 |
| ① S _s -14 | 1 | 1015 | 6139 |
| ① $S_s - 21$ | 1 | 1053 | 6139 |
| ① S _s -22 | 1 | 1098 | 6139 |
| (1) $S_s - 31$ (H+, V+) | 3 | 1174 | 6139 |
| (1) $S_s - 31$ (H-, V+) | 1 | 1167 | 6139 |
| ② $S_s - D_1$ (H+, V+) | 1 | 1231 | 6139 |
| ② $S_s - D 1$ (H-, V+) | 3 | 1147 | 6139 |
| $③ S_{s} - D1 (H+, V+)$ | 1 | 1221 | 6139 |
| $③ S_{s} - D1 (H-, V+)$ | 3 | 1152 | 6139 |
| (4) $S_{s} - D 1$ (H+, V+) | 1 | 1220 | 6139 |
| (4) $S_{s} - D 1$ (H-, V+) | 3 | 1227 | 6139 |
| (5) $S_{s} - D 1$ (H+, V+) | 1 | 1173 | 6139 |
| (5) $S_{s} - D 1$ (H-, V+) | 3 | 1130 | 6139 |
| $(6) S_{s} - D 1 (H+, V+)$ | 1 | 1177 | 6139 |
| (6) S_{s} - D 1 (H-, V+) | 3 | 1122 | 6139 |

表 6.4-37 基礎地盤の支持性能評価結果(東西方向)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

②:地盤物性のばらつきを考慮(+1σ)した解析ケース ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース
⑥:地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース

図 6.4-50 評価位置図

6.5 まとめ

常設代替高圧電源装置用カルバート(立坑部)について,基準地震動S。による地震力に対し、構造部材の曲げ軸力及びせん断力並びに最大接地圧が許容限界以下であることを確認した。

<mark>以上のこ</mark>とから常設代替高圧電源装置用カルバート(立坑部)は,基準地震動S_。による地 震力に対して間接支持機能を維持できる。 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価に関する参考資料

1. 減衰の設定について

1. 減衰の設定について

地震応答解析における減衰については、固有値解析にて求まる固有周期及び減衰比に基づき、 質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。 なお、Rayleigh 減衰をα=0 となる剛性比例型減衰とする。Rayleigh 減衰の設定は、地盤の低 次のモードの変形が特に支配的となる地中埋設構造物のような地盤及び構造系全体に対して、そ の特定の振動モードの影響が大きいことを考慮し、かつ、振動モードの影響が全体系に占める割 合の観点から、刺激係数に着目し行う。

固有値解析による刺激係数及びモード図を参考図 6-1 に示す。また、設定した Rayleigh 減衰 を参考図 6-2 に示す。

1 次の基準モードについては、地盤及び構造系全体がせん断変形しているモードを選定している。

なお、初期減衰定数は、地盤については 1%(解析における減衰は、ひずみが大きい領域では 履歴減衰が支配的となる。そのため、解析上の安定のためになるべく小さい値として 1%を採用 している。)とする。また、線形材料としてモデル化するコンクリートの減衰定数は 5%(JE AG4601-1987)とする。 (1) 立坑南北方向

参考図 6-1(1) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

参考図 6-1(2) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース②:地盤物性のばらつきを考慮(+1o)した解析ケース)

参考図 6-1(4) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

参考図 6-1 (5) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

参考図 6-1(6) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース②:地盤物性のばらつきを考慮(+1^o)した解析ケース)

 参考図 6-1(7) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース③:地盤物性のばらつきを考慮(-1^g)した解析ケース)

参考図 6-1 (8) 常設代替高圧電源装置用カルバート(立坑部)の固有値解析結果 (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

地盤を強制的に液状化させることを仮定した解析ケース)

2. 側壁・中壁開口部における三次元的挙動に対する影響検討

- 2. 側壁・中壁開口部における三次元的挙動に対する影響検討
- 2.1 検討方針

参考図 6-3 に側壁・中壁開口部の概念図を示す。開口に隣接する側壁・中壁に地震時荷重 が作用した場合,開口隣接側壁・中壁は鉛直方向の挙動が支配的となり,地震時荷重は床版 を介して反対側の地盤に伝達される。開口部における局所的な影響を検討するため,開口隣 接側壁・中壁を単純支持のはりとしてモデル化し,加振方向に応じて面内・面外方向に地震 時荷重を作用させたときに発生する曲げモーメントに対し,6.4.2 (1) にて決定した鉛直 鉄筋の照査を行い,必要な場合は補強鉄筋を配置する。作用荷重は2次元有効応力解析によ り得られる立坑側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x')+間隙水要素の 発生応力(Δu))の全時刻の最大値と,設計断面最深部の静水圧との合計を作用させる。 単純支持のはりに対する設計を実施していることから,内曲げに対する評価を外側の鉛直鉄 筋にも適用する。

開口隣接側壁の荷重分担幅は開口隣接側壁のはり幅分(例として参考図 6-3 における南北 方向加振では 3.0m, 東西方向加振では 4.75m 及び 4.25m)とする。

参考図 6-3 側壁・中壁開口部概念図

断面図(立坑南北方向)

開口隣接側壁・中壁評価位置及び断面諸元

3B3F

中壁開口部

④B4Fトンネル部
 南側壁・中壁開口部

参考図 6-4(1) 開口隣接側壁・中壁評価位置及び断面諸元(南北方向)

断面図(立坑東西方向)

参考図 6-4(2) 開口隣接側壁・中壁評価位置及び断面諸元(東西方向)

(参考) 6-19

2.2 評価結果

2.2.1 評価ケースの選定

各開口部の評価ケースを参考表 6-1 に示す。各開口部の設計に用いる地震時地盤反力の抽 出については、検討ケース①(基本ケース)については基準地震動全ケース(12 ケース)の 抽出結果を記載する。また、検討ケース②~⑥の抽出結果については、検討ケース①(基本 ケース)において地震時地盤反力が最大となる基準地震動について抽出(5 ケース)及び 6.4.1 (1) で示した鉛直断面の照査値及びせん断力が最大となる解析ケース④S_s-D1 (H+, V+)と④S_s-D1 (H-, V+)について抽出(2 ケース)を行う。 上記により抽出した検討ケース①~⑥の地震時地盤反力の最大値を用いて設計を行う。

