本資料のうち,枠囲みの内容 は,営業秘密又は防護上の観点 から公開できません。

東海第二発電所 工事計画審査資料	
資料番号	工認-093 改22
提出年月日	平成 30 年 9 月 27 日

V-3-別添2 火山への配慮が必要な施設の強度に関する説明書

V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針

V-3-別添 2-1-1 残留熱除去系海水系ポンプの強度計算書

- V-3-別添 2-1-2 残留熱除去系海水系ストレーナの強度計算書
- V-3-別添 2-1-3 ディーゼル発電機用海水ポンプの強度計算書
- V-3-別添 2-1-4 ディーゼル発電機用海水ストレーナの強度計算書
- V-3-別添 2-1-5 ディーゼル発電機吸気口の強度計算書
- V-3-別添 2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書
- V-3-別添 2-1-7 建屋の強度計算書
- Ⅴ-3-別添 2-2 防護対策施設の強度計算の方針
 - V-3-別添 2-2-1 防護対策施設の強度計算書

V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針

1. 概要
2. 強度評価の基本方針
2.1 強度評価の対象施設・・・・・・
3. 構造強度設計 ·······
3.1 構造強度の設計方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 機能維持の方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 荷重及び荷重の組合せ並びに許容限界
4.1 荷重及び荷重の組合せ・・・・・20
4.2 許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5. 強度評価方法 · · · · · · · · · · · · · · · · · · ·
5.1 設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.1 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル
発電機を含む。)用海水ポンプ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.2 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル
発電機を含む。)用海水ストレーナ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.3 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口・54
5.1.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ~
ントファン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2 建屋
6. 適用規格 ······ 83

目次

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)第7条及び「実用発電用原子炉及びその附属施設の技術基準に関する規則の解 釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される「重大 事故等対処設備」を踏まえた重大事故等対処設備に配慮する設計とするため、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち「V-1-1-2-4-3 降下火砕物の影響を考慮する施設の設計方針」(以下「V-1-1-2-4-3」という。)に設定してい る降下火砕物の影響を考慮する施設が、降下火砕物に対して構造健全性を維持することを確認す るための強度評価方針について説明するものである。

強度評価は、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する 説明書」のうち「V-1-1-2-4-1 火山への配慮に関する基本方針」(以下「V-1-1-2-4-1」とい う。)に示す適用規格を用いて実施する。

降下火砕物の影響を考慮する施設のうち,設備及び建屋に対する具体的な計算の方法及び結果 は、添付書類「V-3-別添2-1-1 残留熱除去系海水系ポンプの強度計算書」,添付書類「V-3-別添2-1-2 残留熱除去系海水系ストレーナの強度計算書」,添付書類「V-3-別添2-1-3 ディ ーゼル発電機用海水ポンプの強度計算書」,添付書類「V-3-別添2-1-4 ディーゼル発電機用海 水ストレーナの強度計算書」,添付書類「V-3-別添2-1-5 ディーゼル発電機吸気口の強度計算 書」,添付書類「V-3-別添2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書」及び 添付書類「V-3-別添2-1-7 建屋の強度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「2.1 強度評価の対象施設」に示す評価対象施設について、「4.1 荷重及び荷 重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組合せ荷重により発 生する応力が、「4.2 許容限界」で示す許容限界内にあることを、「5. 強度評価方法」で示 す評価方法及び考え方を使用し、「6. 適用規格」で示す適用規格を用いて確認する。

2.1 強度評価の対象施設

V-1-1-2-4-3 の「4. 要求機能及び性能目標」にて設定している構造物への荷重を考慮す る施設のうち,強度評価の対象施設(以下「評価対象施設」という。)となる設備及び建屋を 表 2-1 に示す。なお,構造物への荷重を考慮する施設のうち,防護対策施設を設置する中央制 御室換気系冷凍機並びに降下火砕物が堆積しにくい形状である非常用ディーゼル発電機(高圧 炉心スプレイ系ディーゼル発電機を含む。)排気消音器及び排気管は,評価対象施設として選 定しない。また,評価対象施設のうち防護対策施設の強度評価の方針は,添付書類「V-3-別 添 2-2 防護対策施設の強度計算の方針」に示す。

长司八昭	<i>該</i> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
他設分類	評個 <u>利</u> 家他改		
設備	 ・残留熱除去系海水系ポンプ ・残留熱除去系海水系ストレーナ ・非常用ディーゼル発電機用海水ポンプ及び高圧炉心スプレイ系ディーゼル 発電機用海水ポンプ(以下「非常用ディーゼル発電機(高圧炉心スプレイ 系ディーゼル発電機を含む。)用海水ポンプ」という。) ・非常用ディーゼル発電機用海水ストレーナ及び高圧炉心スプレイ系ディー ゼル発電機用海水ストレーナ(以下「非常用ディーゼル発電機(高圧炉心 スプレイ系ディーゼル発電機を含む。)用海水ストレーナ」という。) ・非常用ディーゼル発電機吸気口及び高圧炉心スプレイ系ディーゼル発電機 吸気口(以下「非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)吸気口」という。) ・非常用ディーゼル発電機室ルーフベントファン及び高圧炉心スプレイ系デ ィーゼル発電機室ルーフベントファン(以下「非常用ディーゼル発電機 		
	(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベントファ ン」という。)		
建屋	 ・原子炉建屋原子炉棟 ・原子炉建屋付属棟 ・タービン建屋 ・使用済燃料乾式貯蔵建屋 		

表 2-1 評価対象施設

3. 構造強度設計

V-1-1-2-4-1で設定している降下火砕物特性に対し, 「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が,構造強度設計上の性能目標を達成するように, V-1-1-2-4-3の「5. 機能設計」で設定している各施設が有する機能を踏まえて,構造強度の設計方 針を設定する。

各施設の構造強度の設計方針を設定し、想定する荷重及び荷重の組合せを設定し、それらの荷 重に対し、各施設の構造強度を保持するように構造設計と評価方針を設定する。

3.1 構造強度の設計方針

V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標 を達成するための設計方針を示す。

- (1) 設備
 - a. 残留熱除去系海水系ポンプ

残留熱除去系海水系ポンプは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の 「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ,想定する降下 火砕物,積雪及び風(台風)による荷重に対し,降下火砕物堆積時の機能維持を考慮して, 海水ポンプ室床面のコンクリート基礎に基礎ボルトで固定し,残留熱除去系海水系ポンプ の主要な構造部材が構造健全性を維持する設計とする。降下火砕物による荷重を短期荷重 とするために,30日以内に降下火砕物を適切に除去することを保安規定に定める。

b. 残留熱除去系海水系ストレーナ

残留熱除去系海水系ストレーナは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の 「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ,想定する降下 火砕物,積雪及び風(台風)による荷重に対し,降下火砕物堆積時の機能維持を考慮して, 海水ポンプ室床面のコンクリート基礎に基礎ボルトで固定し,残留熱除去系海水系ストレ ーナの主要な構造部材が構造健全性を維持する設計とする。降下火砕物による荷重を短期 荷重とするために,30日以内に降下火砕物を適切に除去することを保安規定に定める。

c. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機含む。)用海水ポンプ は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定して いる構造強度設計上の性能目標を踏まえ,想定する降下火砕物,積雪及び風(台風)によ る荷重に対し,降下火砕物堆積時の機能維持を考慮して,海水ポンプ室床面のコンクリー ト基礎に基礎ボルトで固定し,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプの主要な構造部材が構造健全性を維持する設計とする。降 下火砕物による荷重を短期荷重とするために,30 日以内に降下火砕物を適切に除去する ことを保安規定に定める。 d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト レーナ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト レーナは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設 定している構造強度設計上の性能目標を踏まえ,想定する降下火砕物,積雪及び風(台風) による荷重に対し,降下火砕物堆積時の機能維持を考慮して,海水ポンプ室床面のコンク リート基礎に基礎ボルトで固定し,非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ストレーナの主要な構造部材が構造健全性を維持する設計と する。降下火砕物による荷重を短期荷重とするために,30 日以内に降下火砕物を適切に 除去することを保安規定に定める。

- e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口は、 V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定している 構造強度設計上の性能目標を踏まえ、想定する降下火砕物、積雪及び風(台風)による荷 重に対し、降下火砕物堆積時の機能維持を考慮して、脚を溶接で原子炉建屋付属棟屋上面 に設けたコンクリート基礎に固定し、非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)吸気口の主要な構造部材が構造健全性を維持する設計とする。降 下火砕物による荷重を短期荷重とするために、30 日以内に降下火砕物を適切に除去する ことを保安規定に定める。
- f. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファン

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファンは、V-1-1-2-4-3の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」 で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、風(台風)及 び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、原子炉建屋付属棟屋 上面に設けたコンクリート基礎に基礎ボルトで固定し、非常用ディーゼル発電機(高圧炉 心スプレイ系ディーゼル発電機を含む。)室ルーフベントファンの主要な構造部材が構造 健全性を維持する設計とする。降下火砕物による荷重を短期荷重とするために、30 日以 内に降下火砕物を適切に除去することを保安規定に定める。

- (2) 建屋
 - a. 原子炉建屋原子炉棟

原子炉建屋原子炉棟は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、積 雪及び風(台風)による荷重に対し、降下火砕物堆積時の機能維持を考慮して、部材又は 建屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の屋根を、鉄筋コン クリート造の耐震壁等で支持し、支持性能を有する基礎により支持する構造とする。降下 火砕物による荷重を短期荷重とするために、30 日以内に降下火砕物を適切に除去するこ とを保安規定に定める。 b. 原子炉建屋付属棟

原子炉建屋付属棟は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性 能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、風 (台風)及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、部材又は 建屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の屋根を、鉄筋コン クリート造の耐震壁、鉄骨造のはり架構等で支持し、支持性能を有する基礎により支持す る構造とする。降下火砕物による荷重を短期荷重とするために、30 日以内に降下火砕物 を適切に除去することを保安規定に定める。

c. タービン建屋

タービン建屋は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目 標」で設定している構造強度設計上の性能目標を踏まえ,想定する降下火砕物,風(台風) 及び積雪による荷重に対し,降下火砕物堆積時の機能維持を考慮して,部材又は建屋全体 として構造健全性を維持する設計とし,鉄筋コンクリート造の屋根を,鉄筋コンクリート 造の耐震壁等で支持し,支持性能を有する基礎により支持する構造とする。降下火砕物に よる荷重を短期荷重とするために,30 日以内に降下火砕物を適切に除去することを保安 規定に定める。

d. 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の 「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下 火砕物、風(台風)及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、 部材又は建屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の屋根を、 鉄筋コンクリート造の耐震壁等で支持し、支持性能を有する基礎により支持する構造とす る。降下火砕物による荷重を短期荷重とするために、30 日以内に降下火砕物を適切に除 去することを保安規定に定める。

3.2 機能維持の方針

V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を 達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえV-1-1-2-4-1の「2.1.3
(2) 荷重の組合せ及び許容限界」で設定している荷重条件を適切に考慮して、各施設の構造 設計及びそれを踏まえた評価方針を設定する。

- (1) 設備
 - a. 残留熱除去系海水系ポンプ
 - (a) 構造設計

残留熱除去系海水系ポンプは、「3.1 構造強度の設計方針」で設定している設計方 針及びV-1-1-2-4-1の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏ま え、以下の構造とする。

残留熱除去系海水系ポンプは,鋼製の立形ポンプの上に,原動機を取り付け,原動機 によりポンプの軸を回転させる構造とする。 残留熱除去系海水系ポンプはポンプベースに固定する。原動機は原動機台と結合し原 動機台はポンプベースに固定する。ポンプベースは据付面基礎ボルトで基礎に据え付け る。端子箱等のポンプの機能維持に必要な付属品は、原動機にボルトで結合する。

原動機の形状は円筒形を基本とした適切な強度を有する鋼製のフレームに一次側端子 箱が付加された形態とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する原動機上 部に作用し,原動機フレーム及び原動機台を介して床面に伝達する構造とする。また, 風荷重に対しては,原動機フレーム及び原動機台に作用し,据付面基礎ボルトを介して 床面に伝達する構造とする。さらに,ポンプのスラスト荷重は全て原動機フレーム及び 原動機台に作用する。

残留熱除去系海水系ポンプの構造計画を表3-1に示す。

(b) 評価方針

残留熱除去系海水系ポンプは、「(a) 構造設計」を踏まえ、以下の強度評価方針と する。想定する降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用す る部位及び荷重が伝達する部位を踏まえて、残留熱除去系海水系ポンプを構成する原動 機フレーム、原動機台及び据付面基礎ボルトが、おおむね弾性状態に留まることを「5. 強度評価方法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-1 残留熱除去系海水系ポンプの強度計算書」に示す。

齿乳友扮	計画の概要		当田団
旭武石桥	主体構造 支持構造		就的国
【位置】			
残留熱除去	茶海水系ポンプは	,海水ポンプ室に	設置する設計としている。
残留熱除去 系 ホ ス プ	原 動 機 に 結 合 さ れ た ポ ン プ で 構 成 す る。	コンクリート 基礎に据付面 基礎ボルトで 固定する。	原動機フレーム 一次側端子箱 原動機台 据付面基礎ボルト

表 3-1 残留熱除去系海水系ポンプの構造計画

- b. 残留熱除去系海水系ストレーナ
- (a) 構造設計

残留熱除去系海水系ストレーナは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とする。

残留熱除去系海水系ストレーナは, 胴板と支持脚が鋳物一体となった円筒形の容器を 並べて組み合わせ,支持脚をコンクリート基礎に基礎ボルトで固定する構造とする。ま た,ストレーナ上部開口部には蓋が設置されている。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する蓋等のス トレーナ上部に作用し,胴板及び支持脚を介して床面に伝達する構造とする。また,風 荷重に対しては,胴板に作用し,支持脚及び基礎ボルトを介して床面に伝達する構造と する。

残留熱除去系海水系ストレーナの構造計画を表3-2に示す。

(b) 評価方針

残留熱除去系海水系ストレーナは、「(a) 構造設計」を踏まえ、以下の強度評価方 針とする。想定する降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作 用する部位及び荷重が伝達する部位を踏まえて、残留熱除去系海水系ストレーナを構成 する蓋、支持脚及び基礎ボルトが、おおむね弾性状態に留まることを「5. 強度評価方 法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-2 残留熱除去系海水系ストレーナの強度計算書」に示す。

旋迎夕新	計画の概要		三光 日日 157
旭砇石孙	主体構造	支持構造	記号区
【位置】			
残留熱除去	系海水系ストレー	ナは、海水ポンプ	室に設置する設計としている。
残 留 熱 除 ス ト レ ーナ	蓋	支持脚をコン クリート基礎 に基礎ボルト で固定する。	ず 時期 して して

表 3-2 残留熱除去系海水系ストレーナの構造計画

- c. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プ
- (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の 「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とす る。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプは、鋼製の立形ポンプの上に、原動機を取り付け、原動機によりポンプの軸を回転 させる構造とする。

ポンプはポンプベースに固定する。原動機は原動機台と結合し原動機台はポンプベースに固定する。ポンプベースは据付面基礎ボルトで基礎に据え付ける。主回路用端子箱等のポンプの機能維持に必要な付属品は,原動機にボルトで結合する。

原動機の形状は円筒形を基本とした適切な強度を有する鋼製のフレームに、主回路用 端子箱等の付属設備が付加された形態とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する原動機及 び原動機台の上部に作用し,原動機フレーム及び原動機台を介して床面に伝達する構造 とする。また,風荷重に対しては,原動機フレーム及び原動機台に作用し,据付面基礎 ボルトを介して床面に伝達する構造とする。さらに,ポンプのスラスト荷重は全て原動 機フレーム及び原動機台に作用する。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの構造計画を表3-3に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプは、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想定する降下火砕 物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝達す る部位を踏まえて、非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を 含む。)用海水ポンプを構成する原動機フレーム、原動機台及び据付面基礎ボルトが、 おおむね弾性状態に留まることを「5. 強度評価方法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-3 ディーゼル発電機用海水ポンプの強度計算書」に示す。

表 3-3 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ の構造計画

长动友长	計画の概要				
肥設名称	主体構造	支持構造	就明凶		
【位置】 非常用ディ	【位置】 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプは,				
海水ポンフ	プ室に設置する設計	・としている。			
非ィ発(心イー電む海プ常ー電圧プデル後のレイ発含用ンデル機炉レイ発含用ン	原 動 機 に 結 合 で 構 成 す る。	コンクリート 基礎に据付面 基礎ボルトで 固定する。	主回路用端子箱 「泉動機フレーム スペースヒータ 「泉動機台 「泉動機台 「泉動機台 「日本		

- d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト レーナ
- (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1 の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とす る。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナは、胴板と支持脚が鋳物一体となった円筒形の容器を並べて組み合わせ、支持 脚をコンクリート基礎に基礎ボルトで固定する構造とする。また、ストレーナ上部開口 部には蓋が設置されている。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する蓋等のス トレーナ上部に作用し,胴板及び支持脚を介して床面に伝達する構造とする。また,風 荷重に対しては,胴板に作用し,支持脚及び基礎ボルトを介して床面に伝達する構造と する。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナの構造計画を表3-4に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナは、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想定する降下 火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝 達する部位を踏まえて、非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電 機を含む。)用海水ストレーナを構成する蓋、支持脚及び基礎ボルトが、おおむね弾性 状態に留まることを「5. 強度評価方法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-4 ディーゼル発電機用海水ストレーナの強度計算書」に示す。

表 3-4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ストレ ーナの構造計画

	計画の概要		32 日 127
^{施設名称} 主体構造 支持構造		支持構造	就坍凶
【位置】			
非常用ディ	ーゼル発電機(高	正炉心スプレイ系	、ディーゼル発電機を含む。) 用海水ストレーナ
は,海水ホ	ジンプ室に設置する	設計としている。	
非ィ発(心イー電む海レ常ー電店ス系ゼ機。水ー用ゼ電圧プデルを)スナデルを)スナデル後りレィ発含用ト	蓋及時って、 並び支付を あた の の お お て 構 成 す る。	支 持脚をコン クリート基礎 に 固定する。	大 大 大 内 山 山 山 山 山 山 山 山 山 山 山 山 山

NT2 補② V-3-別添 2-1 R8

e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口

(a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口は,「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の

「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロの 構造は4脚たて置円筒形容器構造を主体構造とし,支持脚は原子炉建屋付属棟屋上面に 設けたコンクリート基礎の基礎プレートに溶接により固定する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する吸気口上 面の平板に作用し,胴板及び支持脚を介して床面に伝達する構造とする。また,想定す る風荷重に対しては,胴板に作用し,支持脚及び支持脚基礎溶接部を介して床面に伝達 する構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロの 構造計画を表3-5に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 は、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想定する降下火砕物、 積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝達する部 位を踏まえて、吸気口を構成する平板、胴板、支持脚及び支持脚基礎溶接部が、おおむ ね弾性状態に留まることを「5. 強度評価方法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-5 ディーゼル発電機吸気口の強度計算書」に示す。

表 3-5 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の構造 計画

齿乳友苏	計画の概要		当田回	
主体構造 支持構造		支持構造	1 就明凶	
【位置】 非常用ディ 建屋付属棟	・ーゼル発電機(高 減屋上に設置する設	5圧炉心スプレイ系 計としている。	ミディーゼル発電機を含む。)吸気口は, 原子炉	
非ィ発(心イー電む気常ー 高ス系ゼ機。ロ用ゼ 屈アデルを)	鋼製の円筒形容 器,平板及び支 持脚から構成す る。	原子炉建屋付属 棟屋上面に設け たコンクリート 基礎の基礎プレ ートに溶接で固 定する。	平板 同板 支持脚基礎 支持脚基礎	

- f. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファン
- (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造 とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンは、鋼製のケーシング、ケーシング部より上部の吐出フード及びケーシン グ内の羽根車を主体構造とし、原子炉建屋付属棟屋上面に設けたコンクリート基礎に基 礎ボルトで固定する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する吐出フー ド天板に作用し,吐出フード及びケーシングを介して床面に伝達する構造とする。ま

た,想定する風荷重に対しては,吐出フード及びケーシングに作用し吐出フード取付ボ ルト及び基礎ボルトを介して床面に伝達する構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの構造計画を表3-6に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンは、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想定する 降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重 が伝達する部位を踏まえて、非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)室ルーフベントファンを構成する吐出フード天板、ケーシング、基礎 ボルト及び吐出フード取付ボルトが、おおむね弾性状態に留まることを「5. 強度評価 方法」に示す計算式を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書」に示す。

表 3-6 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベン トファンの構造計画

齿肌反称	計画の概要		⇒光 田 [□]		
旭武石桥	主体構造 支持構造		1 說明凶		
【位置】 非常用ディ ンは, 原子	【位置】 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベントフ ンは,原子炉建屋付属棟屋上に設置する設計としている。				
非ィ発(心イー電むルンン常ー 高ス系ゼ機。ートアデル機炉レイ発含室ベァ	ケーシング,吐 出フード及びケ ーシング内の羽 根車で構成す る。	原子炉建屋付属 棟屋上面に設け たコンクリート 基礎に基礎ボル トで固定する。	吐出フード 吐出フード 取付ボルト ケーシング 基礎ボルト		

- (2) 建屋
 - a. 原子炉建屋原子炉棟
 - (a) 構造設計

原子炉建屋原子炉棟は、「3.1 構造強度の設計方針」で設定している設計方針及び V-1-1-2-4-1 の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、 以下の構造とする。

原子炉建屋原子炉棟は、鉄筋コンクリート造の屋根を、鉄筋コンクリート造の耐震壁 で支持し、十分な支持性能を有する基礎により支持する構造とする。鉄筋コンクリート 造の屋根及び鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては、降下火砕物が堆積する鉄筋コン クリート造の屋根に作用する構造とする。また、想定する風荷重に対しては、鉄筋コン クリート造の耐震壁に作用する構造とする。

原子炉建屋原子炉棟の構造計画を表 3-7 に示す。

(b) 評価方針

協会

原子炉建屋原子炉棟は、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。 想定する降下火砕物,風(台風)及び積雪を考慮した荷重に対し,原子炉建屋原子炉棟 の屋根及び耐震壁が、「4.2 許容限界」で示す許容限界に留まることを「5. 強度評価 方法」に示す応力解析モデル等を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-7 建屋の強度計算書 に示す。

計画の概要		学田区
主体構造	支持構造	元号区

表 3-7 原子炉建屋原子炉棟の構造計画(1/2)

加西市大			弐 旧 図
名称	主体構造	支持構造	1元91四
原子炉建屋原子炉棟			

施設	計画の概要		31 田 図
名称	主体構造	支持構造	17691区
原子炉建屋原子炉棟	鉄一構造の防ト造のび屋根のする。	荷外る壁耐し伝達する。 重殻屋に震,達する。 を成びしたの造	(東西方向断面) (南北方向断面)

表 3-7 原子炉建屋原子炉棟の構造計画(2/2)

- b. 原子炉建屋付属棟
- (a) 構造設計

原子炉建屋付属棟は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1 の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下 の構造とする。

原子炉建屋付属棟は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の耐震壁又 は鉄骨造のはり架構で支持し,十分な支持性能を有する基礎により支持する構造とする。 鉄筋コンクリート造の屋根,鉄筋コンクリート造の耐震壁及び鉄骨造の架構は適切な強 度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コン クリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋コン クリート造の耐震壁及び鉄骨造の架構に作用する構造とする。

原子炉建屋付属棟の構造計画を表 3-8 に示す。

(b) 評価方針

原子炉建屋付属棟は、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想 定する降下火砕物、風(台風)及び積雪を考慮した荷重に対し、原子炉建屋付属棟の屋 根、耐震壁及び鉄骨架構が、「4.2 許容限界」で示す許容限界に留まることを「5. 強度評価方法」に示す応力解析モデル等を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-7 建屋の強度計算書」に示す。

衣 3-8	原于炉 建 座 竹 馮 棟 の 博 宣 計 画 ()	./2)

施設	計画の	の概要	三日 四
名称	主体構造	支持構造	元竹区
原子炉建屋付属棟			

施設	計画の概要		説明図		
名称	主体構造	支持構造	成明因		
原子炉建屋付属棟	鉄リ(造構骨根るの筋ーー)造造であって、おいて、おり、「部の及の構ント鉄主び陸成ク造骨体鉄屋す	荷外る壁耐し、 重殻屋に震、 建構及目を を版構 とする。	(東西方向断面) (南北方向断面)		

表 3-8 原子炉建屋付属棟の構造計画(2/2)

- c. タービン建屋
- (a) 構造設計

タービン建屋は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1 の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構 造とする。

タービン建屋は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の耐震壁で支持 し,十分な支持性能を有する基礎により支持する構造とする。鉄筋コンクリート造の屋 根及び鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コン クリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋コン クリート造の耐震壁に作用する構造とする。

タービン建屋の構造計画を表 3-9 に示す。

(b) 評価方針

タービン建屋は、「(a) 構造設計」を踏まえ、以下の強度評価方針とする。想定す る降下火砕物、風(台風)及び積雪を考慮した荷重に対し、タービン建屋の屋根及び耐 震壁が、「4.2 許容限界」で示す許容限界に留まることを「5. 強度評価方法」に示 す応力解析モデル等を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-7 建屋の強度計算書」に示す。

施設	計画の概要		书田网
名称	主体構造	支持構造	成功因
タービン建屋			

表 3-9 タービン建屋の構造計画(1/2)

施設	計画の概要		38 田 〇
名称	主体構造	支持構造	記明区
タービン建屋	鉄ー構造の「おり」の「「「「」」の「「」では「」では、「」では、「」では、「」では、「」では、「」では、「」では、	荷外る壁耐し伝とする。 重設屋に震,達する。 を成びしを版構	(東西方向断面) (南北方向断面)

表 3-9 タービン建屋の構造計画(2/2)

- d. 使用済燃料乾式貯蔵建屋
- (a) 構造設計

使用済燃料乾式貯蔵建屋は、「3.1 構造強度の設計方針」で設定している設計方針 及びV-1-1-2-4-1 の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏ま え、以下の構造とする。

使用済燃料乾式貯蔵建屋は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の耐 震壁で支持し,十分な支持性能を有する基礎により支持する構造とする。鉄筋コンクリ ート造の屋根及び鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コン クリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋コン クリート造の耐震壁に作用する構造とする。

使用済燃料乾式貯蔵建屋の構造計画を表 3-10 に示す。

(b) 評価方針

使用済燃料乾式貯蔵建屋は、「(a) 構造設計」を踏まえ、以下の強度評価方針とす る。想定する降下火砕物、風(台風)及び積雪を考慮した荷重に対し、使用済燃料乾式 貯蔵建屋の屋根及び耐震壁が、「4.2 許容限界」で示す許容限界に留まることを「5. 強度評価方法」に示す応力解析モデル等を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別添 2-1-7 建屋の強度計算書」に示す。

表 3-10 使用済燃料乾式貯蔵建屋の構造計画(1/2)

施設	計画の概要		計画の概要	
名称	主体構造	支持構造	成門因	
使用済燃料乾式貯蔵建屋				

施設	計画0	つ概要	38 田 回
名称	主体構造	支持構造	記明区
使用済燃料乾式貯蔵建屋	鉄	荷外る屋でする。 するを根作り、 するのす で し、 達 本 る。 は を 根 作 等 礎 版 本 し、 定 で の す の で の す の で の で の で の で の の で の の の の	(南北方向断面)

表 3-10 使用済燃料乾式貯蔵建屋の構造計画(2/2)

4. 荷重及び荷重の組合せ並びに許容限界

評価対象施設の強度評価に用いる荷重及び荷重の組合せを「4.1 荷重及び荷重の組合せ」 に、許容限界を「4.2 許容限界」に示す。

4.1 荷重及び荷重の組合せ

評価対象施設の強度評価にて考慮する荷重は,添付書類「V-1-1-2 発電用原子炉施設の自 然現象等による損傷の防止に関する説明書」のうちV-1-1-2-4-3にて設定しており,それらを 「(1) 荷重の種類」に示す。また,評価対象施設の強度評価にて考慮する荷重の組合せの考 え方は,添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する説明 書」のうちV-1-1-2-4-3にて定めており,これらを踏まえて,強度評価において考慮すべき荷 重の組合せを設定する。評価対象施設の荷重の組合せを「(2) 荷重の組合せ」に示す。

- (1) 荷重の種類
 - a. 常時作用する荷重(F_d)
 常時作用する荷重は、V-1-1-2-4-1の「2.1.3(2)a. 荷重の種類」で設定している常
 時作用している荷重に従って、持続的に生じる荷重である自重及び積載荷重とする。
 - b. 降下火砕物による荷重(F_{v0})

降下火砕物による荷重は、V-1-1-2-4-1の「2.1.2 設計に用いる降下火砕物特性」の 降下火砕物の特性及び「2.1.3(2)a. 荷重の種類」に示す降下火砕物による荷重を踏まえ て、湿潤密度1.5 g/cm³の降下火砕物が50 cm堆積した場合の荷重とする。

c. 積雪荷重(F_s)

積雪深は、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関 する説明書」のうちV-1-1-2-1-1「発電用原子炉施設の自然現象等による損傷の防止に関 する基本方針」(以下「V-1-1-2-1-1」という。)の「4.1(4) 自然現象の組合せの方 針」に示す組み合わせる積雪深を踏まえて、茨城県建築基準法等施行細則(昭和45年3月9 日茨城県規則第9号)による東海村の垂直積雪量30 cmに平均的な積雪荷重*を与えるため の係数0.35を考慮し10.5 cmとする。積雪荷重については、建築基準法施行令第86条第2項 により、積雪量1 cmごとに20 N/m²の積雪荷重が作用することを考慮し設定する。

注記 *: 建築物の構造関係技術基準解説書

d. 風荷重(W)

風速は、V-1-1-2-1-1 の「4.1(4) 自然現象の組合せの方針」に示す組み合わせる風 速を踏まえて、建築基準法施行令に基づく平成12年建設省告示第1454号に定められた東 海村の基準風速である30 m/s とする。風荷重については、施設の形状により風力係数等 が異なるため、施設ごとに設定する。

e. 運転時の状態で作用する荷重(F_p)

運転時の状態で作用する荷重としては、V-1-1-2-4-1の「2.1.3(2)a. 荷重の種類」で 設定している運転時の状態で作用する荷重に従って、ポンプのスラスト荷重等の運転時荷 重とする。

- (2) 荷重の組合せ
 - a. 降下火砕物による荷重,積雪荷重及び風荷重の組合せ 降下火砕物による荷重,積雪荷重及び風荷重については,それらの組合せを考慮し,自 然現象の荷重として扱う。自然現象の荷重は短期荷重として扱う。
 - b. 評価対象施設の荷重の組合せ

評価対象施設の荷重の組合せについては,自然現象の荷重及び常時作用する荷重を組み 合わせる。

ただし,評価対象施設のうち残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高 圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプは,動的機器であるため,運 転時の状態で作用する荷重を考慮する。

残留熱除去系海水系ストレーナ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナは内包水の荷重を考慮する。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口及び 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベン トファンは完全開放された施設であるため,運転時の状態で作用する荷重は考慮しない。

なお、常時作用する荷重、積雪荷重、風荷重及び運転時の状態で作用する荷重について は、組み合わせることで降下火砕物による荷重の抗力となる場合には、評価結果が保守的 となるよう荷重の算出において考慮しないこととする。

上記を踏まえ,対象施設の強度評価における荷重の組合せの設定については,施設の設置状況及び構造等を考慮し設定する。対象施設ごとの荷重の組合せの考え方を表 4-1 に示す。

		荷 重*						
施設 分類	強度評価の 対象施設	常 荷 自 重	F作用 重(F 積 載 荷	する a) 水頭圧	降下火砕 物による 荷重 (F _{v0})	積雪 荷重 (F _s)	風 荷重 (W)	運転時の 状態で作 用する荷 重等 (F)
	 ・残留熱除去系海水系 ポンプ ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)用海 水ポンプ 	0	重		0	0	0	(1 p) O
設備	 ・残留熱除去系海水系 ストレーナ ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)用海 水ストレーナ 	0	_	_	0	0	0	0
	 ・非常用ディーゼル発 電機(高圧炉心スプレイ系ディーゼル発 電機を含む。)吸気 ロ 	0	_	_	0	0	0	_
	 ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)室ル ーフベントファン 	0	_	_	0	0	0	_
建屋	 ・原子炉建屋原子炉棟 ・原子炉建屋付属棟 ・タービン建屋 ・使用済燃料乾式貯蔵 建屋 	0	0	_	0	0	0	_

表 4-1 対象施設ごとの荷重の組合せ

注記 *: 〇は考慮する荷重を示す。

28

(3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重のうち,「4.1(2)a. 降下火砕物による荷 重,積雪荷重及び風荷重の組合せ」で設定している自然現象の荷重の鉛直荷重及び水平荷重 の算出式を以下に示す。鉛直荷重については,添付書類「V-3-別添 2-1-1 残留熱除去系 海水系ポンプの強度計算書」から添付書類「V-3-別添 2-1-7 建屋の強度計算書」の各計 算書にて共通で使用するための算出式を用いた荷重の算出も行う。

a. 記号の定義

荷重の算出に用いる記号を表 4-2 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С	—	風力係数
E'	—	建築基準法施行令第 87 条第 2 項に規定する数値
F		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の
E _r		分布を表わす係数
F _{v0}	N/m^2	湿潤状態の降下火砕物による荷重
F s	N/m^2	積雪荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f s	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
G	—	ガスト影響係数
g	m/s^2	重力加速度
Н	m	全高
H _v	m	降下火砕物の層厚
Ηs	cm	組合せ荷重として考慮する積雪深
q	N/m^2	設計用速度圧
V _D	m/s	基準風速
W	Ν	風荷重
Z _b	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
α	_	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ρ	kg/m^3	降下火砕物の湿潤密度

表 4-2 荷重の算出に用いる記号

b. 鉛直荷重

鉛直荷重については,湿潤状態の降下火砕物及び積雪を考慮する。 湿潤状態の降下火砕物による荷重は,次式のとおり算出する。

 $\mathbf{F}_{\mathbf{v} \mathbf{0}} = \rho \cdot \mathbf{g} \cdot \mathbf{H}_{\mathbf{v}}$

積雪荷重は、次式のとおり算出する。

 $F_s = f_s \boldsymbol{\cdot} H_s$

表 4-3 に入力条件を示す。

			11	
ρ	g	$H_{\rm v}$	f s	H s
(kg/m^3)	(m/s^2)	(m)	$(N/(m^2 \cdot cm))$	(cm)
1500	9.80665	0.5	20	10.5

表 4-3 入力条件

上記式より, $F_{v0} = 7355 \text{ N/m^2}$, $F_s = 210 \text{ N/m^2} である。$

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重(以下「降下火砕物等堆積による鉛直 荷重」という。)は、次式のとおり算出する。

 $F_{v} = F_{v0} + F_{s}$

以上より, F_v'=7565 N/m²とする。

c. 水平荷重

水平荷重については、風を考慮する。風速を建築基準法施行令の基準風速に基づき 30 m/s に設定し、風荷重については施設の形状により異なるため施設ごとに算出する。

風荷重の算出式は建築基準法施行令第87条に基づき、以下のとおりである。

W=q・C・A₁ ここで q=0.6・E'・V_D² E'=E_r²・G E_r=1.7・(H/Z_G)^α(HがZ_bを超える場合) E_r=1.7・(Z_b/Z_G)^α(HがZ_b以下の場合)

4.2 許容限界

許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計 上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに 設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象 部位ごとの許容限界を表 4-4 に示す。

対象施設ごとの許容限界の詳細は,各計算書で評価対象部位の損傷モードを踏まえ,評価項 目を選定し定める。

- (1) 設備
 - a. 残留熱除去系海水系ポンプ

残留熱除去系海水系ポンプの許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している残留熱除去系海水系ポンプの構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 原動機フレーム,原動機台及び据付面基礎ボルト

残留熱除去系海水系ポンプの構造強度評価においては、降下火砕物等堆積による鉛直 荷重、風荷重及びその他の荷重に対し、ポンプを構成する原動機フレーム、原動機台及 び据付面基礎ボルトが、おおむね弾性状態に留まることを計算により確認する評価方針 としていることを踏まえ、JEAG4601に準じて許容応力状態ⅢASの許容応力を 許容限界として設定する。

b. 残留熱除去系海水系ストレーナ 残留熱除去系海水系ストレーナの許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性 能目標」で設定している残留熱除去系海水系ストレーナの構造強度設計上の性能目標及び

「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 蓋,支持脚及び基礎ボルト

残留熱除去系海水系ストレーナの構造強度評価においては,降下火砕物等堆積による 鉛直荷重,風荷重及びその他の荷重に対し,ストレーナを構成する蓋,支持脚及び基礎 ボルトが,おおむね弾性状態に留まることを計算により確認する評価方針としているこ とを踏まえ,蓋に対しては弾性範囲内である設計降伏点S_y並びに支持脚及び基礎ボル トに対してはJEAG4601に準じて許容応力状態Ⅲ_ASの許容応力を許容限界とし て設定する。

c. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン プの許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定しているディー ゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの構造強度設 計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位 ごとに設定する。

(a) 原動機フレーム,原動機台及び据付面基礎ボルト

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプの構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷重及びその他 の荷重に対し、ポンプを構成する原動機フレーム、原動機台及び据付面基礎ボルトが、 おおむね弾性状態に留まることを計算により確認する評価方針としていることを踏まえ、 JEAG4601に準じて許容応力状態Ⅲ▲Sの許容応力を許容限界として設定する。

d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト レーナ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト

レーナの許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している非 常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ストレー ナの構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、 評価対象部位ごとに設定する。

(a) 蓋,支持脚及び基礎ボルト

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナの構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷重及びそ の他の荷重に対し,ストレーナを構成する蓋,支持脚及び基礎ボルトが,おおむね弾性 状態に留まることを計算により確認する評価方針としていることを踏まえ,蓋に対して は弾性範囲内である設計降伏点S_y並びに支持脚及び基礎ボルトに対してはJEAG4 601に準じて許容応力状態ⅢASの許容応力を許容限界として設定する。