参考表 6-1(1) B1F 東側壁開口部・中壁開口部における最大地盤反力(北側)

| B1F南北方向 | | | | | |
|--------------------------|----------|------------|-------------|-------|----|
| | | | 北側 | | |
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| - | | (kN/m^2) | (kN/m^2) | (秒) | |
| (]) S _s – D 1 | H+, $V+$ | 60 | 151 | 26.86 | |
| (1) S $_{\rm s}$ – D 1 | H+, V- | 60 | 139 | 60.49 | |
| (1) S $_{\rm s}$ – D 1 | H-, V+ | 60 | 130 | 22.30 | |
| (1) S $_{\rm s}$ – D 1 | H-, V- | 60 | 141 | 19.55 | |
| (]) S _s - 1 1 | H+, V+ | 60 | 101 | 69.55 | |
| (]) S _s - 1 2 | H+, $V+$ | 60 | 158 | 31.69 | |
| $(1) S_{s} - 1 3$ | H+, $V+$ | 60 | 147 | 28.81 | |
| (]) S _s - 1 4 | H+, $V+$ | 60 | 124 | 31.77 | |
| (]) S _s - 2 1 | H+, $V+$ | 60 | 135 | 62.66 | |
| (]) S _s - 2 2 | H+, $V+$ | 60 | 142 | 67.17 | |
| ① S _s - 3 1 | H+, V+ | 60 | 121 | 9.52 | |
| (]) S _s - 3 1 | H-, V+ | 60 | 173 | 8.74 | |
| (2) S _s - 3 1 | H-, V+ | 60 | 170 | 8.73 | |
| (3) S _s - 3 1 | H-, V+ | 60 | 173 | 8.74 | |
| ④ S _s - D 1 | H+, V+ | 60 | 144 | 26.86 | |
| (4) S _s - D 1 | H-, V+ | 60 | 118 | 44.18 | |
| (4) S _s - 3 1 | H-, V+ | 60 | 148 | 8.72 | |
| (5) S $_{s}$ - 3 1 | H-, V+ | 60 | 179 | 8.74 | 0 |
| ⑥ S _s − 3 1 | H-, V+ | 60 | 177 | 8.74 | |

| r | | | | | |
|---------------------------|----------|------------|-------------|--------|----|
| | | | | 南側 | |
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| (]) S _s – D 1 | H+, V+ | 60 | 103 | 22.29 | |
| ① S _s - D 1 | H+, V- | 60 | 107 | 53. 53 | |
| $(]] S_{s} - D 1$ | H-, V+ | 60 | 128 | 26.86 | |
| ① S _s - D 1 | H-, V- | 60 | 127 | 60.49 | |
| ① S _s - 1 1 | H+, V+ | 60 | 78 | 68.54 | |
| ① S _s - 1 2 | H+, V+ | 60 | 99 | 32.80 | |
| ① S _s - 1 3 | H+, V+ | 60 | 103 | 30.02 | |
| (]) S _s - 1 4 | H+, V+ | 60 | 78 | 33.17 | |
| (]) S _s - 2 1 | H+, V+ | 60 | 135 | 66.27 | 0 |
| ① S _s - 2 2 | H+, V+ | 60 | 119 | 69.67 | |
| ① S _s - 3 1 | H+, V+ | 60 | 113 | 8.69 | |
| (]) S _s - 3 1 | H-, V+ | 60 | 95 | 9.52 | |
| (2) S _s - 2 1 | H+, V+ | 60 | 134 | 66.27 | |
| (3) S _s -2 1 | H+, V+ | 60 | 134 | 66.27 | |
| ④ S _s −D 1 | H+, V+ | 60 | 101 | 22.29 | |
| (4) S _s - D 1 | H-, V+ | 60 | 124 | 26.85 | |
| (4) S _s - 2 1 | H+, V+ | 60 | 134 | 66.27 | |
| (5) S _s $- 21$ | H+, $V+$ | 60 | 109 | 67.18 | |
| $(6)S_{s} - 21$ | H+, V+ | 60 | 111 | 67.18 | |

参考表 6-1(2) B1F 東側壁開口部・中壁開口部における最大地盤反力(南側)

B1F南北方向

参考表 6-1(3) B1F 東側壁開口部における最大地盤反力(東側)

B1F東西方向

| | | | | 東側 | |
|-------------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| ① S _s – D 1 | H+, $V+$ | 60 | 100 | 18.56 | |
| ① S _s – D 1 | H+, V- | 60 | 95 | 60.49 | |
| ① S _s – D 1 | H-, V+ | 60 | 267 | 43.06 | |
| ① S _s – D 1 | H-, V- | 60 | 94 | 97.80 | |
| (]) S _s - 1 1 | H+, $V+$ | 60 | 77 | 25.42 | |
| (]) S _s - 1 2 | H+, $V+$ | 60 | 89 | 29.54 | |
| ① S _s - 1 3 | H+, $V+$ | 60 | 90 | 26.79 | |
| (]) S _s - 1 4 | H+, $V+$ | 60 | 75 | 29.05 | |
| (]) S _s - 2 1 | H+, $V+$ | 60 | 83 | 72.61 | |
| (]) S _s - 2 2 | H+, V+ | 60 | 85 | 89.86 | |
| (]) S _s - 3 1 | H+, $V+$ | 60 | 90 | 9.53 | |
| (]) S _s - 3 1 | H-, V+ | 60 | 97 | 8.82 | |
| ② S _s – D 1 | H-, V+ | 60 | 87 | 52.80 | |
| ③ S _s – D 1 | H-, V+ | 60 | 356 | 80.79 | 0 |
| ④ S _s – D 1 | H+, $V+$ | 60 | 111 | 67.62 | |
| ④ S _s – D 1 | H-, V+ | 60 | 81 | 22.42 | |
| (5) S _s – D 1 | H-, V+ | 60 | 86 | 23.72 | |
| <u>6</u> S _s – D 1 | H-, V+ | 60 | 81 | 23.71 | |

(参考) 6-21

参考表 6-1(4) B2F 北側壁開口部・中壁開口部における最大地盤反力(北側)

| | | | 北側 | | |
|--------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| ① S _s – D 1 | H+, V+ | 110 | 229 | 26.86 | |
| (]) S _s – D 1 | H+, V- | 110 | 220 | 60.50 | |
| ① S _s – D 1 | H-, V+ | 110 | 195 | 22.43 | |
| ① S _s – D 1 | H-, V- | 110 | 203 | 53.54 | |
| ① S _s - 1 1 | H+, $V+$ | 110 | 139 | 25.41 | |
| $(] S_{s} - 1 2$ | H+, $V+$ | 110 | 164 | 31.59 | |
| $(] S_{s} - 1 3$ | H+, $V+$ | 110 | 158 | 29.72 | |
| $(] S_{s} - 1 4$ | H+, $V+$ | 110 | 140 | 32.01 | |
| $(] S_{s} - 2 1$ | H+, $V+$ | 110 | 205 | 62.66 | |
| $(] S_{s} - 2 2$ | H+, V+ | 110 | 223 | 70.78 | |
| ① S _s - 3 1 | H+, V+ | 110 | 177 | 9.53 | |
| ① S _s - 3 1 | H-, V+ | 110 | 183 | 8.81 | |
| ② S _s – D 1 | H+, $V+$ | 110 | 232 | 26.86 | |
| ③ S _s – D 1 | H+, V+ | 110 | 231 | 26.86 | |
| ④ S _s - D 1 | H+, V+ | 110 | 232 | 26.86 | 0 |
| ④ S _s - D 1 | H-, V+ | 110 | 183 | 44.18 | |
| (5) S _s – D 1 | H+, V+ | 110 | 191 | 26.86 | |
| ⑥ S _s −D 1 | H+, V+ | 110 | 185 | 26.86 | |