- e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の許 容限界は、V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している非常用ディー ゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の構造強度設計上の 性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに 設定する。
- (a) 平板, 胴板, 支持脚及び支持脚基礎溶接部

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の 構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷重及びその他の荷重 に対し,吸気口を構成する平板,胴板,支持脚及び支持脚基礎溶接部が,おおむね弾性 状態に留まることを計算により確認する評価方針としていることを踏まえ,平板に対し ては弾性範囲内である設計降伏点Sy並びに胴板,支持脚及び支持脚基礎溶接部に対し てはJEAG4601に準じて許容応力状態ⅢASの許容応力を許容限界として設定す る。

f. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファン

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベントファンの許容限界は、V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ発電機を含む。)室ルーフベントファンの構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 吐出フード天板,ケーシング,吐出フード取付ボルト及び基礎ボルト

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷重及 びその他の荷重に対し,ファンを構成する吐出フード天板,ケーシング,吐出フード取 付ボルト及び基礎ボルトが,おおむね弾性状態に留まることを計算により確認する評価 方針としていることを踏まえ,吐出フード天板に対しては弾性範囲内である設計降伏点
S_y並びにケーシング,吐出フード取付ボルト及び基礎ボルトに対してはJEAG46 01に準じて許容応力状態Ⅲ_ASの許容応力を許容限界として設定する。

- (2) 建屋
 - a. 原子炉建屋原子炉棟

原子炉建屋原子炉棟の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」 で設定している原子炉建屋原子炉棟の性能目標及び「3.2 機能維持の方針」に示す評 価方針を踏まえて、評価対象部位ごとに設定する。

(a) 屋根

原子炉建屋原子炉棟の構造強度評価においては,降下火砕物等堆積による鉛直荷重, 風荷重及びその他の荷重に対し,評価対象部位に求められる機能が担保できる許容限 界を設定する。屋根スラブは,原子炉建屋原子炉棟の要求機能である放射性物質の閉 じ込め機能(以下「気密性」という。)及び放射線の遮蔽機能(以下「遮蔽性」とい う。)を担保するために,原子力施設鉄筋コンクリート構造計算規準・同解説(以下 「RC-N規準」という。)に基づく短期許容応力度を許容限界として設定する。ま た,主トラス及び母屋(二次部材)は,構造健全性を維持することを性能目標として いることから,終局耐力に対して妥当な安全裕度を有する許容限界を設定する。

(b) 耐震壁

原子炉建屋原子炉棟の構造強度評価においては、降下火砕物等堆積による鉛直荷重、 風荷重及びその他の荷重に対し、構造健全性を維持することを性能目標としているこ とからJEAG4601に基づき最大せん断ひずみ 2.0×10⁻³を耐震壁の許容限界と して設定する。

b. 原子炉建屋付属棟

原子炉建屋付属棟の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で 設定している原子炉建屋付属棟の性能目標及び「3.2 機能維持の方針」に示す評価方 針を踏まえて、評価対象部位ごとに設定する。

(a) 屋根

原子炉建屋付属棟の構造強度評価においては、降下火砕物等堆積による鉛直荷重, 風荷重及びその他の荷重に対し、評価対象部位に求められる機能が担保できる許容限 界を設定する。原子炉建屋付属棟の屋根は内包する防護すべき施設に波及的影響を及 ぼさないことを性能目標としていることから、屋根スラブは終局耐力,主トラス及び 母屋(二次部材)は崩壊機構が形成されないことを許容限界として設定する。

(b) 耐震壁

原子炉建屋付属棟の構造強度評価においては、降下火砕物等堆積による鉛直荷重、 風荷重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼさない ことを性能目標としていることから、JEAG4601に基づき最大せん断ひずみ 4.0×10⁻³を耐震壁の許容限界として設定する。

(c) 鉄骨架構

原子炉建屋付属棟の構造強度評価においては、降下火砕物等堆積による鉛直荷重,

風荷重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼさない ことを性能目標としていることから、建築基準法施行令に基づき層間変形角1/200 を許容限界として選定する。

c. タービン建屋

タービン建屋の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定 しているタービン建屋の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏ま えて、評価対象部位ごとに設定する。

(a) 屋根

タービン建屋の構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷 重及びその他の荷重に対し,評価対象部位に求められる機能が担保できる許容限界を 設定する。タービン建屋の屋根は内包する防護すべき施設に波及的影響を及ぼさない ことを性能目標としていることから,屋根スラブは終局耐力,主トラス及び母屋(二 次部材)は崩壊機構が形成されないことを許容限界として設定する。

(b) 耐震壁

タービン建屋の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷 重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼさないこと を性能目標としていることから、JEAG4601に基づき最大せん断ひずみ 4.0× 10⁻³を耐震壁の許容限界として設定する。

d. 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している使用済燃料乾式貯蔵建屋の性能目標及び「3.2 機能維持の方針」 に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 屋根

使用済燃料乾式貯蔵建屋の構造強度評価においては、降下火砕物等堆積による鉛直 荷重、風荷重及びその他の荷重に対し、評価対象部位に求められる機能が担保できる 許容限界を設定する。屋根は内包する防護すべき施設に波及的影響を及ぼさないこと を性能目標としていることから、屋根スラブは終局耐力を、主トラス及びサブトラス (二次部材)は崩壊機構が形成されないことを許容限界として設定する。

(b) 耐震壁

使用済燃料乾式貯蔵建屋の構造強度評価においては、降下火砕物等堆積による鉛直 荷重、風荷重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼ さないことを性能目標としていることから、JEAG4601に基づき最大せん断ひ ずみ4.0×10⁻³を耐震壁の許容限界として設定する。

+b==0. b #b	荷重の	評価対象	機能損何	 毎モード	赤卤四田
施設名称	組合せ	部位	応力等の状態	限界状態	計谷限外
 ・残留熱除去系 海水系ポンプ 	F _d + F _v + F _p	原動機台	圧縮		
 ・非常用ディー ゼル発電機 (高圧炉心ス プレイ系ディ ーゼル発電機 	$F_{d} + F_{v} +$	原動機 フレーム	曲げ 圧縮	部材が弾性域 に留まらず塑 性域に入る状 態	JEAG46 01に準じて 許容応力状態 Ⅲ _A Sの許容応 カ以下とする*
を含む。) 用 海水ポンプ	W+F $_{\rm p}$	据付面 基礎ボルト	引張 せん断 組合せ		
 ・残留熱除去系 海水系ストレ ーナ 	F _d + F _v + F _p	蓋	曲げ	部材が弾性域 に留まらず塑 性域に入る状	弾性範囲内で ある設計降伏 点Syとする
 ・非常用ディー ゼル発電機 (高圧炉心ス プレイ系ディ 		支持脚	圧縮		J E A G 4 6 0 1 に 準じて
ーゼル発電機 を含む。)用 海水ストレー ナ	$F_{d} + F_{v} + W + F_{p}$	基礎 ボルト	引張 せん断 組合せ		許容応力状態 Ⅲ _A Sの許容応 力以下とする*

表 4-4 施設ごとの許容限界(1/6)

F d: 常時作用する荷重

W:風荷重

F_v:降下火砕物等堆積による鉛直荷重

F_p:運転時の状態で作用する荷重

注記 *:表 4-5 JEAG4601「クラス2,3支持構造物」の許容限界を準用する。

協設夕称	荷重の	評価対象	機能損	傷モード	
旭設石が	組合せ	部位	応力等の状態	限界状態	計谷11275
	$F_{d} + F_{V}$	平板	曲げ		弾性範囲内で ある設計降伏 点Syとする
・非常用ディー ゼ ル 発 電 機 (高圧炉心ス		胴板	一次一般膜 一次 一次+二次	部材が弾性域 に留まらず塑	JEAG46 01に準じて 許容応力状態 Ⅲ _A Sの許容応 力以下とする [*] 1,2
 レイ ボノイ ーゼル発電機 を含む。)吸 気口 	$F_{d} + F_{V}$ +W	支持脚	組合せ 座屈 (圧縮+曲げ)	性域に入る状 態	
		支持脚基礎 溶接部	引張 せん断 組合せ		
	F _d + F _v	吐出フード 天板	曲げ	部 材 が 弾 性 域 に 入 る 状 態	弾性範囲内で ある設計降伏 点Syとする
・非常用ディー ゼ ル 発 電 機 (高圧炉心ス プレイ系ディ ーゼル発電機 を含む。)室 ルーフベント ファン		ケーシング	圧縮		
		吐出フード 取付ボルト	引張 せん断 組合せ		JEAG46 01に準じて 許容応力状態 Ⅲ _A Sの許容応
	+ W	基礎ボルト	引張 せん断 組合せ		カ以下とする*1

表 A-A 協設ごとの 許 原 (9/6)

F_d:常時作用する荷重

W:風荷重

F_v:降下火砕物等堆積による鉛直荷重

注記 *1:表 4-5 JEAG4601「クラス2,3支持構造物」の許容限界を準用する。 *2:表4-6 JEAG4601「クラス2,3容器」の許容限界を準用する。

NT2 補② V-3-別添 2-1 R8

				÷ •			
施設名称	要求機能	構造強度 設計上の 性能目標		部位	構造健全性維持 のための考え方	許容限界	評価に用いる 基準
			民	屋根 スラブ	部材に生じる応力が	終局耐力に対し妥 当な安全余裕を有 する許容限界	RC-N規準の 短期許容応力度*1
	_	構造健全性 を維持する	全 根 —	主トラス	構造強度を確保する ための許容限界を超 えないことを確認	終局耐力に対し妥 当な安全余裕を有 する許容限界	弾性限耐力*2
原		こと		母屋 (二次部材)			
子炉建屋原子炉				耐震壁	最大せん断ひずみが 構造強度を確保する ための許容限界を超 えないことを確認	最大せん断 ひずみ 2.0×10 ⁻³	最大せん断 ひずみ 2.0×10 ⁻³
棟	気密性	換気性能と あい 家 機 時 す る こ と		屋根 スラブ	部材に生じる応力が 気密性を維持するた めの許容限界を超え ないことを確認	短期許容応力度	R C - N 規準の 短期許容応力度
	遮蔽性	 遮蔽体の損 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		屋根 スラブ	部材に生じる応力が 遮蔽性を維持するた めの許容限界を超え ないことを確認	短期許容応力度	RC-N規準の 短期許容応力度

表 4-4 施設ごとの許容限界 (3/6)

注記 *1:構造強度に対しては、「終局耐力に対し妥当な安全余裕を有する許容限界」が許容限 界となるが、気密性、遮蔽性において「短期許容応力度」を許容限界としていること から、「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会、 2005)」(以下「RC-N規準」という。)の短期許容応力度で評価

*2:弾性限耐力として「鋼構造設計規準-許容応力度設計法-((社)日本建築学会, 2005)」(以下「S規準」という。)の短期許容応力度の評価式に平成12年建設省告 示第2464号に基づきF値×1.1を適用

施設名称	要求機能	構造強度 設計上の 性能目標		部位	構造健全性維持 のための考え方	許容限界*1	評価に用いる 基準
				屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	弾性限耐力 ^{*2}
原子炉建		内包する防護すべき施	座 根	母屋 (二次部材)	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成さ れないこと	崩壊機構が形成 されないこと* ³
屋付属棟		設に波及的 影響を及ぼ さないこと		耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ ^{*7} 2.0×10 ⁻³
				鉄骨架構	層間変形角が構造強度 を確保するための許容 限界を超えないことを 確認	層間変形角 1/200	層間変形角 1/200

表 4-4 施設ごとの許容限界(4/6)

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として母屋が崩壊しないことを許容限界とする。

- *2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用
- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991(谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)
- *7:原子炉建屋原子炉棟と一体構造であることから,原子炉建屋原子炉棟の許容限界を適 用する。

施設名称	要求機能	構造強度 設計上の 性能目標		部位	構造健全性維持 のための考え方	許容限界*1	評価に用いる 基準
			1	屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	弾性限耐力*2
タービン	_	内包する防 護すべき施 設に波及的	屋根	主トラス	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構	崩壊機構が形成さ	崩壊機構が形成
建屋		影響を及ぼ さないこと		母屋 (二次部材)	さないために崩壊機構 が形成されないことを 確認	れないこと	されないこと*3
				耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 4-4 施設ごとの許容限界 (5/6)

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として主トラス、母屋が崩壊しないことを許容限界とす る。

- *2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用
- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第
 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991(谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)

施設名称	要求機能	構造強度 設計上の 性能目標		部位	構造健全性維持 のための考え方	許容限界*	評価に用いる 基準
使田			П	屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	RC-N規準の 短期許容応力度
舟済燃料乾 台	_	 内包する防 護すべき施 器に波及的 	屋根	主トラス	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成	S規準の
入貯蔵建屋		影響を及ぼ さないこと		サブトラス (二次部材)		されないこと	短期許容応力度
				耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 4-4 施設ごとの許容限界(6/6)

注記 *:複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局耐 力を許容限界とし、構造体として主トラス、母屋が崩壊しないことを許容限界とす る。

		•	,				
許容応力		許容限界*					
	状態	一次一般膜応力	一次	一次+二次応力			
	IIIAS	Syと0.6Suの小さい方。 ただし,オーステナイト系ステン レス鋼及び高ニッケル合金につい ては上記値と1.2Sとの大きい方。	左欄の1.5倍の値	2 S y			

表 4-5 JEAG 4 6 0 1 「クラス 2, 3 容器」の許容限界

注記 *:座屈に対する評価が必要な場合には、クラスMC容器の座屈に対する評価式による。

	$\mathcal{X} = \mathcal{Y}$	BIIO I 0	0 1 / / /	=; ◎ ><:::1		ж Л
		許容	許容[限界*		
許容応		(ボル	(ボル	ト等)		
力状態		一次	一次応力			
	圧縮	曲げ	引張	せん断	引張	せん断
III _A S	1.5f c	1.5f b	1.5f t	1.5f s	1.5f t	1.5f s

表 4-6	J E A G 4 6 0 1	「クラス 2,	3支持構造物」	の許容限界

注記 *: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既文献にお いて適用が妥当とされる手法に基づき実施することを基本とする。

・ FEM等を用いた解析法

・ 定式化された評価式を用いた解析法

風荷重による影響を考慮する施設については、建築基準法施行令等に基づき風荷重を考慮 し、設備の受圧面に対して等分布荷重として扱って良いことから、評価上高さの1/2又は荷重 作用点より高い重心位置に集中荷重として作用するものとしており、これはJEAG4601耐 震評価における1質点モデルと等価なものであり、地震荷重を風荷重と置き換えJEAG460 1に基づき評価を行う。

風荷重を考慮した,降下火砕物等堆積による鉛直荷重が作用する場合に強度評価を行う施 設のうち,設備及び建屋の強度評価方法を以下に示す。

- 5.1 設備
 - 5.1.1 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプ
 - (1) 評価条件

残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼ ル発電機を含む。)用海水ポンプの強度評価を行う場合,以下の条件に従うものとする。

- a. 風荷重による影響が大きな原動機フレーム及び据付面基礎ボルトの強度計算モデルは, 1 質点系モデルとし, JEAG4601の立形ポンプの計算方法を参考に評価を行う。 なお,1 質点系モデルの強度計算において,評価上の高さの1/2 又は荷重作用点より高 い重心位置に集中荷重として作用するものとする。計算モデルを図 5.1.1-1 及び図 5.1.1-2 に示す。
- b. 鉛直荷重によって一様な応力が発生する原動機台は、機械工学便覧の計算方法を用い て評価を行う。
- c. 計算に用いる寸法は公称値を使用する。
- d. 水平方向と鉛直方向のモーメントの組合せは、安全側に絶対和の評価とする。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.1-1 に示す。

評価対象部位	応力等の状態		
原動機台	圧縮		
原動機フレーム	曲げ、圧縮		
据付面基礎ボルト	引張, せん断, 組合せ		

表 5.1.1-1 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの強度評価に用いる記号を表 5.1.1-2 に示す。

記号	単位	定義
A 2	m ²	降下火砕物等の堆積面積
A _b	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B 4	mm	原動機フレーム内径
d	mm	基礎ボルト呼び径
F	Ν	JSME SSB-3121.1 により規定される値
F _d	Ν	原動機自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F i	Ν	各ボルトに作用する引張力
F n	Ν	ボルトに作用する最大引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
H s	Ν	原動機自重及びポンプスラストによる軸方向荷重
h	mm	取付面から荷重作用点までの距離
L i	mm	ボルト間の距離
L _n	mm	各ボルト間距離のうち最長距離
М	N•mm	評価対象部位に作用するモーメント
M_{1}	N•mm	水平荷重により原動機フレームに作用するモーメント
M_2	N•mm	鉛直荷重により原動機フレームに作用するモーメント
m	kg	原動機の質量
Ν	—	ボルトの本数
Р	kg	ポンプスラスト荷重
Q _b	Ν	ボルトに対するせん断力
S $_1$	mm^2	原動機台の断面積
S ₂	mm^2	原動機フレームの断面積
Z	mm ³	断面係数
π	—	円周率
σс	MPa	評価対象部位に生じる圧縮応力
σь	MPa	原動機フレームに生じる曲げ応力
σ _t	MPa	基礎ボルトに生じる引張応力
τ	MPa	せん断応力

表 5.1.1-2 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ポンプの強度評価に用いる記号

b. 計算モデル

図 5.5.1-1 1 質点系モデル図 (原動機フレーム)

図 5.1.1-2 1 質点系モデル図(据付面基礎ボルト)

- c. 応力計算
 - (a) 鉛直方向荷重
 - イ. 降下火砕物等堆積による鉛直荷重

 $F_v = F_v \cdot A_2$

H_s=F_d+F_p ここで, F_d=m・g F_p=P・g (b) 原動機台に生じる応力

イ. 圧縮応力

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S_{1}}$$

$$\Xi \equiv \overline{C},$$

$$S_{1} = \frac{\pi}{4} (B_{1}^{2} - B_{2}^{2})$$

原動機台の断面図を図 5.1.1-3 に示す。

図 5.1.1-3 原動機台の断面図

- (c) 原動機フレームに生じる応力
 - イ. 曲げ応力

原動機フレームに生じる曲げ応力σьは次式より算出される。

(イ) 風(台風)による水平荷重により原動機フレームに作用するモーメントM₁

$$M_1 = W \cdot h$$

(ロ) 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H_{s}\right) \cdot B_{3}}{2}$$
(ハ) 原動機フレームに作用するモーメントM

$$M = M_{1} + M_{2}$$
(ニ) 曲げ応力

$$\sigma_{b} = \frac{M}{Z}$$
ここで

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}}\right)$$

ロ. 圧縮応力

原動機フレームに生じる圧縮応力σ。は次式より算出される。

$$\sigma_{\rm c} = \frac{F_{\rm v} + H_{\rm s}}{S_2}$$

ここで,

$$S_{2} = \frac{\pi}{4} (B_{3}^{2} - B_{4}^{2})$$

原動機フレームの断面図を図 5.1.1-4 に示す。

図 5.1.1-4 原動機フレームの断面図

- (d) 据付面基礎ボルトに生じる応力
 - イ. 引張応力

据付面基礎ボルトに生じる引張応力σ_tは次式より算出される。 (イ) 引張力

$$M=2\sum_{i=1}^{n} F_{i} \cdot L_{i} \quad . . \quad (5.1.1-1)$$

$$\frac{F_{i}}{L_{i}} = -\overline{z} \qquad \cdot \cdot \cdot (5.1.1 - 2)$$

(5.1.1-1) (5.1.1-2) 式より,

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$

ここで, Mは以下による。

$$M = W \cdot h + (F_v + H_s) \cdot \frac{L_n}{2}$$

(ロ) 引張応力

$$\sigma_{t} = \frac{F_{n}}{A_{b}}$$

ここで, 据付面基礎ボルトの軸断面積 A b は

$$A_b = \frac{\pi}{4} d^2$$

ロ. せん断応力

据付面基礎ボルトに生じるせん断応力 τ は次式より算出される。据付面基礎ボルト全本数でせん断力を受けるものとして計算する。

(イ) せん断力

$$Q_{b} = W$$

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

- 5.1.2 残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ストレーナ
 - (1) 評価条件

残留熱除去系海水系ストレーナ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価を行う場合,以下の条件に従うもの とする。