B2F南北方向

参考表 6-1 (5) B2F 北側壁開口部・中壁開口部における最大地盤反力(南側)

| D2111月1日/月1日 | | | | | |
|--------------------------|----------|------------|-------------|-------|----|
| | | | 南側 | | |
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| (] S _s – D 1 | H+, $V+$ | 110 | 586 | 53.81 | |
| (] S _s – D 1 | H+, V- | 110 | 579 | 53.81 | |
| (]) S _s – D 1 | H-, V+ | 110 | 420 | 42.85 | |
| (]) S _s – D 1 | H-, V- | 110 | 439 | 42.85 | |
| (]) S _s - 1 1 | H+, V+ | 110 | 279 | 69.43 | |
| $(] S_{s} - 1 2$ | H+, V+ | 110 | 454 | 31.59 | |
| ① S _s - 1 3 | H+, V+ | 110 | 432 | 28.81 | |
| $(]S_{s} - 14$ | H+, $V+$ | 110 | 350 | 31.72 | |
| (]) S _s - 2 1 | H+, $V+$ | 110 | 490 | 66.76 | |
| (]) S _s - 2 2 | H+, $V+$ | 110 | 509 | 69.46 | |
| (] S _s - 3 1 | H+, $V+$ | 110 | 387 | 7.97 | |
| ① S _s - 3 1 | H-, V+ | 110 | 575 | 8.70 | |
| $O_{\rm S} = 0.1$ | H+, V+ | 110 | 616 | 53.81 | 0 |
| ③ S _s – D 1 | H+, $V+$ | 110 | 599 | 53.81 | |
| (4) S _s – D 1 | H+, $V+$ | 110 | 529 | 53.80 | |
| (4) S _s - D 1 | H-, V+ | 110 | 389 | 68.95 | |
| (5) S _s – D 1 | H+, V+ | 110 | 524 | 53.82 | |
| (6) S _s – D 1 | H+, V+ | 110 | 566 | 53.82 | |

B2F南北方向

(参考) 6-22

参考表 6-1(6) B2F 北側壁開口部・中壁開口部における最大地盤反力(東側)

B2F東西方向

| | | | | 東側 | |
|--------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| (]) S _s – D 1 | H+, V+ | 110 | 336 | 53.95 | |
| $(]) S_{s} - D 1$ | H+, V- | 110 | 351 | 53.95 | |
| (]) S _s – D 1 | H-, V+ | 110 | 268 | 42.95 | |
| (]) S _s – D 1 | H-, V- | 110 | 280 | 42.96 | |
| $(])$ S $_{s}$ -1 1 | H+, V+ | 110 | 183 | 23.67 | |
| $(])$ S $_{\rm s}$ – 1 2 | H+, V+ | 110 | 211 | 29.54 | |
| (]) S _s - 1 3 | H+, V+ | 110 | 202 | 26.78 | |
| (]) S _s - 1 4 | H+, V+ | 110 | 177 | 27.92 | |
| (]) S _s - 2 1 | H+, V+ | 110 | 210 | 72.60 | |
| (]) S _s - 2 2 | H+, $V+$ | 110 | 218 | 73.84 | |
| $(])$ S $_{s}$ – 3 1 | H+, V+ | 110 | 173 | 9.53 | |
| $(])$ S $_{s}$ – 3 1 | H-, V+ | 110 | 276 | 8.82 | |
| ② S _s - D 1 | H+, V- | 110 | 318 | 53.96 | |
| ③ S _s - D 1 | H+, V- | 110 | 348 | 53.95 | |
| ④ S _s - D 1 | H+, V+ | 110 | 480 | 53.99 | |
| (4) S _s - D 1 | H+, V- | 110 | 485 | 53.97 | 0 |
| ④ S _s - D 1 | H-, V+ | 110 | 392 | 69.15 | |
| (5) S _s - D 1 | H+, V- | 110 | 227 | 19.89 | |
| 6 S s - D 1 | H+, V- | 110 | 231 | 19.87 | |

参考表 6-1(7) B2F 北側壁開口部における最大地盤反力(西側)

B2F東西方向

| | | | 西側 | | |
|--------------------------|----------|------------|-------------|--------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| $(] S_{s} - D 1$ | H+, $V+$ | 110 | 181 | 52.81 | |
| $(] S_{s} - D 1$ | H+, $V-$ | 110 | 206 | 44. 32 | |
| (]) S _s – D 1 | H-, V+ | 110 | 196 | 58.63 | |
| (]) S _s – D 1 | H-, V- | 110 | 213 | 60.51 | |
| (]) S _s - 1 1 | H+, $V+$ | 110 | 141 | 25.41 | |
| $(])$ S $_{\rm s}$ – 1 2 | H+, $V+$ | 110 | 147 | 29.55 | |
| ① S _s - 1 3 | H+, $V+$ | 110 | 146 | 26.76 | |
| (]) S _s - 1 4 | H+, $V+$ | 110 | 127 | 29.76 | |
| $(])$ S $_{\rm s}$ – 2 1 | H+, $V+$ | 110 | 178 | 72.60 | |
| (]) S _s - 2 2 | H+, $V+$ | 110 | 186 | 83.79 | |
| (]) S _s - 3 1 | H+, $V+$ | 110 | 155 | 8.82 | |
| $(])$ S $_{s}$ – 3 1 | H-, V+ | 110 | 125 | 9.54 | |
| ② S _s – D 1 | H-, V- | 110 | 231 | 60.50 | |
| ③ S _s - D 1 | H-, V- | 110 | 205 | 60.51 | |
| (4) S _s - D 1 | H+, $V+$ | 110 | 212 | 68.07 | |
| (4) S _s - D 1 | H-, V+ | 110 | 239 | 26.86 | |
| (4) S _s - D 1 | H-, V- | 110 | 247 | 60.50 | 0 |
| ⑤ S ₅ − D 1 | H-, V- | 110 | 190 | 60.51 | |
| © S ₅ − D 1 | H V- | 110 | 186 | 60, 51 | |