- a. 降下火砕物が堆積する蓋に対し,等分布荷重が作用する平板円板として機械工学便覧 の計算方法を用いて評価を行う。計算モデル図を図 5.1.2-1 に示す。
- b. 風荷重による影響が大きな基礎ボルトの強度計算モデルは、1 質点系モデルとし、計 算モデルが類似しているJEAG4601の横形ポンプの計算方法を参考に評価を行う。 なお、1 質点系モデルの強度計算において、評価上高さの1/2 又は荷重作用点より高い 重心位置に集中荷重として作用するものとする。計算モデル図を図5.1.2-2 に示す。
- c. 鉛直荷重によって一様な応力が発生する支持脚は,機械工学便覧の計算方法を用いて 評価を行う。
- d. 計算に用いる寸法は公称値を使用する。
- e. 降下火砕物等堆積による鉛直方向荷重については、平板の面積に対し降下火砕物等の 層厚より上載質量を算出し入力荷重として設定する。
- f. 水平方向と鉛直方向のモーメントの組合せは、安全側に絶対和の評価とする。
- g. 通常運転時状態の保有水量状態を考慮し,評価を行う。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.2-1 に示す。

評価対象部位	応力等の状態		
盖	曲げ		
支持脚	圧縮		
基礎ボルト	引張, せん断, 組合せ		

表 5.1.2-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価に用いる記号を表 5.1.2-2 に示す。

記号	単位	定義
A_2	m^2	降下火砕物等の堆積面積
A _b	mm ²	基礎ボルトの軸断面積
а	mm	蓋の外半径
B _{x 1}	mm	支持脚の寸法
B _{x 2}	mm	支持脚の寸法
B _{y 1}	mm	支持脚の寸法
B y 2	mm	支持脚の寸法
d	mm	基礎ボルト呼び径
F	MPa	JSME SSB-3121.1(1)により規定される値
Fь	Ν	基礎ボルトに対する引張力
F _d	Ν	ストレーナ自重(内包水含む)による荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
H s	Ν	支持脚に常時作用するストレーナ自重(内包水含む)の荷重
h	mm	蓋の板厚
h g	mm	ストレーナ重心高さ
L 1	mm	基礎ボルト間の水平距離
L _H	mm	重心から基礎ボルト間の水平距離
m	kg	容器の有効運転質量*
Ν	—	基礎ボルトの本数
n _f	—	引張力を受ける基礎ボルトの本数
р	N/mm^2	蓋に作用する等分布荷重
\mathbf{Q}_{b}	Ν	基礎ボルトに対するせん断力
S	mm^2	支持脚の断面積
π	—	円周率
σ _b	MPa	蓋に生じる曲げ応力
σс	MPa	支持脚に生じる圧縮応力
σ _t	MPa	基礎ボルトに生じる引張応力
τ	MPa	基礎ボルトに生じるせん断応力

表 5.1.2-2 残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価に用いる記号

注記 *: 有効運転質量は、容器の満水時における質量とする。

b. 計算モデル

図 5.1.2-1 等分布荷重による計算モデル図

図 5.1.2-2 1 質点系モデル図

- c. 応力計算
 - (a) 鉛直方向荷重
 - イ. 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

ロ. 支持脚に常時作用するストレーナ自重による軸方向荷重

H $_{s}$ = F $_{d}$

ここで,

 $F_{d} = m \cdot g$

- (b) 蓋に生じる応力
 - イ. 曲げ応力

蓋に生じる曲げ応力σьは次式より算出される。

$$\sigma_{b} = 1.24 \cdot \frac{p \cdot a^{2}}{h^{2}}$$

- (c) 支持脚に生じる応力
 - イ. 圧縮応力

支持脚に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S}$$

$$\Xi = \left\{ \left(B_{x1} \cdot B_{y1} \cdot 2 \right) + \left(B_{x2} \cdot B_{y2} \right) \right\} \cdot 4$$

支持脚の断面図を図 5.1.2-3 に示す。

図 5.1.2-3 支持脚の断面図

- (d) 基礎ボルトに生じる応力
 - イ. 引張応力

基礎ボルトに生じる引張応力σ_tは次式より算出される。

最も厳しい条件として,基礎ボルトを支点とする転倒を考え,これを片側の基礎 ボルトで受けるものとして計算する。

(イ) 引張力

$$\mathbf{F}_{b} = \frac{\mathbf{W} \cdot \mathbf{h}_{g} + (\mathbf{m} \cdot \mathbf{g} + \mathbf{F}_{v}) \mathbf{L}_{H}}{\mathbf{n}_{f} \cdot \mathbf{L}_{1}}$$

(ロ) 引張応力

$$\sigma_{\rm t} = \frac{F_{\rm b}}{A_{\rm b}}$$

ここで, 基礎ボルトの軸断面積Abは

$$A_b = \frac{\pi}{4} d^2$$

ロ. せん断応力

基礎ボルトに生じるせん断応力 τ は次式より算出される。基礎ボルト全本数でせん断力を受けるものとして計算する。

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{\mathbf{b}}}{\mathbf{A}_{\mathbf{b}} \cdot \mathbf{N}}$$

- 5.1.3 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口
 - (1) 評価条件 非常用ディーゼル発電機高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の強度 評価を行う場合,以下の条件に従うものとする。
 - a. 降下火砕物が堆積する平板に対し,等分布荷重が作用する周辺支持円板として機械工 学便覧の計算方法を用いて評価を行う。計算モデル図を図 5.1.3-1 に示す。
 - b. 風荷重による影響が大きな胴板,支持脚及び支持脚基礎溶接部の強度計算モデルは、 1 質点系モデルとし、JEAG4601の4脚たて置円筒形容器又は機械工学便覧の計算方法を準用し評価を行う。なお、1 質点系モデルの強度計算において、評価上高さの 1/2 又は荷重作用点より高い重心位置に集中荷重として作用するものとする。計算モデル図を図5.1.3-2に示す。
 - c. 計算に用いる寸法は、公称値を使用する。
 - d. 降下火砕物等堆積による鉛直方向荷重については、平板の面積に対し降下火砕物等の 層厚より上載質量を算出し入力荷重として設定する。
 - e. 水平方向と鉛直方向のモーメントの組合せは、安全側に絶対和の評価とする。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.3-1 に示す。

評価対象部位	応力等の状態
平板	曲げ
	一次一般膜,一次
加四水火	一次+二次
古年四	組合せ,
又行网	座屈(圧縮+曲げ)
支持脚基礎溶接部	引張、せん断、組合せ

表 5.1.3-1 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロの 強度評価に用いる記号を表 5.1.3-2 に示す。

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。) 吸気口の強度評価に用いる記号(1/6)

記号	単位	定義
A_2	m^2	降下火砕物等の堆積面積
A s	mm^2	脚の断面積
A s r	mm^2	脚の半径方向軸に対する有効せん断断面積
A _{st}	mm^2	脚の周方向軸に対する有効せん断断面積
A_{w}	mm^2	支持脚基礎溶接部の有効面積
а	mm	平板の外半径
C 1	mm	アタッチメントである脚の胴への取付部の幅の 1/2(胴の周方向)
C 2	mm	アタッチメントである脚の胴への取付部の幅の 1/2(胴の軸方向)
C _c , C _L	_	応力の補正係数
D 1	mm	胴の内径
D _o	mm	吸気口幅(全幅)
Е	MPa	胴の縦弾性係数
E _s	MPa	脚の縦弾性係数
F	MPa	JSME SSB-3121.1(1)により規定される値
F ₀	Ν	振動モデル系における水平力
F _d	Ν	運転時の状態で作用する荷重
F ,'	N/m^2	単位面積当たりの積雪による鉛直荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f _c	MPa	脚の許容圧縮応力
f _{br}	MPa	脚の半径方向軸まわりの許容曲げ応力
f _{b t}	MPa	脚の半径方向に直角な方向の軸まわりの許容曲げ応力
f s	MPa	脚の許容せん断応力
$f_{\rm t}$	MPa	脚の許容引張応力
G s	MPa	脚のせん断弾性係数
h	mm	平板の板厚
Ι	mm^4	胴の断面2次モーメント
I sr	mm^4	脚の半径方向軸に対する断面2次モーメント
I _{s t}	mm^4	脚の周方向軸に対する断面2次モーメント
J s	mm^4	脚のねじりモーメント係数
K c	_	脚の胴つけ根部における周方向曲げモーメントに対する局部ばね定数
K	_	胴の脚つけ根部における長手方向曲げモーメントに対する局部ばね定
κL		数

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)

- 败気日の強度評価に用いる記方(2/

記号	単位	定義
K r	_	胴の脚つけ根部における半径方向荷重に対する局部ばね定数
k L	_	アタッチメントパラメータ軸方向の補正係数
k _c	_	アタッチメントパラメータ周方向の補正係数
L	mm	脚の長さ
L ₁	mm	支持脚間水平距離
L _c	mm	脚の中立軸間の距離
L g	mm	基礎から容器上部重心までの距離
L _H	mm	重心から支持脚間の水平距離
M_{1}	N•mm	風荷重(Z方向)による胴の脚つけ根部の鉛直方向モーメント
M_{3}	N•mm	風荷重(Z方向)による胴の脚つけ根部のねじりモーメント
$M_{\rm c}$	N•mm	風荷重(Z方向)による胴の脚つけ根部の周方向モーメント(圧縮側)
M_{L}	N•mm	運転時質量による胴の脚つけ根部の鉛直方向モーメント(引張側)
M	N • mm	降下火砕物荷重,積雪荷重による胴の脚つけ根部の鉛直方向モーメント
IVI L 2		(引張側)
M _x	N•mm	胴に生じる軸方向の曲げモーメント
${ m M}_{\phi}$	N•mm	胴に生じる周方向の曲げモーメント
m ₀	kg	運転時質量
N _x	N/mm	胴に生じる軸方向の膜力
N $_{\phi}$	N/mm	胴に生じる周方向の膜力
р	N/mm^2	平板に作用する等分布荷重
Р	Ν	運転時質量による胴の脚つけ根部の半径方向荷重
P 1	Ν	風荷重(Z方向)による胴の脚つけ根部の半径方向荷重
P 2	Ν	降下火砕物荷重及び積雪荷重による胴の脚つけ根部の半径方向荷重
Q	Ν	風荷重(Z方向)による胴の脚つけ根部の周方向荷重
Q_1	Ν	支持脚に作用するせん断荷重
R	Ν	運転時質量による脚の軸力
R $_1$	Ν	風荷重(Z方向)により脚に作用する軸力
R ₂	Ν	降下火砕物荷重及び積雪荷重により脚に作用する軸力
r _m	mm	胴の平均半径
t	mm	胴の板厚
Т	Ν	支持脚に作用する引張荷重
u	mm	脚の中心軸から胴の板厚中心までの距離

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。) 吸気ロの強度評価に用いる記号(3/6)

記号	単位	定義
W_1	Ν	風(台風)による水平荷重
W_2	Ν	降下火砕物堆積による鉛直荷重
W_3	Ν	積雪による鉛直荷重
Z _{sr}	mm ³	脚の半径方向軸に対する断面係数
Z s t	mm ³	脚の周方向軸に対する断面係数
β, β_1, β_2 β_c, β_L	_	アタッチメントパラメータ
Δr	mm	運転時質量による胴の半径方向局部変位量
Δ _{r1}	mm	水平力F₀による胴の半径方向局部変位量
Δ x 1	mm	水平力 F o による第1脚上端の水平方向変位量
Δ x 3	mm	水平力 Foによる第2脚上端の水平方向変位量
Δ y 1	mm	水平力 F o による第1脚の鉛直方向変位量
θ	rad	運転時質量による胴の脚つけ根部における局部傾き角
θ ο	rad	水平力Fοによる胴の中心軸の傾き角
θ_{1}	rad	水平力 F o による第1脚の傾き角(圧縮側)
θ 2	rad	水平力 F o による 胴の 第1 脚つけ 根部における 局部 傾き 角
heta 3	rad	水平力 F o による第2脚の傾き角
π	—	円周率
α	—	地表面粗度区分に応じて建設省告示 1454 号に掲げる数値
σ	MPa	胴の一次一般膜応力の最大値
σ _{οφ}	MPa	胴の周方向一次一般膜応力
σ _{0 x}	MPa	胴の軸方向一次一般膜応力
σ 1	MPa	胴の一次応力の最大値
σ ₂	MPa	胴の一次+二次応力の最大値
$\sigma_{11} \sim \sigma_{14}$	MPa	風荷重(Z方向)が作用した場合の胴の組合せ一次応力
σ ₁₅ , σ ₁₆	MPa	風荷重(X方向)が作用した場合の胴の組合せ一次応力
$\sigma_{21}\sim\sigma_{24}$	MPa	風荷重(Z方向)が作用した場合の胴の組合せ一次+二次応力
σ ₂₅ , σ ₂₆	MPa	風荷重(X方向)が作用した場合の胴の組合せ一次+二次応力
σ _s	MPa	脚の組合せ応力の最大値
σt	MPa	支持脚基礎溶接部に生じる引張応力

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)

記号	単位	定義		
σ _{s1} , σ _{s2}	MPa	運転時質量による脚の圧縮応力、曲げ応力		
σ _{s3} , σ _{s4}	MPa	降下火砕物荷重及び積雪荷重による脚の圧縮応力、曲げ応力		
$\sigma_{\rm s5}\sim\sigma_{\rm s7}$	MPa	風荷重(Z方向)による脚の圧縮応力、曲げ応力		
$\sigma_{s8} \sim \sigma_{s10}$	MPa	風荷重(X方向)による脚の圧縮応力、曲げ応力		
σ _{sc}	MPa	脚の圧縮応力の和		
σ _{sr}	MPa	脚の半径方向軸まわりの圧縮側曲げ応力の和		
σst	MPa	脚の半径方向に直角な軸まわりの圧縮側曲げ応力の和		
σ _{sx}	MPa	風荷重(X方向)が作用した場合の脚の組合せ応力		
σ sz1, σ sz2	MPa	風荷重(Z方向)が作用した場合の脚の組合せ応力		
σ _x	MPa	互いに直交する垂直応力		
σ _y	MPa	互いに直交する垂直応力		
σ _{x1}	MPa	静水頭又は内圧による胴の軸方向応力		
σ φ 1	MPa	静水頭又は内圧による胴の周方向応力		
σ _{x2}	MPa	運転時質量による胴の軸方向応力		
σ _{x3}	MPa	運転時質量により生じる鉛直方向モーメントによる胴の軸方向応力		
σ _{φ3}	MPa	運転時質量により生じる鉛直方向モーメントによる胴の周方向応力		
σ _{x4}	MPa	運転時質量により生じる半径方向荷重による胴の軸方向応力		
σ φ 4	MPa 運転時質量により生じる半径方向荷重による胴の周方向応力			
σ _{x 5}	MPa	応力が作用した場合の転倒モーメントによる胴の軸方向応力		
σ _{x 7}	MPa	降下火砕物荷重及び積雪荷重による胴の軸方向応力		
G 0	MPa	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメントによ		
0 x 8		る胴の軸方向応力		
G + 0	MPa	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメントによ		
υ φ 8	мга	る胴の周方向応力		
G = 0	MPa	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による胴の		
0 x 9	MI a	軸方向応力		
G + 0	MPa	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による胴の		
υ φ 9	m a	周方向応力		
$\sigma_{\phi 10}, \sigma_{v 10}$	MPa	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメントによ		
φ10, 0 x10		る胴の局部応力		
0 4 1 1 4 0 1 1	MPa	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による胴の		
$0_{\phi 11}, 0_{x11}$		局部応力		

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)

必	(気日(5/	6)
記号	単位	定義
σ x 6 1, σ x 6 2	MPa	風荷重(Z方向)が作用した場合の半径方向荷重による胴の軸方
		向応力
$\sigma_{\phi 61}, \sigma_{\phi 62}$	MPa	風荷重(Z方向)が作用した場合の半径方向荷重による胴の周方
		向応力
σ x 7 1, σ x 7 2	MPa	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴
		の軸方向応力
0 + 7 1 0 + 7 9	MPa	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴
· · · · · · · · · · · · · · · · · · ·		の周方向応力
$\sigma_{x81}, \sigma_{x82}$	MPa	風荷重(Z方向)が作用した場合の周方向モーメントによる胴
		の軸方向応力
σ φ 8 1, σ φ 8 2	MPa	風荷重(Z方向)が作用した場合の周方向モーメントによる胴
· · · · ·		の周方向応力
σ x 9 1, σ x 9 2	MPa	風荷重(X方向)が作用した場合の半径方向荷重による胴の軸
		方向応力
σ φ 9 1, σ φ 9 2	MPa	風荷重(X方向)が作用した場合の半径方向荷重による胴の周
<i>, , ,</i>		方向応力
$\sigma_{x101}, \sigma_{x102}$	MPa	風荷重(X方向)が作用した場合の鉛直方向モーメントによる
		胴の軸方向応力
$\sigma_{\phi 101}, \sigma_{\phi 102}$	MPa	風荷重(X方向)が作用した場合の鉛直方向モーメントによる
φ101, φ10 <u>1</u>	ini ci	胴の周方向応力
$\sigma_{x111}, \sigma_{x112}$	MPa	風荷重(X方向)が作用した場合の周方向モーメントによる胴
		の軸方向応力
σ φ111, σ φ112	MPa	風荷重(X方向)が作用した場合の周方向モーメントによる胴
ς ψιτι, σ ψι12	ini G	の周方向応力
σ x x 1, σ x x 2	MPa	風荷重(X方向)が作用した場合の胴の軸方向一次応力の和
		┃ ■荷重(X 方向)が作用〕た場合の胴の軸方向―次+ニ次広力
σ x x 3, σ x x 4	MPa	

吸気口(5/6)

表 5.1.3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)