(参考)6-23

| 参考表 6-1(8) | B3F 中壁開口部における最大地盤反力 | (北側) |
|------------|---------------------|------|
|------------|---------------------|------|

B3F南北方向

| | | | 北側 | | |
|-------------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| ① S _s - D 1 | H+, V+ | 164 | 632 | 68.98 | |
| (]) S _s – D 1 | H+, V- | 164 | 643 | 68.98 | |
| (]) S _s – D 1 | H-, V+ | 164 | 843 | 53.84 | |
| (]) S _s – D 1 | H-, V- | 164 | 851 | 53.86 | |
| $(])$ S $_{s} - 1 1$ | H+, $V+$ | 164 | 397 | 27.88 | |
| $(])$ S $_{\rm s}$ – 1 2 | H+, V+ | 164 | 506 | 32.94 | |
| (] S _s - 1 3 | H+, $V+$ | 164 | 532 | 30.02 | |
| (]) S _s - 1 4 | H+, $V+$ | 164 | 400 | 29.87 | |
| $(])$ S $_{\rm s}-2$ 1 | H+, $V+$ | 164 | 715 | 66.28 | |
| (1) S _s - 2 2 | H+, $V+$ | 164 | 670 | 72.96 | |
| $(])$ S $_{s}$ – 3 1 | H+, V+ | 164 | 815 | 8.72 | |
| $(] S_{s} - 3 1$ | H-, V+ | 164 | 541 | 9.48 | |
| (2) S _s – D 1 | H-, V- | 164 | 943 | 53.85 | |
| (3) S _s – D 1 | H-, V- | 164 | 883 | 53.85 | |
| (4) S _s - D 1 | H+, $V+$ | 164 | 736 | 68.98 | |
| (4) S _s - D 1 | H-, V+ | 164 | 960 | 53.85 | 0 |
| (4) S _s - D 1 | H-, V- | 164 | 958 | 53.86 | |
| (5) S _s – D 1 | H-, V- | 164 | 711 | 53.84 | |
| <u>6</u> S _s – D 1 | H-, V- | 164 | 790 | 53.84 | |

| 参考表 6-1(9) | B3F 中壁開口部における最大地盤反力 | (南側) |
|------------|---------------------|------|
| B3F南北方向 | | |

| | | | | 南側 | |
|--------------------------|----------|------------|-------------|--------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| (]) S _s – D 1 | H+, V+ | 164 | 306 | 56. 56 | |
| (]) S _s – D 1 | H+, V- | 164 | 342 | 44.32 | 0 |
| (]) S _s – D 1 | H-, V+ | 164 | 306 | 26.86 | |
| (]) S _s – D 1 | H-, V- | 164 | 282 | 60.50 | |
| $(])$ S $_{s} - 1 1$ | H+, $V+$ | 164 | 203 | 24.65 | |
| (]) S _s - 1 2 | H+, $V+$ | 164 | 248 | 32.80 | |
| ① S _s - 1 3 | H+, V+ | 164 | 257 | 30.02 | |
| (]) S _s - 1 4 | H+, $V+$ | 164 | 229 | 33.17 | |
| $(])$ S $_{\rm s}$ – 2 1 | H+, V+ | 164 | 321 | 66.28 | |
| (]) S _s - 2 2 | H+, $V+$ | 164 | 289 | 73.26 | |
| $(])$ S $_{s}$ – 3 1 | H+, $V+$ | 164 | 249 | 8. 79 | |
| (]) S _s - 3 1 | H-, V+ | 164 | 246 | 9.54 | |
| ② S _s - D 1 | H+, V- | 164 | 333 | 26.52 | |
| ③ S _s - D 1 | H+, V- | 164 | 323 | 44.32 | |
| (4) S _s - D 1 | H+, V+ | 164 | 270 | 20.18 | |
| ④ S _s - D 1 | H+, V- | 164 | 332 | 53.54 | |
| (4) S _s - D 1 | H-, V+ | 164 | 323 | 26.86 | |
| (5) S _s - D 1 | H+, V- | 164 | 282 | 59.53 | |
| ⑥ S _s - D 1 | H+, V- | 164 | 295 | 26.17 | |

(参考) 6-24

参考表 6-1(10) B4F トンネル部南側壁開口部・中壁開口部における最大地盤反力(南側)

| | | | | 南側 | |
|--------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| ① S _s – D 1 | H+, V+ | 331 | 303 | 44.41 | |
| (]) S _s – D 1 | H+, V- | 331 | 366 | 22.64 | |
| (]) S _s – D 1 | H-, V+ | 331 | 307 | 45.96 | |
| (]) S _s – D 1 | H-, V- | 331 | 312 | 22.95 | |
| $(])$ S $_{s} - 1 1$ | H+, $V+$ | 331 | 247 | 25.41 | |
| $(])$ S $_{s}$ – 1 2 | H+, $V+$ | 331 | 272 | 29.55 | |
| $(1) S_{s} - 1 3$ | H+, $V+$ | 331 | 268 | 30.02 | |
| (]) S _s - 1 4 | H+, V+ | 331 | 245 | 29.76 | |
| (]) S _s - 2 1 | H+, V+ | 331 | 330 | 66.42 | |
| (]) S _s - 2 2 | H+, V+ | 331 | 329 | 69.43 | |
| (]) S _s - 3 1 | H+, V+ | 331 | 237 | 8.83 | |
| (1) S $_{\rm s} - 3 1$ | H-, V+ | 331 | 259 | 9.55 | |
| (2) S _s – D 1 | H+, V- | 331 | 359 | 22.64 | |
| ③ S _s - D 1 | H+, V- | 331 | 369 | 22.64 | 0 |
| (4) S _s - D 1 | H+, V+ | 331 | 337 | 44.41 | |
| (4) S _s - D 1 | H+, V- | 331 | 327 | 60.50 | |
| (4) S _s - D 1 | H-, V+ | 331 | 279 | 45.96 | |
| (5) S _s - D 1 | H+, V- | 331 | 326 | 44.32 | |
| 6 S _s - D 1 | H+, V- | 331 | 326 | 44.32 | |

B4Fトンネル部南北方向

| | | | | 東側 | |
|--------------------------|----------|------------|-------------|--------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| ① S _s – D 1 | H+, V+ | 331 | 308 | 52.80 | |
| (]) S _s – D 1 | H+, V- | 331 | 318 | 53. 55 | |
| (]) S _s – D 1 | H-, V+ | 331 | 359 | 26.94 | |
| (]) S _s – D 1 | H-, V- | 331 | 408 | 60.50 | |
| (]) S _s - 1 1 | H+, $V+$ | 331 | 240 | 25.42 | |
| (]) S _s - 1 2 | H+, $V+$ | 331 | 262 | 32.50 | |
| $(] S_{s} - 1 3$ | H+, $V+$ | 331 | 268 | 29.72 | |
| (]) S _s - 1 4 | H+, $V+$ | 331 | 220 | 38.16 | |
| (]) S _s - 2 1 | H+, $V+$ | 331 | 253 | 69.28 | |
| $(] S_{s} - 2 2$ | H+, $V+$ | 331 | 339 | 83. 78 | |
| $(] S_{s} - 3 1$ | H+, $V+$ | 331 | 299 | 8.80 | |
| $(] S_{s} - 3 1$ | H-, V+ | 331 | 205 | 8.37 | |
| $O S_{s} - D 1$ | H-, V- | 331 | 414 | 60.50 | |
| ③ S _s – D 1 | H-, V- | 331 | 403 | 60.50 | |
| ④ S _s – D 1 | H+, $V+$ | 331 | 377 | 68.08 | |
| ④ S _s −D 1 | H-, V+ | 331 | 440 | 53.98 | |
| ④ S _s −D 1 | H-, V- | 331 | 505 | 53.93 | 0 |
| (5) S _s – D 1 | H-, V- | 331 | 327 | 23.39 | |
| ⑥ S ₅ − D 1 | H-, V- | 331 | 322 | 23.39 | |

B4Fトンネル部東西方向

(参考) 6-25

| 参考表 6-1 (12) | B4F | トンネル部南 | 側壁開口部におけ | る最大地盤反力 | (西側) |
|--------------|-----|--------|----------|---------|------|
|--------------|-----|--------|----------|---------|------|

| | | | | 西側 | |
|--------------------------|----------|------------|-------------|-------|----|
| 基準地震動 | 位相 | 静水圧 | 最大地盤
反力度 | 時刻 | 選定 |
| | | (kN/m^2) | (kN/m^2) | (秒) | |
| (]) S _s – D 1 | H+, V+ | 331 | 297 | 20.17 | |
| $(] S_{s} - D 1$ | H+, V- | 331 | 326 | 60.50 | |
| ① S _s - D 1 | H-, V+ | 331 | 322 | 41.24 | |
| ① S _s - D 1 | H-, V- | 331 | 316 | 22.64 | |
| $(] S_{s} - 1 1$ | H+, $V+$ | 331 | 268 | 25.41 | |
| $(]S_{s} - 12$ | H+, V+ | 331 | 268 | 29.55 | |
| ① S _s - 1 3 | H+, V+ | 331 | 268 | 29.72 | |
| $(]S_{s} - 14$ | H+, $V+$ | 331 | 233 | 29.76 | |
| (] S _s - 2 1 | H+, $V+$ | 331 | 279 | 69.28 | |
| $(] S_{s} - 2 2$ | H+, V+ | 331 | 323 | 73.26 | |
| (] S _s - 3 1 | H+, V+ | 331 | 186 | 9.97 | |
| ① S _s - 3 1 | H-, V+ | 331 | 195 | 8.34 | |
| (2) S _s - D 1 | H+, V- | 331 | 343 | 60.50 | |
| ③ S ₅ − D 1 | H+, V- | 331 | 313 | 22.64 | |
| ④ S _s −D 1 | H+, V+ | 331 | 418 | 53.98 | |
| ④ S _s −D 1 | H+, V- | 331 | 477 | 53.93 | 0 |
| ④ S ₅ − D 1 | H-, V+ | 331 | 366 | 69.10 | |
| (5) S _s - D 1 | H+, V- | 331 | 339 | 22.64 | |
| ©S.−D1 | H+. V- | 331 | 336 | 22.64 | |

B4Fトンネル部東西方向

2.2.2 曲げ軸力及びせん断に対する評価結果

コンクリート及び鉄筋の曲げ照査結果, せん断の照査結果を参考表 6-2 に示す。また, 概略配筋図を参考図 6-5 に示す。

側壁・中壁開口部における許容応力度法による照査を行った結果,評価位置においてコン クリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。ま た,せん断応力度が許容せん断応力度以下である又はコンクリートの負担するせん断力(V 。)と,斜め引張鉄筋の負担するせん断力(V_s)を合わせた許容せん断力(V_a)が,発生 せん断力(V)以上であることを確認した。(V_a=V_c+V_s \geq V)

(1) 側壁・中壁開口部 (B1F) の評価結果

| 設計 検討ケース
断面 | | | 断面性状 | | | 鉄筋仕様 | 発生時 | 所面力 | 圧縮 | 短期許容 | 照査値 |
|----------------|------|-----------------------------------|--------|--------|--------|-------------------------|------------|--------|-------------------------------|------------------------------------|---------------------------------|
| | | 討ケース | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力度 | 心力度 | |
| | | | b (mm) | h (mm) | d (mm) | | (kN • m/m) | (kN/m) | $\sigma_{\rm c} (\rm N/mm^2)$ | σ_{ca} (N/mm ²) | σ _c /σ _{ca} |
| B1F東側壁 | 南北方向 | ⑤S _s -31
(H-, V+) | 3000 | 4250 | 3925 | 2-D51,D25@200 | 2716 | 0 | 0.56 | 21.0 | 0.03 |
| 開口部北側 | 東西方向 | ③S _s -D1
(H-, V+) | 4250 | 3000 | 2740 | 2-D51, D25@200 | 6684 | 0 | 1.99 | 21.0 | 0.10 |
| B1F東側壁 | 南北方向 | $(]S_s - 21 (H+, V+)$ | 3000 | 4750 | 4375 | 2-D51, D29@200 | 2216 | 0 | 0.37 | 21.0 | 0.02 |
| 開口部南側 | 東西方向 | ③S _s -D1
(H-, V+) | 4750 | 3000 | 2740 | 2-D51, D25@200 | 7470 | 0 | 1.79 | 21.0 | 0.09 |
| B1F中壁
開口部北側 | 南北方向 | ⑤S _s -31
(H-, V+) | 1500 | 2650 | 2325 | D32, D29@200
D29@200 | 1896 | 0 | 2.06 | 21.0 | 0.10 |
| B1F中壁
開口部南側 | 南北方向 | (]) S _s $-2.1(H+, V+)$ | 1500 | 2400 | 2025 | D35, D29@200
D29 | 1547 | 0 | 2.25 | 21.0 | 0.11 |