記号	単位	定義	
$\sigma_{\rm xz1} \sim \sigma_{\rm xz4}$	MPa	風荷重(Z方向)が作用した場合の胴の軸方向一次応力の和	
$\sigma_{\rm xz5}\sim\sigma_{\rm xz8}$	MPa	風荷重(Z方向)が作用した場合の胴の軸方向一次+二次応力 の和	
$\sigma_{\phi x 1}$, $\sigma_{\phi x 2}$	MPa	風荷重(X方向)が作用した場合の胴の周方向一次応力の和	
$\sigma_{\phi x 3}, \sigma_{\phi x 4}$	MPa	風荷重(X方向)が作用した場合の胴の周方向一次+二次応力 の和	
$\sigma_{\phi z 1} \sim \sigma_{\phi z 4}$	MPa	風荷重(Z方向)が作用した場合の胴の周方向一次応力の和	
$\sigma_{\phiz5}\sim\sigma_{\phiz8}$	MPa	風荷重(Z方向)が作用した場合の胴の周方向一次+二次応力 の和	
τ	MPa	支持脚基礎溶接部に生じるせん断応力	
τ3	MPa	風荷重(Z方向)により胴の脚つけ根部に生じるねじりモーメ ントによるせん断応力	
τ ₆	MPa	風荷重(X方向)により胴の脚つけ根部に生じるねじりモーメ ントによるせん断応力	
τ _{с1}	MPa	風荷重(Z方向)により胴の脚つけ根部に生じる周方向せん断 応力	
τ _{с4}	MPa	風荷重(X方向)により胴の脚つけ根部に生じる周方向せん断 応力	
τ ц 1	MPa	運転時質量により胴の脚つけ根部に生じる軸方向せん断応力	
τι2	MPa	風荷重(Z方向)により胴の脚つけ根部に生じる軸方向せん断 応力	
τцз	MPa	降下火砕物荷重及び積雪荷重により胴の脚つけ根部に生じる軸 方向せん断応力	
τι5	MPa	風荷重(X方向)により胴の脚つけ根部に生じる軸方向せん断 応力	
$ au_{\rm xy}$	MPa	σ_x , σ_y の作用する面内のせん断応力	

吸気口(6/6)

b. 計算モデル

図 5.1.3-1 計算モデル図(平板)

図 5.1.3-2 1 質点系モデル図

- c. 強度評価方法
- (a) 鉛直方向荷重
- イ. 降下火砕物等堆積による鉛直荷重

 $F_{v} = W_{2} + W_{3}$ $\Xi \equiv \tilde{C},$ $W_{2} = F_{v} \cdot A_{2}$ $W_{3} = F_{s} \cdot A_{2}$

(b) 平板の応力

鉛直荷重により平板に作用する最大曲げ応力 Gmax は次による。

$$\sigma_{\text{max}} = 1.24 \frac{\text{p} + \text{a}^2}{\text{h}^2}$$

- (c) 胴板及び支持脚
 - イ. 荷重の設定 水平力の釣合より $2 \cdot P_1 + 2 \cdot Q = F_0$ 転倒モーメントの釣合より $2 \cdot M_1 - 2 \cdot M_3 + 2 \cdot R_1 \cdot r_m = F_0(L_g - L)$ ただし, $r_m = (D_i + t)/2$

第1脚の水平方向変位量 Δ_{x1} , 傾き角 θ_1 , 鉛直方向変位量 Δ_{y1} は次による。

胴の半径方向局部変位量 Δ_{r1} と局部傾き角 θ_2 は次による。

$$\begin{split} & \bigtriangleup_{r \ 1} = \frac{K_r \cdot P_1}{r_m \cdot E} \\ & \theta_2 = \frac{K_L \cdot M_1}{r_m^{\ 3} \cdot \beta_L^{\ 2} \cdot E} \\ & \Xi \equiv \mathfrak{C}, \quad \beta_L \wr \sharp \not{\mathcal{K}} \wr \Xi \not{\mathcal{S}}_{\circ} \\ & \beta_L = k_L^{\ 3} \sqrt{\beta_1 \cdot \beta_2^2} \\ & \beta_1 = \frac{C_1}{r_m} \\ & \beta_2 = \frac{C_2}{r_m} \end{split}$$

第2脚の傾き角 θ₀と水平方向変位量 Δ_{x3}は, 次による。

$$\theta_{0} = -\frac{M_{3} \cdot L}{E_{s} \cdot I_{sr}} + \frac{Q \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$
$$\bigtriangleup_{x3} = \frac{Q \cdot L^{3}}{3E_{s} \cdot I_{sr}} + \frac{Q \cdot L}{G_{s} \cdot A_{st}} - \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$

第1脚と胴の傾き角の釣合より

$$\theta_1 + \theta_2 - \theta_0 = 0$$

第2脚のねじり角と局部傾き角は等しいことから

$$\theta_{3} = \frac{(\mathbf{Q} \cdot \mathbf{u} - \mathbf{M}_{c})\mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} = \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \boldsymbol{\beta}_{c}^{2} \cdot \mathbf{E}}$$

ここで, β。は次による。

$$\beta_{c} = k_{c} \sqrt[3]{\beta_{1}^{2}} \beta_{2}$$
$$\beta_{1} = \frac{C_{1}}{r_{m}}$$
$$\beta_{2} = \frac{C_{2}}{r_{m}}$$

脚と胴の水平方向変位の釣合より

さらに鉛直方向変位の釣合より

式を代入して

$$\frac{\mathbf{R}_{1} \cdot \mathbf{L}}{\mathbf{A}_{s} \cdot \mathbf{E}_{s}} - \frac{\mathbf{u} \left(\mathbf{M}_{1} - \mathbf{R}_{1} \cdot \mathbf{u}\right) \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} - \frac{\mathbf{u} \cdot \mathbf{P}_{1} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{r}_{m} \cdot \mathbf{M}_{3} \cdot \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} - \frac{\mathbf{r}_{m} \cdot \mathbf{Q} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} = 0$$

式を代入して

$$\frac{(\mathbf{M}_{1} - \mathbf{R}_{1} \cdot \mathbf{u})\mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{P}_{1} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{K}_{L} \cdot \mathbf{M}_{1}}{\mathbf{r}_{m}^{3} \cdot \beta_{1}^{2} \cdot \mathbf{E}} + \frac{\mathbf{M}_{3} \cdot \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} - \frac{\mathbf{Q} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} = 0$$

式を変形して

$$\frac{\mathbf{u} \cdot \mathbf{Q} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{M}_{c} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \beta_{c}^{2} \cdot \mathbf{E}} = 0$$

式を代入して

$$\frac{P_{1} \cdot L^{3}}{3E_{s} \cdot I_{st}} + \frac{P_{1} \cdot L}{G_{s} \cdot A_{sr}} + \frac{(M_{1} - R_{1} \cdot u)L^{2}}{2E_{s} \cdot I_{st}} + \frac{K_{r} \cdot P_{1}}{r_{m} \cdot E}$$
$$-\frac{Q \cdot L^{3}}{3E_{s} \cdot I_{st}} - \frac{Q \cdot L}{G_{s} \cdot A_{st}} + \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{st}} - \frac{u \cdot K_{c} \cdot M_{c}}{r_{m}^{3} \cdot \beta_{c}^{2} \cdot E} = 0$$

したがって、6 変数 P_1 , Q, R_1 , M_1 , M_3 , M_c に対して上記式を連立させることにより方程式ができる。

- (d) 胴の応力計算
 - イ. 静水頭又は内圧による応力 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 に静水頭,内圧は発生しないため, σ_{φ1}及びσ_{x1}は0となる。
 - ロ. 運転時質量及び降下火砕物と積雪荷重による応力

$$\sigma_{x2} = \frac{\mathbf{m}_{0} \cdot \mathbf{g}}{\pi (\mathbf{D}_{i} + \mathbf{t}) \mathbf{t}}$$

$$\sigma_{x 7} = \frac{W_2 + W_3}{\pi (D_i + t) t}$$

ハ. 運転時質量による胴の脚つけ根部の応力 脚下端が固定の場合,軸力Rは次による。

$$R = \frac{m_0 \cdot g}{4}$$

脚下端が固定の場合の脚及び胴の変形を図 5.1.3-3 に示す。

図 5.1.3-3 脚下端が固定の場合の脚及び胴の変形

脚の半径方向変位量と胴の半径方向局部変位量は等しいことから

また, 脚上端の傾き角と胴の局部傾き角は等しいことから

$$\theta = \frac{(\mathbf{R} \cdot \mathbf{u} - \mathbf{M}_{\mathrm{L}})\mathbf{L}}{\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}}} - \frac{\mathbf{P} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}}} = \frac{\mathbf{K}_{\mathrm{L}} \cdot \mathbf{M}_{\mathrm{L}}}{\mathbf{r}_{\mathrm{m}}^{3} \cdot \beta_{\mathrm{L}}^{2} \cdot \mathbf{E}}$$

したがって

$$M_{L} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{m_{0} \cdot \mathbf{g} \cdot \mathbf{u} \cdot L}{4E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}$$

$$P = \frac{\frac{\frac{M_0 \cdot g}{4} u - M_L}{2E_s \cdot I_{s t}} L^2}{\frac{L^3}{3E_s \cdot I_{s t}} + \frac{L}{G_s \cdot A_{s r}} + \frac{K_r}{r_m \cdot E}}$$

鉛直方向モーメントM_Lにより生じる胴の局部応力は,図 5.1.3-4 に示す 3 次元F E Mモデルより求める(以下*を付記する)ことにより算定する。

図 5.1.3-4 3 次元 F E M モデル図

$$\sigma_{\phi 3} = \left[\frac{N_{\phi}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x3} = \left[\frac{N_{x}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

半径方向荷重Pにより生じる胴の局部応力は、次による。

$$\sigma_{\phi 4} = \left[\frac{N_{\phi}}{P / r_{m}}\right]^{*} \left(\frac{P}{r_{m} \cdot t}\right)$$

$$\sigma_{x \ 4} = \left[\frac{N_x}{P \ / \ r_m}\right]^* \left(\frac{P}{r_m \cdot t}\right)$$

反力Rによるせん断応力は、次による。

$$\tau_{L1} = \frac{R}{4C_2 \cdot t}$$

ニ. 風荷重による胴の曲げ応力

$$\sigma_{x 5} = \frac{W_{1}(L_{g} - L) (D_{i} + 2 t)}{2 I}$$

ホ. Z方向荷重による胴の脚つけ根部の応力(イ) 一次応力

半径方向荷重 P1により生じる胴の局部応力は,次による。

$$\sigma_{\phi \ 6 \ 1} = \left[\frac{N_{\phi}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$
$$\sigma_{x \ 6 \ 1} = \left[\frac{N_{x}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

$$\sigma_{\phi 7 1} = \left[\frac{N_{\phi}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x 7 1} = \left[\frac{N_{x}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

66

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi \ 8 \ 1} = \left[\frac{N_{\phi}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$
$$\sigma_{x \ 8 \ 1} = \left[\frac{N_{x}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$

ここで, β。は次式による。

$$\beta_{\rm c} = \sqrt[3]{\beta_1^2} \cdot \beta_2$$

周方向せん断力Qによるせん断応力は、次による。

$$\tau_{c 1} = \frac{Q}{4C_1 \cdot t}$$

鉛直方向せん断力R1によるせん断応力は,次による。

$$\tau_{\rm L\,2} = \frac{R_1}{4C_2 \cdot t}$$

ねじりモーメントM₃により生じる胴の局部せん断応力は、次による。

$$\tau_3 = \frac{M_3}{2 \pi \cdot C_1^2 \cdot t}$$

(ロ) 二次応力 半径方向荷重P₁により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi \ 6 \ 2} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} \ 6 \ 2} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 7 2} = \left[\frac{M_{\phi}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$
$$\sigma_{x 7 2} = \left[\frac{M_{x}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$

周方向曲げモーメントM。により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi \ 8 \ 2} = \left[\frac{M_{\phi}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$
$$\sigma_{x \ 8 \ 2} = \left[\frac{M_{x}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$

へ. X方向荷重による胴の脚つけ根部の応力

(イ) 一次応力

半径方向荷重 P1により生じる胴の局部応力は,次による。

 $\sigma_{\phi 9 1} = \sigma_{\phi 6 1} / \sqrt{2}$ $\sigma_{x 9 1} = \sigma_{x 6 1} / \sqrt{2}$

鉛直方向曲げモーメントM₁により生じる胴の局部応力は、次による。 $\sigma_{\phi \ 1 \ 0 \ 1} = \sigma_{\phi \ 7 \ 1} / \sqrt{2}$ $\sigma_{x \ 1 \ 0 \ 1} = \sigma_{x \ 7 \ 1} / \sqrt{2}$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。 $\sigma_{\phi 1 1 1} = \sigma_{\phi 8 1} / \sqrt{2}$

 $\sigma_{x \ 1 \ 1 \ 1} = \sigma_{x \ 8 \ 1} / \sqrt{2}$

周方向せん断力 Qによるせん断応力は、次による。

 $\tau_{\rm c~4} = \tau_{\rm c~1}/\sqrt{2}$

鉛直方向せん断力R1によるせん断応力は,次による。

 $\tau_{L\,5} = \tau_{L\,2} / \sqrt{2}$

ねじりモーメントM3により生じる胴の局部せん断応力は,次による。

 $\tau_6 = \tau_3 / \sqrt{2}$
(ロ) 二次応力

半径方向荷重 P1により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 9 2} = \sigma_{\phi 6 2} / \sqrt{2}$$
$$\sigma_{x 9 2} = \sigma_{x 6 2} / \sqrt{2}$$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

$$\sigma_{\phi \ 1 \ 0 \ 2} = \sigma_{\phi \ 7 \ 2} / \sqrt{2}$$
$$\sigma_{x \ 1 \ 0 \ 2} = \sigma_{x \ 7 \ 2} / \sqrt{2}$$
Enductive of the second secon

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi 1 1 2} = \sigma_{\phi 8 2} / \sqrt{2}$$
$$\sigma_{x 1 1 2} = \sigma_{x 8 2} / \sqrt{2}$$

ト. 降下火砕物と積雪荷重による胴の脚つけ根部の応力

脚下端を固定する場合の軸力R₂, 胴の脚つけ根部の鉛直方向モーメントM_{L2}及び 半径方向荷重P₂は, 次による。

$$R_{2} = \frac{W_{2} + W_{3}}{4}$$

$$M_{L2} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{R_{2} \cdot u \cdot L}{E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}$$

$$P_{2} = \frac{\frac{R_{2} \cdot u - M_{L2}}{2E_{s} \cdot I_{st}}L^{2}}{\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}}$$

鉛直方向曲げモーメント ML2により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 8} = \left[\frac{N_{\phi}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$
$$\sigma_{x8} = \left[\frac{N_{x}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi 9} = \left[\frac{N_{\phi}}{P_2 / r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$
$$\sigma_{x 9} = \left[\frac{N_x}{P_2 / r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$

(ロ) 二次応力

鉛直方向曲げモーメントML2により生じる胴の局部応力は次による。

$$\sigma_{\phi 1 0} = \left[\frac{M_{\phi}}{M_{L 2}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L 2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$
$$\sigma_{x 1 0} = \left[\frac{M_{x}}{M_{L 2}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L 2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi 1 1} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{\mathbf{6} \mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} 1 1} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{\mathbf{6} \mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$

せん断応力は,次による。

$$\tau_{\rm L3} = \frac{\rm R_2}{\rm 4C_2 \cdot t}$$

チ. 組合せ応力

イ.~ト.項によって算出される脚つけ根部に生じる胴の応力は、次により組み合わせる。

(イ) 一次一般膜応力 $\sigma_{0\phi} = \sigma_{\phi 1}$ $\sigma_{0x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x5} + \sigma_{x7}$ $\sigma_{0} = \max \left[\sigma_{0\phi} \cdot \sigma_{0x} \right]$ (ロ) 一次応力(膜+曲げ)胴の評価点を図 5.1.3-5 に示す。

図 5.1.3-5 胴の評価点

【Z方向荷重が作用した場合】

・第1脚つけ根部

(第1評価点)

$$\begin{split} \sigma_{\phi \ z \ 1} &= \sigma_{\phi \ 1} + \sigma_{\phi \ 3} + \sigma_{\phi \ 4} + \sigma_{\phi \ 8} + \sigma_{\phi \ 9} + \sigma_{\phi \ 6 \ 1} + \sigma_{\phi \ 7 \ 1} \\ \sigma_{x \ z \ 1} &= \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 3} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 8} + \sigma_{x \ 9} + \sigma_{x \ 6 \ 1} + \sigma_{x \ 7 \ 1} \end{split}$$

$$\sigma_{1\ 1} = \frac{1}{2} \left\{ \sigma_{\phi \ z \ 1} + \sigma_{x \ z \ 1} \right) + \sqrt{(\sigma_{\phi \ z \ 1} - \sigma_{x \ z \ 1})^2} \right\}$$

(第2評価点)

$$\begin{split} \sigma_{\phi \ z \ 2} &= \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 6 \ 1} \\ \sigma_{x \ z \ 2} &= \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 9} + \sigma_{x \ 6 \ 1} \\ \sigma_{1 \ 2} &= \frac{1}{2} \left\{ \left(\sigma_{\phi \ z \ 2} + \sigma_{x \ z \ 2} \right) + \sqrt{\left(\sigma_{\phi \ z \ 2} - \sigma_{x \ z \ 2} \right)^2 + 4 \left(\tau_{L \ 1} + \tau_{L \ 2} + \tau_{L \ 3} \right)^2} \right\} \end{split}$$

・第2脚つけ根部

(第1評価点)

$$\sigma_{\phi z 3} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sigma_{\phi 4} + \sigma_{\phi 8} + \sigma_{\phi 9}$$

 $\sigma_{x z 3} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 3} + \sigma_{x 4} + \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9}$
 $\sigma_{1 3} = \frac{1}{2} \left\{ \sigma_{\phi z 3} + \sigma_{x z 3} \right\} + \sqrt{(\sigma_{\phi z 3} - \sigma_{x z 3})^2 + 4(\tau_{c 1} + \tau_{3})^2}$

(第2評価点)

$$\sigma_{\phi \ z \ 4} = \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 8 \ 1}$$

 $\sigma_{x \ z \ 4} = \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 4} + \sigma_{x \ 7} + \sigma_{x \ 9} + \sigma_{x \ 8 \ 1}$
 $\sigma_{1 \ 4} = \frac{1}{2} \left\{ \sigma_{\phi \ z \ 4} + \sigma_{x \ z \ 4} \right\} + \sqrt{(\sigma_{\phi \ z \ 4} - \sigma_{x \ z \ 4})^2 + 4(\tau_{L \ 1} + \tau_3 + \tau_{L \ 3})^2} \right\}$

【X方向荷重及び降下火砕物荷重,積雪荷重が作用した場合】
(第1評価点)
$$\sigma_{\phi x 1} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sigma_{\phi 4} + \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 9 1} + \sigma_{\phi 101}$$