*曲げモーメントは内空側引張となる時を正とする。

| 設計 ゆきたーフ | | | 断面性状 | | | 鉄筋仕様 | 発生断面力 | | 引張 | 短期許容 | 照査値 |
|----------------|---------|--------------------------------------|--------|--------|--------|-------------------------|------------------|--------|---------------------------------|------------------------|--------|
| 断面 | 前面検討ケース | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力度 | 心力皮 | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm s} ({\rm N/mm}^2)$ | $\sigma_{sa} (N/mm^2)$ | σs/σsa |
| B1F東側壁 | 南北方向 | ⑤S _s -31
(H-, V+) | 3000 | 4250 | 4000 | 2-D38@200 | -2716 | 0 | 33 | 435 | 0.08 |
| 開口部北側 | 東西方向 | ③ S _s -D1
(H-, V+) | 4250 | 3000 | 2740 | 2-D51, D25@200 | 6684 | 0 | 122 | 435 | 0.29 |
| B1F東側壁 | 南北方向 | $(]S_s - 21 (H+, V+)$ | 3000 | 4750 | 4375 | 2-D51, D29@200 | 2216 | 0 | 22 | 435 | 0.06 |
| 開口部南側 | 東西方向 | ③ S _s -D 1
(H-, V+) | 4750 | 3000 | 2740 | 2-D51, D25@200 | 7470 | 0 | 97 | 435 | 0.23 |
| B1F中壁
開口部北側 | 南北方向 | ⑤S _s -31
(H-, V+) | 1500 | 2650 | 2325 | D32, D29@200
D29@200 | 1896 | 0 | 116 | 435 | 0.27 |
| B1F中壁
開口部南側 | 南北方向 | (]) S _s - 2 1
(H+, V+) | 1500 | 2400 | 2025 | D35, D29@200
D29 | 1547 | 0 | 135 | 435 | 0.32 |

*曲げモーメントは内空側引張となる時を正とする。

参考表 6-2(3) 側壁・中壁開口部(B1F) せん断に対する照査結果

| 設計 検討ケース
断面 | | al | | 断面性状 | | 鉄筋仕様 | 発生 | 短期許容
#1 断力 | 照査値 |
|----------------|------|--------------------------------------|---------------|---------------|----------|-------------|------------|------------------|------|
| | | 部材幅
b(mm) | 部材高
h (mm) | 有効高
d (mm) | (せん断補強筋) | V (kN/m) | V a (kN/m) | V/V _a | |
| B1F東側壁 | 南北方向 | (5) S _s - 3 1
(H-, V+) | 3000 | 4250 | 3825 | D19 @200 5本 | 1257 | 11120 | 0.12 |
| 開口部北側 | 東西方向 | ③ S _s -D1
(H-, V+) | 4250 | 3000 | 2605 | D19 @200 6本 | 3094 | 9695 | 0.32 |
| B1F東側壁 | 南北方向 | $(]S_s - 21 (H+, V+)$ | 3000 | 4750 | 4275 | D19 @200 5本 | 1026 | 12428 | 0.09 |
| 開口部南側 | 東西方向 | ③ S _s -D1
(H-, V+) | 4750 | 3000 | 2605 | D19 @200 7本 | 3458 | 11116 | 0.32 |
| B1F中壁
開口部北側 | 南北方向 | ⑤S _s -31
(H-, V+) | 1500 | 2650 | 2232 | D22 @200 2本 | 878 | 3410 | 0.26 |
| B1F中壁
開口部南側 | 南北方向 | $(]S_s - 21 (H+, V+)$ | 1500 | 2400 | 1985 | D22 @200 2本 | 716 | 3032 | 0.24 |

<u>中壁(北側)</u>

<u>東壁(南側)</u> <u>東壁(北側)</u> D25 <u>D25</u> 260 <u>D51 D51</u> D51 D51 270 J. D19@200 D19@200 : : 3000 p? 99 D38 D38 -----: 260 D51 <u>D29</u> D25 D51 250 150 175 _____250 ____250 250_ 375 325 200 200 4750 4250

> 凡例 黒色の鉄筋:既存の鉄筋 赤色の鉄筋:本検討で必要な補強鉄筋 青枠なし:南北方向で考慮する鉄筋 青枠あり:東西方向で考慮する鉄筋

参考図 6-5(1) 側壁·中壁開口部(B1F) 概略配筋図

(参考) 6-29

(2) 側壁・中壁開口部(B2F)の評価結果

参考表 6-2(4) 側壁・中壁開口部(B2F) コンクリートの曲げ軸力に対する照査結果

| 設計 検討ケース | | | | 断面性状 | | 鉄筋仕様 | 発生調 | 所面力 | 圧縮 | 短期許容 | 照査値 |
|----------------|------|-----------------------------------|--------|--------|--------|------------------------------|------------------|--------|---------------------------------|-----------------------------------|----------------------------------|
| | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力度 | 心力皮 | | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm c} ({\rm N/mm}^2)$ | $\sigma_{\rm c a} ({\rm N/mm}^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| B2F北側壁 | 南北方向 | ④ S _s -D1
(H+, V+) | 3500 | 3000 | 2725 | 2-D51, D29@200 | 4040 | 0 | 1.48 | 21.0 | 0.08 |
| 開口部東側 | 東西方向 | ④ S _s -D1
(H+, V-) | 3000 | 3500 | 3100 | 2-D38, D32@200 | 6027 | 0 | 1.90 | 21.0 | 0.10 |
| B2F北側壁 | 南北方向 | ④ S _s -D 1
(H+, V+) | 4500 | 3000 | 2750 | 2-D38, D32@200 | 5195 | 0 | 1.47 | 21.0 | 0.07 |
| 開口部西側 | 東西方向 | ④ S _s -D 1
(H-, V-) | 3000 | 4500 | 4200 | 2-D38, D35@200 | 3614 | 0 | 0.62 | 21.0 | 0.03 |
| B2F中壁
開口部北側 | 南北方向 | ④ S _s -D1
(H+, V+) | 1500 | 2500 | 2075 | D35, D29@200
D29 | 2084 | 0 | 2.93 | 21.0 | 0.14 |
| B2F中壁
開口部南側 | 南北方向 | ② S _s -D1
(H+, V+) | 1500 | 3850 | 3575 | D38, D29@200
D35, D29@200 | 4428 | 0 | 2.16 | 21.0 | 0.11 |