 $\sigma_{x x 1} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 3} + \sigma_{x 4} + \sigma_{x 5} + \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 91} + \sigma_{x 101}$
 $\sigma_{1 5} = \frac{1}{2} \left\{ \sigma_{\phi x 1} + \sigma_{x x 1} \right\} + \sqrt{(\sigma_{\phi x 1} - \sigma_{x x 1})^2 + 4(\tau_{c 4} + \tau_6)^2} \right\}$
(第2評価点)
 $\sigma_{\phi x 2} = \sigma_{\phi 1} + \sigma_{\phi 4} + \sigma_{\phi 9} + \sigma_{\phi 91} + \sigma_{\phi 111}$
 $\sigma_{x x 2} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 4} + \sigma_{x 5} + \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 91} + \sigma_{x 111}$
 $\sigma_{1 6} = \frac{1}{2} \left\{ \sigma_{\phi x 2} + \sigma_{x x 2} \right\} + \sqrt{(\sigma_{\phi x 2} - \sigma_{x x 2})^2 + 4(\tau_{L 1} + \tau_{L 5} + \tau_6 + \tau_{L 3})^2} \right\}$
 $\sigma_{1} = \max[\sigma_{1 1}, \sigma_{1 2}, \sigma_{1 3}, \sigma_{1 4}, \sigma_{1 5}, \sigma_{1 6}]$

(ハ) 組合せ一次+二次応力

【乙方向荷重及び降下火砕物荷重,積雪荷重が作用した場合】

・第1脚つけ根部 (第1評価点) $\sigma_{\phi z 5} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11} + \sigma_{\phi 61} + \sigma_{\phi 62} + \sigma_{\phi 71} + \sigma_{\phi 72}$ $\sigma_{x z 5} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11} + \sigma_{x 5} + \sigma_{x 61} + \sigma_{x 62} + \sigma_{x 71} + \sigma_{x 72}$ $\sigma_{2 1} = \sigma_{\phi z 5} + \sigma_{x z 5} + \sqrt{(\sigma_{\phi z 5} - \sigma_{x z 5})^2}$ (第2評価点) $\sigma_{\phi z 6} = \sigma_{\phi 9} + \sigma_{\phi 11} + \sigma_{\phi 61} + \sigma_{\phi 62}$ $\sigma_{x z 6} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 11} + \sigma_{x 5} + \sigma_{x 61} + \sigma_{x 62}$ $\sigma_{2 2} = \sigma_{\phi z 6} + \sigma_{x z 6} + \sqrt{(\sigma_{\phi z 6} - \sigma_{x z 6})^2 + 4(\tau_{L 2} + \tau_{L 3})^2}$ ・第2脚つけ根部 (第1評価点) $\sigma_{\phi z 7} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11}$ $\sigma_{x z 7} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11}$ $\sigma_{2 3} = \sigma_{\phi z 7} + \sigma_{x z 7} + \sqrt{(\sigma_{\phi z 7} - \sigma_{x z 7})^2 + 4(\tau_{c 1} + \tau_{3})^2}$ (第2評価点) $\sigma_{\phi z 8} = \sigma_{\phi 9} + \sigma_{\phi 1 1} + \sigma_{\phi 8 1} + \sigma_{\phi 8 2}$ $\sigma_{x z 8} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 1 1} + \sigma_{x 8 1} + \sigma_{x 8 2}$ $\sigma_{2 4} = \sigma_{\phi z 8} + \sigma_{x z 8} + \sqrt{(\sigma_{\phi z 8} - \sigma_{x z 8})^2 + 4(\tau_{3} + \tau_{L 3})^2}$

【X方向荷重が作用した場合】

(第1評価点)

 $\sigma_{\phi x 3} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11} + \sigma_{\phi 91} + \sigma_{\phi 101} + \sigma_{\phi 92} + \sigma_{\phi 102}$ $\sigma_{x x 3} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11} + \sigma_{x 5} + \sigma_{x 91} + \sigma_{x 101} + \sigma_{x 92} + \sigma_{x 102}$

$$\sigma_{2\,5} = \sigma_{\phi x 3} + \sigma_{x x 3} + \sqrt{(\sigma_{\phi x 3} - \sigma_{x x 3})^2 + 4(\tau_{c 4} + \tau_6)^2}$$

(第2評価点)

$$\sigma_{\phi x 4} = \sigma_{\phi 9} + \sigma_{\phi 1 1} + \sigma_{\phi 9 1} + \sigma_{\phi 9 2} + \sigma_{\phi 1 1 1} + \sigma_{\phi 1 1 2}$$

$$\sigma_{x x 4} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 1 1} + \sigma_{x 5} + \sigma_{x 9 1} + \sigma_{x 9 2} + \sigma_{x 1 1 1} + \sigma_{x 1 1 2}$$

$$\sigma_{2 6} = \sigma_{\phi x 4} + \sigma_{x x 4} + \sqrt{(\sigma_{\phi x 4} - \sigma_{x x 4})^{2} + 4(\tau_{L 5} + \tau_{6} + \tau_{L 3})^{2}}$$

$$\sigma_{2} = \max \left[\sigma_{2 1}, \sigma_{2 2}, \sigma_{2 3}, \sigma_{2 4}, \sigma_{2 5}, \sigma_{2 6}\right]$$

- (e) 脚の応力計算
 - イ. 運転時質量による応力

$$\begin{split} \sigma_{s\,1} &= \frac{R}{A_s} \\ \sigma_{s\,2} &= \frac{\max\left[\left|R \cdot u - M_L - P \cdot L\right|, \left|R \cdot u - M_L\right|\right]}{Z_{s\,t}} \\ \mu. \quad 降下火砕物荷重, 積雪荷重による応力 \\ \sigma_{s\,3} &= \frac{R_2}{A_s} \\ \\ \sigma_{s\,4} &= \frac{\max\left[\left|R_2 \cdot u - M_{L\,2} - P_2 \cdot L\right|, \left|R_2 \cdot u - M_{L\,2}\right|\right]}{Z_{s\,t}} \end{split}$$

ハ. 風荷重(Z方向)による応力(イ) 第1脚

$$\sigma_{s 5} = \frac{R_1}{A_s}$$

$$\sigma_{s 6} = \frac{\max\left[\left|R_1 \cdot u - M_1 - P_1 \cdot L\right|, \left|R_1 \cdot u - M_1\right|\right]}{Z_{s t}}$$

$$\sigma_{s7} = \frac{\max\left[\left|\mathbf{Q} \cdot \mathbf{L} - \mathbf{M}_{3}\right|, \left|\mathbf{M}_{3}\right|\right]}{Z_{sr}}$$

(ハ) X方向荷重による応力

$$\sigma_{s8} = \frac{R_1}{\sqrt{2} \cdot A_s}$$

$$\sigma_{s9} = \frac{\max\left[|R_1 \cdot u - M_1 - P_1 \cdot L|, |R_1 \cdot u - M_1|\right]}{\sqrt{2} \cdot Z_{st}}$$

$$\sigma_{s10} = \frac{\max\left[|Q \cdot L - M_3|, |M_3|\right]}{\sqrt{2} \cdot Z_{st}}$$

ニ. 組合せ応力

脚の最大応力は,下記式による。

- (イ) Z方向荷重及び降下火砕物荷重,積雪荷重が作用した場合
 - 第1脚 $\sigma_{s z 1} = \sigma_{s 1} + \sigma_{s 2} + \sigma_{s 3} + \sigma_{s 4} + \sigma_{s 5} + \sigma_{s 6}$
 - 第2脚

 $\sigma_{s\ z\ 2}=\sigma_{s\ 1}+\sigma_{s\ 2}+\sigma_{s\ 3}+\sigma_{s\ 4}+\sigma_{s\ 7}$

(ロ) X方向荷重が作用した場合

 σ_{s x} = σ_{s 1} + σ_{s 2} + σ_{s 3} + σ_{s 4} + σ_{s 8} + σ_{s 9} + σ_{s 10}

$$\sigma_{s} = \max \left[\sigma_{s z 1}, \sigma_{s z 2}, \sigma_{s x} \right]$$

- ホ. 組合せ圧縮応力
- (イ) Z方向荷重が作用した場合
 - 第1脚
 - $\sigma_{sc} = \sigma_{s1} + \sigma_{s3} + \sigma_{s5}$ $\sigma_{st} = \sigma_{s2} + \sigma_{s4} + \sigma_{s6}$ $\sigma_{st} = 0$
 - 第2脚
 σ_{sc} = σ_{s1} + σ_{s3}
 - $\sigma_{s t} = \sigma_{s 2} + \sigma_{s 4}$
- σ_{sr} = σ_{s7}
 (ロ) X方向荷重が作用した場合
 - $\sigma_{sc} = \sigma_{s1} + \sigma_{s3} + \sigma_{s8}$
 - $\sigma_{\mathrm{s}\ \mathrm{t}}=\sigma_{\mathrm{s}\ 2}+\sigma_{\mathrm{s}\ 4}+\sigma_{\mathrm{s}\ 9}$
 - $\sigma_{\rm s\ r}=\sigma_{\rm s\ 1\ 0}$

圧縮と曲げの組合せについて、座屈評価用の式を次式より求める。

$$\frac{\sigma_{\text{s r}}}{f_{\text{b r}}} \! + \! \frac{\sigma_{\text{s t}}}{f_{\text{b t}}} \! + \! \frac{\sigma_{\text{s c}}}{f_{\text{c}}} \! \leq \! 1$$

- (f) 支持脚基礎溶接部の応力計算
 - イ. 引張応力の算出

風圧力による荷重W₁によるモーメントMにより,2本の支持脚には吸気口の支持 脚基礎溶接部に作用する引張荷重Tが作用する。

モーメントの釣り合いを考えると,

$$M = W_1 \cdot L_g + (m_0 \cdot g + F_V) \quad L_H = 2 \cdot T \cdot L_1$$

よって、吸気口の支持脚基礎溶接部に作用する引張荷重Tは以下のようになる。

$$T = \frac{W_{1} \cdot L_{g} + (m_{0} \cdot \mathbf{g} + F_{V}) L_{H}}{2L_{1}}$$

吸気口の支持脚基礎溶接部に生じる引張応力σ_tは以下のようになる。

$$\sigma_{t} = \frac{T}{A_{w}} = \frac{W_{1} \cdot L_{g} + (m_{0} \cdot \mathbf{g} + F_{V}) L_{H}}{2L_{1} \cdot A_{W}}$$

ロ. せん断応力の算出

吸気口の支持脚基礎溶接部に作用するせん断荷重Qは以下のようになる。

$$Q_1 = \frac{W_1}{4}$$

て 吸気口の支持期

よって,吸気口の支持脚基礎溶接部に生じるせん断応力τは以下のようになる。

$$\tau = \frac{\mathbf{Q}_1}{\mathbf{A}_{\mathrm{W}}} = \frac{\mathbf{W}_1}{4\mathbf{A}_{\mathrm{W}}}$$

ハ. 組合せ応力の算出

$$\sigma = \sqrt{\sigma_{t}^{2} + 3\tau^{2}}$$

- 5.1.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファン
 - (1) 評価条件

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファンの強度評価を行う場合,以下の条件に従うものとする。

- a. 降下火砕物が堆積する吐出フード天板に対し,等分布荷重が作用する平板として機械 工学便覧の計算方法を用いて評価を行う。計算モデル図を図 5.1.4-1 に示す。
- b. 風荷重による影響が大きな吐出フード取付ボルト及び基礎ボルトの強度計算モデルは、
 1 質点系モデルとし、計算モデルが類似しているJEAG4601の横形ポンプの計算
 方法を参考に評価を行う。なお、1 質点系モデルの強度計算において、評価上高さの
 1/2 又は荷重作用点より高い重心位置に集中荷重として作用するものとする。計算モデル図を図 5.1.4-2 に示す。
- c. 鉛直荷重によって一様な応力が発生するケーシングは,機械工学便覧の計算方法を用いて評価を行う。
- d. 計算に用いる寸法は公称値を使用する。
- e. 降下火砕物等堆積による鉛直方向荷重については, 吐出フード天板の面積に対し降下 火砕物等の層厚より上載質量を算出し入力荷重として設定する。
- f. 水平方向と鉛直方向のモーメントの組合せは、安全側に絶対和の評価とする。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.4-1 に示す。

評価対象部位	応力等の状態
吐出フード天板	曲げ
ケーシング	圧縮
吐出フード取付ボルト	引張, せん断, 組合せ
基礎ボルト	引張, せん断, 組合せ

表 5.1.4-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの強度評価に用いる記号を表 5.1.4-2 に示す。

表 5.1.4-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの強度評価に用いる記号

記号	単位	定義
а	mm	天板の短辺
A 2	m ²	降下火砕物の堆積面積
A _b	mm^2	ボルトの軸断面積
B 1	mm	ケーシング外径
B ₂	mm	ケーシング内径
F	MPa	JSME SSB-3121.1(1)により規定される値
F _b	Ν	ボルトに対する引張力
F _d	Ν	常時作用する荷重
F i	Ν	各ボルトに作用する引張力
F _n	Ν	ボルトに作用する最大引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
g	m/s^2	重力加速度
h	mm	取付面から荷重作用点までの距離
h t	mm	天板厚さ
$L_1 \sim L_7$	mm	支点と評価ボルト間の距離
L i	mm	各ボルト間の距離
L n	mm	各ボルト間のうち最長距離
М	N•mm	ファンに作用するモーメント
m	kg	質量
Ν	—	ボルトの本数
р	N/mm^2	天板に作用する等分布荷重
$Q_{\rm b}$	Ν	ボルトに対するせん断力
S	mm^2	ケーシングの断面積
β	—	天板の最大応力の係数(機械工学便覧から算出)
π	—	円周率
σь	MPa	吐出フード天板に生じる曲げ応力
σс	MPa	ケーシングに生じる圧縮応力
σ _t	MPa	ボルトに生じる引張応力
τ	MPa	ボルトに生じるせん断応力

b. 計算モデル

図 5.1.4-1 等分布荷重による計算モデル図

図 5.1.4-2 1 質点系モデル図

- c. 応力計算
 - (a) 鉛直方向荷重
 - イ. 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

- (b) 吐出フード天板部に生じる応力
 - イ. 曲げ応力

吐出フード天板部に生じる曲げ応力 σ b は次式より算出される。

$$\sigma_{\rm b} = \beta \cdot \frac{{\rm p} \cdot {\rm a}^2}{{\rm h}_{\rm t}^2}$$

- (c) ケーシングに生じる応力
 - イ. 圧縮応力

ケーシングに生じる圧縮応力 σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + F_{d}}{S}$$

 $F_{d} = m \cdot g$

$$S = \frac{\pi}{4} (B_1^2 - B_2^2)$$

ケーシングの断面図を図 5.1.4-3 に示す。

図 5.1.4-3 ケーシングの断面図

- (d) 吐出フード取付ボルト及び基礎ボルトに生じる応力
 - イ. 引張応力

吐出フード取付ボルト及び基礎ボルトに生じる引張応力σ_tは次式より算出される。

(イ) 引張力

$$M=2\sum_{i=1}^{n} F_{i} \cdot L_{i} \cdot \cdot \cdot \cdot (5.1.4-1)$$

$$\frac{F_i}{L_i}$$
=一定 ... (5.1.4-2)

(5.1.4-1) (5.1.4-2) 式より,

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$

ここで, Mは以下による。

$$M = W \cdot h + (m \cdot g + F_V) \cdot \frac{L_n}{2}$$

(ロ) 引張応力

$$\sigma_{\rm t} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

吐出フード取付ボルト及び基礎ボルトに生じるせん断応力 τ は次式より算出される。ボルト全本数でせん断力を受けるものとして計算する。

(イ) せん断力

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{\mathbf{b}}}{\mathbf{A}_{\mathbf{b}} \cdot \mathbf{N}}$$

- 5.2 建屋
 - (1) 評価条件

建屋の強度評価を行う場合、以下の条件に従うものとする。

- a. 屋根は、応力解析モデルを用いて評価を行う。
- b. 耐震壁及び鉄骨架構は,質点系解析モデルを用いて評価を行う。
- c. 降下火砕物等堆積による鉛直荷重を短期荷重として評価する。
- d. 降下火砕物等堆積による鉛直荷重として 7565 N/m²,風荷重については基準風速 30 m/s を考慮する。
- e. 風荷重の算出は,建屋の形状を考慮して算出した風力係数及び受圧面積に基づき実施し,受圧面積算定において,隣接する建屋の遮断効果による面積の低減は考慮しない。
- f. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き荷重 は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重は考慮しない。
- g. 質点系解析モデルの復元力特性の設定においては,鉛直荷重の増加による軸力を考慮す ると第1折れ点の増大が見込まれるため,耐震壁及び鉄骨架構の評価においては,保守的 に降下火砕物等堆積による鉛直荷重は考慮しない。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.2-1 に示す。

評価対象部位	応力等の状態							
屋根	曲げ,せん断,圧縮,引張							
耐震壁	変形							
鉄骨架構	変形							

表 5.2-1 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

建屋の強度評価に用いる記号を表 5.2-2 に示す。

表 5.2-2 建屋の強度評価に用いる記号

記号	単位	定義
F _d	N/m^2	固定荷重
F 1	N/m^2	積載荷重
F _s	N/m^2	積雪荷重
F _v ₀	N/m^2	降下火砕物堆積による鉛直荷重
W	Ν	風荷重

b. 屋根の応力計算

応力解析モデルを用いて,屋根に作用する固定荷重,積載荷重,積雪荷重,降下火砕物 堆積等による鉛直荷重により屋根に発生する応力を求める。

- c. 耐震壁の応答計算 質点系解析モデルを用いて,風荷重により耐震壁に発生するせん断ひずみを求める。
- d. 鉄骨架構の応答計算 質点系解析モデルを用いて,風荷重により鉄骨架構に発生する層間変形角を求める。
- 6. 適用規格

V-1-1-2-4-1 においては、降下火砕物の影響を考慮する施設の設計に係る適用規格を示している。

これらのうち、評価対象施設の強度評価に用いる規格、基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005)
- (4) 鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会, 1999)
- (5) 原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)
- (6) 建築物荷重指針・同解説((社)日本建築学会, 2004)
- (7) 鋼構造限界状態設計指針·同解説((社)日本建築学会,2010)
- (8) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (9) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社)日本電気協会)
- (10) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- (11) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007 ((社)日本 機械学会)
- (12) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国 立研究開発法人建築研究所 2015)
- (13) 新版機械工学便覧(1987年 日本機械学会編)

(参考文献)

- ・ 鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316. 1991(谷口元,加藤勉ほか)
- ・ 原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻 第661号, pp571-580, 2011(鈴木琢也,貫井泰ほか)
- ・建築構造設計基準の資料(国土交通省 平成27年度)

83

V-3-別添 2-1-1 残留熱除去系海水系ポンプの強度計算書

目次

1.	巿	既要····································
2.	麦	基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1	位置
2.	2	構造概要
2.	3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	適用規格
3.	彭	④度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2	評価対象部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	3	荷重及び荷重の組合せ・・・・・・9
3.	4	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	1 1 1 1 1 1	平価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	弜	魚 度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり,残留熱除去系海水系ポンプが降下火砕物等堆積時においても,送水機能の維持を考慮し て,主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

残留熱除去系海水系ポンプは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,残留熱除去系海水系ポンプの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

残留熱除去系海水系ポンプは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設置する。 海水ポンプ室の位置図を図 2-1 に示す。

図 2-1 海水ポンプ室の位置図

2.2 構造概要

残留熱除去系海水系ポンプは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度 計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて,構造を設定する。

残留熱除去系海水系ポンプは、ポンプ据付面から原動機台までのポンプ部と、原動機台より 上部の原動機部からなる立形ポンプであり、同一設計の残留熱除去系海水系ポンプ4台を設置 している。降下火砕物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受け る据付位置より上部のポンプの概要図を図2-2に示す。

残留熱除去系海水系ポンプ原動機の形状は円筒形を基本としたフレームに、一次側端子箱が 付加された形態であり、ポンプのスラスト荷重は全て原動機フレーム及び原動機台に作用する 構造とする。残留熱除去系海水系ポンプが風(台風)による水平荷重を受けることを想定する 面の概要図を図2-3、降下火砕物等が残留熱除去系海水系ポンプに最も多く堆積することが想 定される状態図を図2-4に示す。

図 2-2 残留熱除去系海水系ポンプの概要図

(a) 上面図

図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

残留熱除去系海水系ポンプの強度評価は,添付書類「V-3-別添2-1 火山への配慮が必要な 施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している, 荷重及び荷重の組合せ並びに許容限界を踏まえて,評価対象部位に作用する応力が,許容限界 に収まることを「3. 強度評価方法」に示す方法により,「4. 評価条件」に示す評価条件を 用いて計算し,「5. 強度評価結果」にて確認する。

残留熱除去系海水系ポンプの強度評価フローを図2-5に示す。残留熱除去系海水系ポンプの 強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに組み合 わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象部位 を選定する。

降下火砕物等堆積による鉛直荷重については、ポンプ上面の投影面積に対し降下火砕物等が 堆積した場合を設定する。また、風(台風)による水平荷重は水平方向より作用する外荷重 という観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針 重要度 分類・許容応力編 JEAG4601・補-1984」((社)日本電気協会)、「原子力発電所 耐震設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐 震設計技術指針 JEAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG 4601」という。)における1質点系モデルによる評価方法を準用し、添付書類「V-3-別 添2-1 火山への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価式 を用いる。残留熱除去系海水系ポンプの許容限界は、添付書類「V-3-別添2-1 火山への配 慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す許容限界である、JEAG4 601の許容応力状態Ⅲ_ASとする。

図2-5 残留熱除去系海水系ポンプの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

残留熱除去系海水系ポンプの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A_{b}	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B ₄	mm	原動機フレーム内径
С		風力係数
d	mm	基礎ボルト呼び径
E'	-	建築基準法施行令第87条第2項に規定する数値
F		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
L r		布を表す係数
F	Ν	JSME SSB-3121.1により規定される値
F _d	Ν	原動機自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F i	Ν	各ボルトに作用する引張力
F _n	Ν	ボルトに作用する最大引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f _b	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容曲げ 応力
f _c	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許容圧縮 応力
f s	MPa	J SME SSB-3121.1により規定される供用状態A及びBでの許容せん 断応力
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張 応力
G	_	ガスト影響係数
g	m/s^2	重力加速度

表 3-1 残留熱除去系海水系ポンプの強度評価に用いる記号(1/2)

	10	
記号	単位	定義
Н	mm	ポンプ高さ(全高)
H s	Ν	原動機自重及びポンプスラスト荷重による軸方向荷重
h	mm	取付面から荷重作用点までの距離
L i	mm	ボルト間の距離
L _n	mm	各ボルト間距離のうち最長距離
М	N•mm	評価対象部位に作用するモーメント
M 1	N•mm	水平荷重により原動機フレームに作用するモーメント
M_2	N•mm	鉛直荷重により原動機フレームに作用するモーメント
m	kg	原動機の質量
Ν	—	ボルトの本数
Р	kg	ポンプスラスト荷重
q	N/m^2	速度圧
$Q_{\rm b}$	Ν	ボルトに対するせん断力
S 1	mm^2	原動機台の断面積
S ₂	mm^2	原動機フレームの断面積
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V d	m/s	基準風速
W	Ν	風(台風)による水平荷重
Z	mm ³	断面係数
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	—	円周率
σс	MPa	評価対象部位に生じる圧縮応力
σ _b	MPa	原動機フレームに生じる曲げ応力
σ _t	MPa	基礎ボルトに生じる引張応力
α		地表面粗度区分に応じて建設省告示 1454 号に掲げる数値
τ	MPa	 せん断応力

表 3-1 残留熱除去系海水系ポンプの強度評価に用いる記号(2/2)

3.2 評価対象部位

残留熱除去系海水系ポンプの評価対象部位は,添付書類「V-3-別添 2-1 火山への配慮が 必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って, 原動機台,原動機フレーム及び据付面基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向 及び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する原動機上部を介して支 持している原動機フレーム及び原動機台に作用する。また,風(台風)による水平荷重は,原 動機フレーム及び原動機台に作用し,原動機台を介して据付面基礎ボルトに作用する。さらに, ポンプのスラスト荷重は全て原動機フレーム及び原動機台に作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては,原動機フレーム及び原動機台 を評価対象部位とする。また,風(台風)による水平荷重に対しては,原動機フレーム及び据 付面基礎ボルトを評価対象部位とする。

残留熱除去系海水系ポンプの強度評価における評価対象部位を図 3-1 に示す。

図 3-1 残留熱除去系海水系ポンプの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の 組合せを用いる。

(1) 荷重の設定

残留熱除去系海水系ポンプの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,原動機の自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F、')
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重は添付書類「V-3-別添 2-1 火山への配慮が必要な施設の 強度計算の方針」の「4.1(3)c.水平荷重」に示す式に従い,算出する。全高Hが5 m以 下であるため,HがZ_b以下の場合の式を用いる。

評価に用いる複合荷重は原動機フレーム,原動機台及び一次側端子箱に風(台風)によ る水平荷重を受けた際の複合荷重とする。なお,複合荷重は,原動機フレーム,原動機 台及び一次側端子箱に対する各々の風力係数を考慮した風(台風)による水平荷重を包 含するような面積を設定し算出する。

風(台風)による水平荷重によるWは以下のようにして求める。風(台風)による水平 荷重の受圧面積を図 3-2 に示す。

 $W = q \cdot C \cdot A_{1}$ $\Xi \equiv \overline{C}$ $q = 0.6 \cdot E' \cdot V_{D}^{2}$ $E' = E_{r}^{2} \cdot G$ $E_{r} = 1.7 \cdot (Z_{b} \neq Z_{G})^{\alpha}$

図 3-2 風(台風)による水平荷重の受圧面積

d. 運転時の状態で作用する荷重(F_p) 運転時の状態で作用する荷重は,鉛直下向きに働くポンプスラスト荷重を考慮する。 (2) 荷重の組合せ

強度評価に用いる荷重の組合せは,残留熱除去系海水系ポンプの評価対象部位ごとに設定 する。

残留熱除去系海水系ポンプには,自重,降下火砕物等堆積による鉛直荷重,風(台風)に よる水平荷重及びポンプスラスト荷重が作用する。

残留熱除去系海水系ポンプの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

施設名称	評価対象部位	荷重	
	原動機台	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③ポンプスラスト荷重 	
残留熱除去系 海水系ポンプ	原動機フレーム	荷重 ①自重 ②降下火砕物等堆積による鉛直荷重 ③ポンプスラスト荷重 ①自重 ②降下火砕物等堆積による鉛直荷重 ④ポンプスラスト荷重 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 ③風(台風)による水平荷重 ④ポンプスラスト荷重	
	据付面基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 ④ポンプスラスト荷重 	

表 3-2 荷重の組合せ

3.4 許容限界

残留熱除去系海水系ポンプの許容限界は、添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、JEAG4 601に基づき許容応力状態ⅢASの許容応力を用いる。

残留熱除去系海水系ポンプの許容限界は、JEAG4601を準用し、「クラス2,3支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持できるように弾性設計とするため、許容応力状態Ⅲ_ASから算出した以下の許容応力を許容限界とする。JEAG4601に従い、JSME付録材料図表Part5,6の表にて許容応力を評価する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJSME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるものとする。

残留熱除去系海水系ポンプの許容限界を表 3-3,許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界				
原動機台	III _A S	一次		1.5 f $_{\rm c}$				
原動機フレーム	III . S	一次	曲げ	1.5 f _b				
	III A S	応力	圧縮	1.5 f _c				
			引張	1.5 f _t				
据付面基礎ボルト	III _A S	一次 応力	せん断	1.5 f _s				
		//L//J	組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }				

表 3-3 残留熱除去系海水系ポンプの許容限界

表 3-4 残留熱除去系海水系ポンプの許容応力

評価対象 部位	材料	温度 条件 (℃)	S _y (MPa)	S _u (MPa)	F (MPa)	1.5 f _c (MPa)	1.5 f _b (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)
原動機台	SS400	50 ^{* 1}	231	394	231	229	_	_	_
原動機 フレーム	SS400	60^{*2}	237	389	237	235	273		
据付面 基礎ボルト	S22C	50* ¹	260	430	260	_	_	195	150

注記 *1:周囲環境温度

*2:最高使用温度

3.5 評価方法

残留熱除去系海水系ポンプの応力評価は、添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

(1) 評価モデル

降下火砕物等堆積による鉛直荷重,ポンプスラスト荷重(鉛直荷重)及び自重(鉛直荷重) 並びに風(台風)による水平荷重に対する,原動機フレーム及び据付面基礎ボルトの構造健 全性を1 質点系モデルとして計算を行う。ここで,荷重の作用点は評価上高さの1/2 とす る。残留熱除去系海水系ポンプの1質点系モデル図を図3-3及び図3-4に示す。

図 3-3 1 質点系モデル図(原動機フレーム)

図 3-4 1 質点系モデル図(据付面基礎ボルト)

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等堆積による鉛直荷重の受圧面積を図 3-5 に示す。保守的に基礎部面積分 の降下火砕物等が原動機に堆積すると仮定し、基礎部面積を受圧面積とする。

なお,基礎部面積に包含されない一次側端子箱の一部については,堆積面積の保守性 に包含される。

図 3-5 鉛直荷重の受圧面積

(b) 原動機台,原動機フレーム及び据付面基礎ボルトに作用する原動機自重及びポンプス ラスト荷重による軸方向荷重

 $H_{s} = F_{d} + F_{p}$ $\Xi \subseteq \mathfrak{C},$ $F_{d} = m \cdot \mathbf{g}$ $F_{p} = P \cdot \mathbf{g}$

- b. 応力評価
- (a) 原動機台に生じる応力
 - イ. 圧縮応力

原動機台に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S_{1}}$$

ここで,

$$S_1 = \frac{\pi}{4} (B_1^2 - B_2^2)$$

原動機台の断面図を図 3-6 に示す。

図 3-6 原動機台の断面図

- (b) 原動機フレームに生じる応力
 - イ. 曲げ応力

原動機フレームに生じる曲げ応力σьは次式より算出される。

(イ) 風(台風)による水平荷重により原動機フレームに作用するモーメントM1

$$M_1 = W \cdot h$$

(ロ) 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H_{s}\right) \cdot B_{3}}{2}$$
(ハ) 原動機フレームに作用するモーメントM

$$M = M_1 + M_2$$

(ニ) 曲げ応力

$$\sigma_{b} = \frac{M}{Z}$$

$$\Xi \subset \mathcal{C},$$

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

ロ. 圧縮応力

原動機フレームに生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S_{2}}$$

$$\Xi \equiv \overline{C},$$

$$S_{2} = \frac{\pi}{4} (B_{3}^{2} - B_{4}^{2})$$

原動機フレームの断面図を図 3-7 に示す。

図 3-7 原動機フレームの断面図

- (c) 据付面基礎ボルトに生じる応力
 - イ. 引張応力

据付面基礎ボルトに生じる引張応力σ_tは次式より算出される。

M=2
$$\sum_{i=1}^{n} F_{i} \cdot L_{i}$$
 ... (3.1)
 $\frac{F_{i}}{L_{i}} = -定$... (3.2)
(3.1) (3.2) 式より,
 $F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$
ここで、Mは以下による。
M=W・h+ (F_v+H_s) $\cdot \frac{L_{n}}{2}$

(ロ) 引張応力

$$\sigma_{\rm t} = \frac{F_{\rm n}}{A_{\rm b}}$$

ここで, 据付面基礎ボルトの軸断面積Abは,

$$A_{b} = \frac{\pi}{4} d^{2}$$

ロ. せん断応力

据付面基礎ボルトに生じるせん断応力 τ は次式より算出される。据付面基礎ボルト 全本数でせん断力を受けるものとして計算する。

(イ) せん断力

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

据付面基礎ボルトの各ボルト間寸法の配置図を図 3-8 に示す。

8×M42 (据付面基礎ボルト)

図 3-8 据付面基礎ボルト*の各ボルト間寸法の配置図

注記 *:外側のボルトが据付面基礎ボルト,内側のボルトが原動機台取付ボルト

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-3 に示す。

q	G	С	V _D	Z b	ZG
(N/m^2)	(—)	(—)	(m/s)	(m)	(m)
960	2.2	1.2	30	5	350

表 4-1 評価条件

F v'	α	g	
(N/m ²)	(—)	(m/s ²)	
7565	0.15	9.80665	

表 4-2 評価条件(原動機台,原動機フレーム)

A_1	A_2	m	Р	B 1	B $_2$
(m^2)	(m^2)	(kg)	(kg)	(mm)	(mm)
8. 354	5.760	15200	4400	1680	1648

B 3	B ₄	h	
(mm)	(mm)	(mm)	
1890	1878	1365	

表 4-3 評価条件(据付面基礎ボルト)

A 1	A_2	m	Р	L ₁	L ₂
(m^2)	(m^2)	(kg)	(kg)	(mm)	(mm)
12.15	5.760	17800	4400	541.2	1306.6

L ₃	ボルト	Ν	A _b	h
(mm)	サイズ	(-)	(mm^2)	(mm)
1847.8	M42	8	1385	2279
5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 原動台,原動機フレーム及び据付面基礎ボルトに発生する応力は,許容応力以下である。

A 0 1 及田派防公示時小ボベック 07日 Ш相木							
評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)			
原動機台	原動機台 SS400		3	229			
原動機フレーム	55400	曲げ	13	273			
	55400	圧縮	7	235			
据付面基礎ボルト		引張	34	195			
	S22C	せん断	2	150			
		組合せ	34	195			

表 5-1 残留熱除去系海水系ポンプの評価結果

V-3-別添 2-1-2 残留熱除去系海水系ストレーナの強度計算書

1.	巿	既要····································
2.	麦	基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1	位置
2.	2	構造概要
2.	3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	適用規格
3.	彭	④度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
3.	3	荷重及び荷重の組合せ・・・・・・9
3.	4	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		平価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	彭	闺度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり、残留熱除去系海水系ストレーナが降下火砕物等堆積時においても、海水中の固形物を除去 する機能の維持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

残留熱除去系海水系ストレーナは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強 度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,残留熱除去系海水系スト レーナの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示 す。

2.1 位置

残留熱除去系海水系ストレーナは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設置する。海水ポンプ室の位置図を図 2-1 に示す。

図 2-1 海水ポンプ室の位置図

2.2 構造概要

残留熱除去系海水系ストレーナは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の 強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて,構造を設定する。

残留熱除去系海水系ストレーナは,胴板と支持脚が鋳物一体となった円筒形の容器を並べて 組み合せた構造であり,支持脚が基礎ボルトで固定されている。ストレーナの上部開口には蓋 が設置されており,同一設計の残留熱除去系海水系ストレーナを2台設置している。

降下火砕物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位 置より上部のストレーナの概要図を図2-2に示す。

残留熱除去系海水系ストレーナが風(台風)による水平荷重を受けることを想定する面の概 要図を図2-3,降下火砕物等が残留熱除去系海水系ストレーナに最も多く堆積することが想定 される状態図を図2-4に示す。

図 2-2 残留熱除去系海水系ストレーナの概要図

:風(台風)による 水平荷重を受ける ことを想定する面

側面図 (b)

Ţ

図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

残留熱除去系海水系ストレーナの強度評価は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷重及び荷重の組合せ並びに許容限界を踏まえて、ストレーナの評価対象部位に作用する応力が、許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

残留熱除去系海水系ストレーナの強度評価フローを図2-5に示す。残留熱除去系海水系スト レーナの強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに 組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象 部位を選定する。

降下火砕物等堆積による鉛直荷重については、ストレーナ上面の投影面積に対し降下火砕物 等が堆積した場合を設定する。また、風(台風)による水平荷重は水平方向より作用する外荷 重という観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針 重要 度分類・許容応力編 JEAG4601・補-1984」((社)日本電気協会)、「原子力発電所 耐震設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐震 設計技術指針 JEAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG4 601」という。)における1質点系モデルによる評価方法を準用する。それぞれの評価につ いては、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「5. 強 度評価方法」に示す評価式を用いる。残留熱除去系海水系ストレーナの許容限界は、添付書類 「V-3-別添2-1 火山への配慮が必要な施設の方針」の「4.2 許容限界」に示す 許容限界である、設計降伏点S_y又はJEAG4601の許容応力状態Ⅲ_ASとする。

図2-5 残留熱除去系海水系ストレーナの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

残留熱除去系海水系ストレーナの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A 1	m ²	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A _b	mm^2	基礎ボルトの軸断面積
а	mm	蓋の外半径
B _{x 1}	mm	支持脚の寸法
B _{x2}	mm	支持脚の寸法
B _{y 1}	mm	支持脚の寸法
B _{y2}	mm	支持脚の寸法
С	—	建築物荷重指針・同解説により規定される風力係数
d	mm	基礎ボルト呼び径
E'	_	建築基準法施行令第87条第2項に規定する数値
F	_	建設省告示第1454号の規定によって算出した平均風速の高さ方向の分布を
L r		表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
F _b	Ν	基礎ボルトに対する引張力
F _d	Ν	ストレーナ自重(内包水含む)による荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許容圧縮応
I c	wi a	力
f	MPa	J S M E SSB-3121.1により規定される供用状態 A 及び B での許容せん断応
1 S	Mi G	<u>カ</u>
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張応力
G	_	ガスト影響係数
g	m/s^2	重力加速度
H	mm	ストレープ局さ(全局)
H _s	N	文狩脚に常時作用するストレーナ目重(内包水含む)の荷重 サールー
h	mm	蓋の板厚
h g	mm	ストレーナ重心高さ

表 3-1 残留熱除去系海水系ストレーナの強度評価に用いる記号(1/2)

r	太 0 1 八田	
記号	単位	定義
L 1	mm	基礎ボルト間の水平距離
L _H	mm	重心から基礎ボルト間の水平距離
m	kg	容器の有効運転質量*
Ν	—	基礎ボルトの本数
n _f	—	引張力を受ける基礎ボルトの本数
р	N/mm^2	蓋に作用する等分布荷重
Q b	Ν	基礎ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	支持脚の断面積
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張り強さ
V d	m/s	基準風速
W	Ν	風(台風)による水平荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	—	円周率
σ _b	MPa	蓋に生じる曲げ応力
σс	MPa	支持脚に生じる圧縮応力
σt	MPa	基礎ボルトに生じる引張応力
α	_	地表面粗度区分に応じて建設省告示1454号に掲げる数値
τ	MPa	基礎ボルトに生じるせん断応力

表 3-1 残留熱除去系海水系ストレーナの強度評価に用いる記号(2/2)