*曲げモーメントは内空側引張となる時を正とする。

F) 鉄筋の曲げ軸力に対する照査結果

| 設計 検討ケース | | | 断面性状 | | | 鉄筋仕様 | 発生時 | f面力 | 引張 | 短期許容 | 照査値 |
|----------------|-------|----------------------------------|--------|--------|--------|------------------------------|------------------|--------|---------------------------------|-----------------------------------|--------|
| 断面 | 検討ケース | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力反 | 心力度 | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm s} ({\rm N/mm}^2)$ | $\sigma_{\rm s a} ({\rm N/mm}^2)$ | σs/σsa |
| B2F北側壁 | 南北方向 | ④S _s -D1
(H+, V+) | 3500 | 3000 | 2725 | 2-D51,D29@200 | 4040 | 0 | 84 | 435 | 0.20 |
| 開口部東側 | 東西方向 | ④S _s -D1
(H+, V-) | 3000 | 3500 | 3100 | 2-D38, D32@200 | 6027 | 0 | 111 | 435 | 0.26 |
| B2F北側壁 | 南北方向 | ④S _s -D1
(H+, V+) | 4500 | 3000 | 2750 | 2-D38, D32@200 | 5195 | 0 | 86 | 435 | 0.20 |
| 開口部西側 | 東西方向 | ④S _s −D1
(H−, V−) | 3000 | 4500 | 4200 | 2-D38, D35@200 | 3614 | 0 | 39 | 435 | 0.09 |
| B2F中壁
開口部北側 | 南北方向 | ④S _s -D1
(H+, V+) | 1500 | 2500 | 2075 | D35, D29@200
D29 | 2084 | 0 | 176 | 435 | 0.41 |
| B2F中壁
開口部南側 | 南北方向 | ② S _s -D1
(H+, V+) | 1500 | 3850 | 3575 | D38, D29@200
D35, D29@200 | 4428 | 0 | 130 | 435 | 0.30 |

*曲げモーメントは内空側引張となる時を正とする。

| 設計 | 設計 検討ケース | | | 断面性状 | | 鉄筋仕様 | 発生 | 短期許容 | 照査値 |
|----------------|----------|-----------------------------------|--------|--------|--------|-------------|-----------|----------------|------------------|
| 断面 横討クース | | 「「ケース | 部材幅 | 部材高 | 有効高 | (せん断補強筋) | 121016975 | 12 10 19 1 7 1 | |
| | | | b (mm) | h (mm) | d (mm) | | V (kN/m) | $V_a (kN/m)$ | V/V _a |
| B2F北側壁 | 南北方向 | ④ S _s -D 1
(H+, V+) | 3500 | 3000 | 2625 | D19 @200 5本 | 1913 | 8102 | 0.24 |
| 開口部東側 | 東西方向 | $(4) S_s - D 1$
(H+, V-) | 3000 | 3500 | 3000 | D19 @200 5本 | 2853 | 8721 | 0.33 |
| B2F北側壁 | 南北方向 | ④ S _s -D 1
(H+, V+) | 4500 | 3000 | 2625 | D19 @200 7本 | 2459 | 10966 | 0.23 |
| 開口部西側 | 東西方向 | ④ S _s −D 1
(H−, V−) | 3000 | 4500 | 4104 | D19 @200 5本 | 1711 | 11930 | 0.15 |
| B2F中壁
開口部北側 | 南北方向 | ④ S _s -D 1
(H+, V+) | 1500 | 2500 | 2035 | D22 @200 2本 | 987 | 3108 | 0.32 |
| B2F中壁
開口部南側 | 南北方向 | ② S _s -D 1
(H+, V+) | 1500 | 3850 | 3475 | D22 @200 2本 | 2097 | 5308 | 0.40 |

60

38

260

250 250

- 1

९९ D38 3500

黒色の鉄筋:既存の鉄筋 赤色の鉄筋:本検討で必要な補強鉄筋 青枠なし : 南北方向で考慮する鉄筋 青枠あり : 東西方向で考慮する鉄筋

参考図 6-5 (2) 側壁・中壁開口部 (B2F) 概略配筋図

(3) 中壁開口部 (B3F) の評価結果

参考表 6-2(7) 中壁開口部(B3F) コンクリートの曲げ軸力に対する照査結果

| 設計 | | | | 断面性状 | | 鉄筋仕様 | 発生断面力 | | 圧縮 | 短期許容 | 照査値 |
|----------------|-------|----------------------------------|--------|--------|--------|------------------------------|------------------|--------|---------------------------------|-----------------------------|----------------------------------|
| 断面 | 検討ケース | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力度 | 心力度 | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm c} ({\rm N/mm}^2)$ | $\sigma_{\rm c a} (N/mm^2)$ | $\sigma_{\rm c}/\sigma_{\rm ca}$ |
| B3F中壁
開口部北側 | 南北方向 | $(4) S_{s} - D 1$
(H-, V+) | 1500 | 4850 | 4525 | 2-D38, D29@200
D29 | 8899 | 0 | 2.63 | 21.0 | 0.13 |
| B3F中壁
開口部南側 | 南北方向 | ① S _s -D1
(H+, V-) | 1500 | 4000 | 3575 | D38, D29@200
D35, D29@200 | 4004 | 0 | 1.96 | 21.0 | 0.10 |

*曲げモーメントは内空側引張となる時を正とする。

参考表 6-2(8) 中壁開口部(B3F) 鉄筋の曲げ軸力に対する照査結果

| 設計 | 検討ケース | | 断面性状 | | | 鉄筋仕様 | 発生脚 | f面力 | 引張 | 短期許容 | 照査値 |
|----------------|-------|-----------------------------------|--------|--------|--------|------------------------------|------------------|--------|---------------------------------|------------------------|--------------------------|
| 断面 | | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力度 | 心力度 | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm s} ({\rm N/mm}^2)$ | $\sigma_{sa} (N/mm^2)$ | σ_s / σ_{sa} |
| B3F中壁
開口部北側 | 南北方向 | $(4) S_{s} - D 1$
(H-, V+) | 1500 | 4850 | 4525 | 2-D38, D29@200
D29 | 8899 | 0 | 161 | 435 | 0.38 |
| B3F中壁
開口部南側 | 南北方向 | ① S _s -D 1
(H+, V-) | 1500 | 4000 | 3575 | D38, D29@200
D35, D29@200 | 4004 | 0 | 117 | 435 | 0.27 |

*曲げモーメントは内空側引張となる時を正とする。

参考表 6-2(9) 中壁開口部(B3F) せん断に対する照査結果

| 設計 | 設計 検討ケース
断面 | | 断面性状 | | | 鉄筋仕様 | 発生 | 短期許容 | 照査値 | |
|----------------|----------------|------------------------------------|--------|--------|--------|-------------|----------|-----------------------|------------------|--|
| 断面 | | | 部材幅 | 部材高 | 有効高 | (せん断補強筋) | せん断刀 | せん断刀 | | |
| | | | b (mm) | h (mm) | d (mm) | | V (kN/m) | V _a (kN/m) | V/V _a | |
| B3F中壁
開口部北側 | 南北方向 | ④ S _s -D 1
(H-, V+) | 1500 | 4850 | 4353 | D22 @200 3本 | 4119 | 8803 | 0.47 | |
| B3F中壁
開口部南側 | 南北方向 | ① S _s - D 1
(H+, V-) | 1500 | 4000 | 3482 | D22 @200 2本 | 1854 | 5318 | 0.35 | |

(4) 側壁・中壁開口部(B4Fトンネル部)の評価結果

参考表 6-2(10) 側壁・中壁開口部(B4F トンネル部) コンクリートの曲げ軸力に対する照査結果

| 設計 | 検討ケース | | 断面性状 | | | 鉄筋仕様 | 発生断面力 | | 圧縮 | 短期許容 | 照査値 |
|--------------------------|-------|-----------------------------------|--------|--------|--------|----------------|------------------|--------|--|-----------------------------------|--------------------------|
| 断面 | | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力反 | 心力度 | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | σ _c (N/mm ²) | $\sigma_{\rm c~a} ({\rm N/mm}^2)$ | σ_{c}/σ_{ca} |
| B4Fトンネル部 | 南北方向 | ③ S _s -D 1
(H+, V-) | 5000 | 3000 | 2750 | 2-D38@200 | 10086 | 0 | 2.18 | 21.0 | 0.11 |
| 用側壁
開口部東側 | 東西方向 | ④ S _s -D 1
(H-, V-) | 3000 | 5000 | 4700 | 2-D38@200 | 7226 | 0 | 1.00 | 21.0 | 0.05 |
| B4Fトンネル部
南側壁
開口部西側 | 南北方向 | ③ S _s -D 1
(H+, V-) | 4500 | 3000 | 2775 | 2-D38, D32@200 | 9078 | 0 | 2.50 | 21.0 | 0.12 |
| | 東西方向 | ④ S _s -D 1
(H+, V-) | 3000 | 4500 | 4200 | 2-D38, D35@200 | 6981 | 0 | 1.16 | 21.0 | 0.06 |
| B4Fトンネル部
中壁開口部南側 | 南北方向 | ③ S _s -D1
(H+, V-) | 1000 | 2650 | 2325 | 2-D35, D22@200 | 2898 | 0 | 4.89 | 21.0 | 0.24 |

*曲げモーメントは内空側引張となる時を正とする。

参考表 6-2(11) 側壁・中壁開口部(B4F トンネル部) 鉄筋の曲げ軸力に対する照査結果

| 設計 | 検討ケース | | 断面性状 | | | 鉄筋仕様 | 発生断面力 | | 引張 | 短期許容 | 照査値 | |
|--------------------------|-------|-----------------------------------|--------|--------|--------|----------------|------------------|--------|----------------------------------|-----------------------------------|--------------------------|--|
| 断面 | | | 部材幅 | 部材高 | 有効高 | (引張鉄筋) | 曲げモーメント | 軸力 | 心力反 | 心力皮 | | |
| | | | b (mm) | h (mm) | d (mm) | | $(kN \cdot m/m)$ | (kN/m) | $\sigma_{\rm s} ({\rm N/mm}^2)$ | $\sigma_{\rm s a} ({\rm N/mm}^2)$ | σ_s / σ_{sa} | |
| B4Fトンネル部
南側壁
開口部東側 | 南北方向 | ③ S _s -D 1
(H+, V-) | 5000 | 3000 | 2750 | 2-D38@200 | -10086 | 0 | 104 | 435 | 0.24 | |
| | 東西方向 | ④S _s −D1
(H−, V−) | 3000 | 5000 | 4700 | 2-D38@200 | 7226 | 0 | 59 | 435 | 0.14 | |
| B4Fトンネル部
南側壁
開口部西側 | 南北方向 | ③S _s -D1
(H+, V-) | 4500 | 3000 | 2775 | 2-D38, D32@200 | 9078 | 0 | 145 | 435 | 0.34 | |
| | 東西方向 | ④S _s −D1
(H+, V−) | 3000 | 4500 | 4200 | 2-D38, D35@200 | 6981 | 0 | 72 | 435 | 0.17 | |
| B4Fトンネル部
中壁開口部南側 | 南北方向 | ③ S _s -D1
(H+, V-) | 1000 | 2650 | 2325 | 2-D35, D22@200 | 2898 | 0 | 277 | 435 | 0.64 | |

*曲げモーメントは内空側引張となる時を正とする。

| 参考表 6-2 | (12) | 側壁 | • | 中壁開口部 | (B4F | トンネル剖 |
|---------|------|----|---|-------|------|-------|
|---------|------|----|---|-------|------|-------|

部) せん断に対する照査結果

| 設計 | 検討ケース | | | 断面性状 | | 鉄筋仕様 | 発生 | 短期許容
#1 断力 | 照査値 |
|--------------------------|-------|------------------------------------|--------------|---------------|---------------|-------------|----------|-----------------------|------------------|
| 断面 | | | 部材幅
b(mm) | 部材高
h (mm) | 有効高
d (mm) | (せん断補強筋) | V (kN/m) | V _a (kN/m) | V/V _a |
| B4Fトンネル部
南側壁
開口部東側 | 南北方向 | ③S _s -D1
(H+, V-) | 5000 | 3000 | 2625 | D19 @200 7本 | 6655 | 11437 | 0.59 |
| | 東西方向 | ④S _s -D1
(H-, V-) | 3000 | 5000 | 4600 | D19 @200 5本 | 4767 | 13373 | 0.36 |
| B4Fトンネル部
南側壁
開口部西側 | 南北方向 | ③ S _s -D1
(H+, V-) | 4500 | 3000 | 2629 | D19 @200 7本 | 5989 | 10983 | 0.55 |
| | 東西方向 | ④S _s −D1
(H+, V−) | 3000 | 4500 | 4100 | D19 @200 5本 | 4606 | 11919 | 0.39 |
| B4Fトンネル部
中壁開口部南側 | 南北方向 | ③ S _s - D 1
(H+, V-) | 1000 | 2650 | 2225 | D22 @200 2本 | 1913 | 3000 | 0.64 |

凡例 黒色の鉄筋:既存の鉄筋 赤色の鉄筋:本検討で必要な補強鉄筋 青枠なし:南北方向で考慮する鉄筋 青枠あり:東西方向で考慮する鉄筋

参考図 6-5(4) 側壁・中壁開口部(B4F トンネル部) 概略配筋図