注記 *: 有効運転質量は、容器の満水時における質量とする。

3.2 評価対象部位

残留熱除去系海水系ストレーナの評価対象部位は,添付書類「V-3-別添 2-1 火山への配 慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従っ て,蓋,支持脚及び基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向 及び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積するストレーナ上部の蓋, 蓋等のストレーナ上部を介して胴板及び支持脚に作用する。風(台風)による水平荷重につい ては,胴板及び支持脚を介して基礎ボルトに作用する。

このことから,降下火砕物等による鉛直荷重に対しては,降下火砕物が堆積する蓋及び蓋等 のストレーナ上部を介して荷重が作用する胴板及び支持脚のうち,降下火砕物が堆積する蓋及 び胴板と比較し断面積が小さく発生応力が大きくなる支持脚を評価対象部位として選定する。 また,風(台風)による水平荷重に対しては,胴板及び支持脚と比較し断面積が小さく発生応 力が大きくなる基礎ボルトを評価対象部位として選定する。

残留熱除去系海水系ストレーナの強度評価における評価対象部位を,図 3-1 に示す。

図 3-1 残留熱除去系海水系ストレーナの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の 組合せを用いる。

(1) 荷重の設定

残留熱除去系海水系ストレーナの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F、')
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重は添付書類「V-3-別添 2-1 火山への配慮が必要な施設の 強度計算の方針」の「4.1(3)c. 水平荷重」に示す式に従い,算出する。全高Hが5m以 下であるため,全高HがZ_b以下の場合の式を用いる。風(台風)による水平荷重の受圧 面積を図 3-2 に示す。

$$W = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$

$$E_{r} = 1.7 \cdot (Z_{b} \neq Z_{G})^{\alpha}$$

図3-2 風(台風)による水平荷重の受圧面積

- d. 運転時の状態で作用する荷重(F_p) 運転時の状態で作用する荷重として、内包水の荷重を自重に含めて考慮する。
- (2) 荷重の組合せ

強度評価に用いる荷重の組合せは,残留熱除去系海水系ストレーナの評価対象部位ごとに 設定する。

残留熱除去系海水系ストレーナの蓋及び支持脚には,自重,降下火砕物等堆積による鉛直 荷重が作用する。また,基礎ボルトには,自重,降下火砕物等堆積による鉛直荷重,風(台 風)による水平荷重が作用する。

残留熱除去系海水系ストレーナの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

施設名称 評価対象部位		荷重		
	蓋	①自重 ②降下火砕物等堆積による鉛直荷重		
残留熱除去系海水系 ストレーナ	支持脚	 ①自重 ②降下火砕物等堆積による鉛直荷重 		
	基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 		

表 3-2 荷重の組合せ

3.4 許容限界

残留熱除去系海水系ストレーナの許容限界値は、添付書類「V-3-別添 2-1 火山への配慮 が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、

「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、設計降伏点S_v又はJEAG4601に基づき許容応力状態Ⅲ_ASの許容応力を用いる。

残留熱除去系海水系ストレーナの許容限界は,蓋に対しては弾性範囲である設計降伏点S_y とする。支持脚及び基礎ボルトに対してはJEAG4601を準用し,「クラス2,3支持構造 物」の許容限界を適用する。設計荷重に対して,当該施設に要求される安全機能を維持できる ように弾性設計とするため,許容応力状態Ⅲ_ASから算出した以下の許容応力を許容限界とす る。JEAG4601に従い,JSME付録材料図表 Part5,6の表にて許容応力を評価する 際は,評価対象部位の周囲環境温度に応じた値をとるものとするが,温度がJSME付録材料 図表記載の中間の値の場合は,比例法を用いて評価する。ただし,JSME付録材料図表 Part5,6で比例法を用いる場合の端数処理は,小数点第1位以下を切り捨てた値を用いるも のとする。

残留熱除去系海水系ストレーナの許容限界を表 3-3,許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界
蓋	_	一次 応力	曲げ	S _y
支持脚	III _A S	一次 応力	圧縮	1.5 f $_{\rm c}$
基礎ボルト	III _A S	一次応力	引張	1.5 f _t
			せん断	1.5 f s
			組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }

表 3-3 残留熱除去系海水系ストレーナの許容限界

表 3-4 残留熱除去系海水系ストレーナの許容応力

評価対象 部位	材料	温度 条件 (℃)	S y (MPa)	S _u (MPa)	F (MPa)	1.5 f _c (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)
蓋	SCS14	50*	180	_	_	_	_	_
支持脚	SCS14	50*	180	429	185	184	_	_
基礎ボルト	SS400	50*	231	394	231	_	173	133

注記 *:周囲環境温度

11

3.5 評価方法

残留熱除去系海水系ストレーナの応力評価は、添付書類「V-3-別添 2-1 火山への配慮が 必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

- (1) 評価モデル
 - a. 等分布荷重による評価

等分布荷重による評価を行うストレーナの蓋は、平板円板モデルとする。なお、ストレ ーナの蓋はドーム型円板であるが、平板円板では鉛直荷重全てが平板円板に対する曲げ荷 重として作用するのに対し、ドーム型円板では鉛直荷重の一部は径方向への部材に対する 圧縮として作用し、曲げ荷重が緩和されるので、平板円板モデルとして評価するのは保守 的である。等分布荷重による評価に用いるモデル図を図 3-3 に示す。

図 3-3 等分布荷重による評価に用いるモデル図

b. 1質点系モデルによる評価

降下火砕物等堆積による鉛直荷重及び自重(鉛直荷重)並びに風(台風)による水平荷 重に対する,基礎ボルトの構造健全性を1質点系モデルとして計算を行う。ここで,荷重 の作用点は評価上高さの1/2より高いストレーナの重心位置とする。残留熱除去系海水系 ストレーナの1質点系モデル図を図3-4に示す。

図 3-4 1 質点系モデル図

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等堆積による鉛直荷重の受圧面積を図 3-5 に示す。保守的に基礎部面積分 の降下火砕物等がストレーナに堆積すると仮定し、基礎部面積を受圧面積とする。

図3-5 鉛直荷重の受圧面積

(b) 支持脚に常時作用するストレーナ自重による軸方向荷重
 H_s = F_d
 ここで,

,

$$F_d = m \cdot g$$

- (a) 蓋に生じる応力
 - イ. 曲げ応力

蓋に生じる曲げ応力σьは次式より算出される。

$$\sigma_{\rm b} = 1.24 \cdot \frac{{\rm p} \cdot {\rm a}^2}{{\rm h}^2}$$

- (b) 支持脚に生じる応力
 - イ. 圧縮応力

支持脚に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S}$$

$$\Xi \equiv \widetilde{C},$$

$$S = \left\{ \left(B_{x1} \cdot B_{y1} \cdot 2 \right) + \left(B_{x2} \cdot B_{y2} \right) \right\} \cdot 4$$

支持脚の断面図を図 3-6 に示す。

図 3-6 支持脚の断面図

- (c) 基礎ボルトに生じる応力
 - イ. 引張応力

基礎ボルトに生じる引張応力σ_tは次式より算出される。

最も厳しい条件として,基礎ボルトを支点とする転倒を考え,これを片側の基礎ボ ルトで受けるものとして計算する。

(イ) 引張力

$$\mathbf{F}_{b} = \frac{\mathbf{W} \cdot \mathbf{h}_{g} + (\mathbf{m} \cdot \mathbf{g} + \mathbf{F}_{v}) \mathbf{L}_{H}}{\mathbf{n}_{f} \cdot \mathbf{L}_{1}}$$

(ロ) 引張応力

$$\sigma_{t} = \frac{F_{b}}{A_{b}}$$

ここで, 基礎ボルトの軸断面積Abは,

$$A_{b} = \frac{\pi}{4} d^{2}$$

ロ. せん断応力

基礎ボルトに生じるせん断応力τは次式より算出される。基礎ボルト全本数でせん 断力を受けるものとして計算する。

(イ) せん断力

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-3 に示す。

q	G	С	V _D	Zb	Z g
(N/m^2)	(—)	(—)	(m/s)	(m)	(m)
960	2.2	2.4	30	5	350

表 4-1 評価条件

F v'	α	g
(N/m ²)	(—)	(m/s²)
7565	0.15	9.80665

表 4-2 評価条件 (蓋)

р	a	h
(N/mm^2)	(mm)	(mm)
0.0115	460	28

表 4-3 評価条件(支持脚及び基礎ボルト)

A 1	A_2	B _{x 1}	B _{x 2}	B _{y 1}	B _{y 2}
(m^2)	(m ²)	(mm)	(mm)	(mm)	(mm)
3.76	4.35	150	25	25	174

L _H	L 1	m	ボルト	N	n f	
(mm)	(mm)	(kg)	サイズ	(-)	(-)	
515	1030	9850	M30	4	2	

16

A _b	h _g
(mm^2)	(mm)
706.9	1188

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 蓋,支持脚及び基礎ボルトに発生する応力は,許容応力以下である。

A 3-1 元面照际云示何小示へ下レー)の計価相木								
評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)				
盖	SCS14	曲げ	4	180				
支持脚	SCS14	圧縮	3	184				
		引張	53	173				
基礎ボルト	SS400	せん断	4	133				
		組合せ	53	173				

表 5-1 残留熱除去系海水系ストレーナの評価結果

V-3-別添 2-1-3 ディーゼル発電機用海水ポンプの強度計算書

1.	巿	既要····································
2.	麦	基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1	位置
2.	2	構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	適用規格・・・・・・・・・・・・・・・・・・・・・5
3.	彭	鱼度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2	評価対象部位・・・・・・8
3.	3	荷重及び荷重の組合せ・・・・・・9
3.	4	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		平価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	彭	魚度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり、非常用ディーゼル発電機用海水ポンプ及び高圧炉心スプレイ系ディーゼル発電機用海水ポ ンプ(以下「ディーゼル発電機用海水ポンプ」という。)が降下火砕物等堆積時においても、送 水機能の維持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

ディーゼル発電機用海水ポンプは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強 度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,ディーゼル発電機用海水 ポンプの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示 す。

2.1 位置

ディーゼル発電機用海水ポンプは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設置する。海水ポンプ室の位置図を図 2-1 に示す。

図 2-1 海水ポンプ室の位置図

2.2 構造概要

ディーゼル発電機用海水ポンプは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の 強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて,構造を設定する。

ディーゼル発電機用海水ポンプは、ポンプ据付面から原動機台までのポンプ部と、原動機台 より上部の原動機部からなる立形ポンプであり、同一設計の非常用ディーゼル発電機用海水ポ ンプ2台及び高圧炉心スプレイ系ディーゼル発電機用海水ポンプ1台を設置している。降下火砕 物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位置より上部 のポンプの概要図を図2-2に示す。

ディーゼル発電機用海水ポンプ原動機の形状は円筒形を基本としたフレームに、主回路用端 子箱等が付加された形態であり、ポンプのスラスト荷重は全て原動機フレーム及び原動機台に 作用する構造とする。ディーゼル発電機用海水ポンプが風(台風)による水平荷重を受けるこ とを想定する面の概要図を図2-3、降下火砕物等がディーゼル発電機用海水ポンプに最も多く 堆積することが想定される状態図を図2-4に示す。

(a) 上面図

図 2-2 ディーゼル発電機用海水ポンプの概要図

2

↑ ↑ 丘
 (台風)による水平荷重の方向
 (a)上面図

図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

:降下火砕物等

図 2-4 降下火砕物等の堆積状態図

129

2.3 評価方針

ディーゼル発電機用海水ポンプの強度評価は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷重及び荷重の組合せ並びに許容限界を踏まえて、評価対象部位に作用する応力が、許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

ディーゼル発電機用海水ポンプの強度評価フローを図2-5に示す。ディーゼル発電機用海水 ポンプの強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに 組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象 部位を選定する。

降下火砕物等堆積による鉛直荷重については、ポンプ上面の投影面積に対し降下火砕物等が 堆積した場合を設定する。また、風(台風)による水平荷重は水平方向より作用する外荷重と いう観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針 重要度分 類・許容応力編 JEAG4601・補-1984」((社)日本電気協会)、「原子力発電所耐震 設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐震設計 技術指針 JEAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG460 1」という。)における1質点系モデルによる評価方法を準用し、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価式を用い る。ディーゼル発電機用海水ポンプの許容限界は、添付書類「V-3-別添2-1 火山への配慮が 必要な施設の強度計算の方針」の「4.2 許容限界」に示す許容限界である、JEAG460 1の許容応力状態Ⅲ_ASとする。

図2-5 ディーゼル発電機用海水ポンプの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機用海水ポンプの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積 (風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A _b	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B 4	mm	原動機フレーム内径
С	_	風力係数
d	mm	基礎ボルト呼び径
E'	_	建築基準法施行令第87条第2項に規定する数値
F		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
Сr		布を表す係数
F	Ν	JSME SSB-3121.1により規定される値
F _d	Ν	原動機自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F i	Ν	各ボルトに作用する引張力
F _n	Ν	ボルトに作用する最大引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f _b	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許容曲げ 応力
f _c	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許容圧縮 応力
f s	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん 断応力
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張 応力
G	_	ガスト影響係数
g	m/s^2	重力加速度

表 3-1 ディーゼル発電機用海水ポンプの強度評価に用いる記号(1/2)

	A 0 1	
記号	単位	定義
Н	mm	ポンプ高さ(全高)
H s	Ν	原動機自重及びポンプスラストによる軸方向荷重
h	mm	取付面から荷重作用点までの距離
L i	mm	ボルト間の距離
L _n	mm	各ボルト間距離のうち最長距離
М	N•mm	評価対象部位に作用するモーメント
M 1	N•mm	水平荷重により原動機フレームに作用するモーメント
M_2	N•mm	鉛直荷重により原動機フレームに作用するモーメント
m	kg	原動機の質量
N	—	ボルトの本数
Р	kg	ポンプスラスト荷重
q	N/m^2	速度圧
Q b	Ν	ボルトに対するせん断力
S 1	mm^2	原動機台の断面積
S ₂	mm^2	原動機フレームの断面積
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V d	m/s	基準風速
W	Ν	風(台風)による水平荷重
Z	mm ³	断面係数
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	—	円周率
σс	MPa	評価対象部位に生じる圧縮応力
σь	MPa	原動機フレームに生じる曲げ応力
σ _t	MPa	基礎ボルトに生じる引張応力
α	_	地表面粗度区分に応じて建設省告示 1454 号に掲げる数値
τ	MPa	せん断応力

表 3-1 ディーゼル発電機用海水ポンプの強度評価に用いる記号(2/2)

3.2 評価対象部位

ディーゼル発電機用海水ポンプの評価対象部位は,添付書類「V-3-別添 2-1 火山への配 慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従っ て,原動機台,原動機フレーム及び据付面基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向 及び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する原動機上部を介して支 持している原動機フレーム及び原動機台に作用する。また,風(台風)による水平荷重は,原 動機フレーム及び原動機台に作用し,原動機台を介して据付面基礎ボルトに作用する。さらに, ポンプのスラスト荷重は全て原動機フレーム及び原動機台に作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては,原動機フレーム及び原動機台 を評価対象部位とする。また,風(台風)による水平荷重に対しては,原動機フレーム及び据 付面基礎ボルトを評価対象部位とする。

ディーゼル発電機用海水ポンプの強度評価における評価対象部位を図3-1に示す。

図 3-1 ディーゼル発電機用海水ポンプの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の 組合せを用いる。

(1) 荷重の設定

ディーゼル発電機用海水ポンプの強度評価に用いる荷重を以下に示す。

a. 常時作用する荷重(F_d)

常時作用する荷重は、原動機の自重を考慮する。

b. 降下火砕物等堆積による鉛直荷重(F_v')

単位面積当たりの降下火砕物等堆積による鉛直荷重は、7565 N/m²とする。

c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重は添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1(3)c. 水平荷重」に示す式に従い,算出する。全高Hが 5 m以下であるため,HがZ_b以下の場合の式を用いる。

評価に用いる複合荷重は原動機フレーム,原動機台及び主回路用端子箱に風(台風) による水平荷重を受けた際の複合荷重とする。なお,複合荷重は,原動機フレーム,原 動機台及び主回路用端子箱に対する各々の風力係数を考慮した風(台風)による水平荷 重を含有するような面積を設定し算出する。

風(台風)による水平荷重によるWは以下のようにして求める。風(台風)による水 平荷重の受圧面積を図 3-2 に示す。

```
W = q \cdot C \cdot A_{1}
\Xi \subseteq \mathfrak{C},
q = 0.6 \cdot E' \cdot V_{D}^{2}
E' = E_{r}^{2} \cdot G
E_{r} = 1.7 \cdot (Z_{b} \neq Z_{G})^{\alpha}
```

9

図 3-2 風(台風)による水平荷重の受圧面積

d. 運転時の状態で作用する荷重(F_p)
 運転時の状態で作用する荷重は、鉛直下向きに働くポンプスラスト荷重を考慮する。

10

(2) 荷重の組合せ

強度評価に用いる荷重の組合せは,ディーゼル発電機用海水ポンプの評価対象部位ご とに設定する。

ディーゼル発電機用海水ポンプには,自重,降下火砕物等堆積による鉛直荷重,風(台 風)による水平荷重及びポンプスラスト荷重が作用する。

ディーゼル発電機用海水ポンプの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

施設名称	評価対象部位	荷重
	原動機台	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③ポンプスラスト荷重
ディーゼル発電機用海水ポンプ	原動機フレーム	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 ④ポンプスラスト荷重
	据付面基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 ④ポンプスラスト荷重

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機用海水ポンプの許容限界は、添付書類「V-3-別添 2-1 火山への配慮が 必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、

「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、J EAG4601に基づき許容応力状態Ⅲ_ASの許容応力を用いる。

ディーゼル発電機用海水ポンプの許容限界は、JEAG4601を準用し、「クラス2,3支 持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持 できるように弾性設計とするため、許容応力状態Ⅲ_ASから算出した以下の許容応力を許容限 界とする。JEAG4601に従い、JSME付録材料図表 Part5,6の表にて許容応力を評価 する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJSME付録 材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表 Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるもの とする。

ディーゼル発電機用海水ポンプの許容限界を表 3-3,許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界		
原動機台 Ⅲ _A S		一次 応力	圧縮	1.5 f $_{\rm c}$		
原動機フレーム	III _A S	一次	曲げ	1.5 f _b		
		応力	圧縮	1.5 f _c		
	III _A S	一次応力	引張	1.5 f _t		
据付面基礎ボルト			せん断	1.5 f _s		
			組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }		

表 3-3 ディーゼル発電機用海水ポンプの許容限界

表 3-4 ディーゼル発電機用海水ポンプの許容応力

評価対象 部位	材料	温度 条件 (℃)	S _y (MPa)	S _u (MPa)	F (MPa)	1.5 f _c (MPa)	1.5f ь (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)
原動機台	SS400	50* ¹	241	394	241	240	_	_	_
原動機 フレーム	SS400	95^{*2}	223	374	223	222	257	_	_
据付面 基礎ボルト	S20C	50* ¹	241	391	241	_	_	180	139

注記 *1:周囲環境温度

*2:最高使用温度

3.5 評価方法

ディーゼル発電機用海水ポンプの応力評価は,添付書類「V-3-別添 2-1 火山への配慮が 必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定しているディーゼル発電機用 海水ポンプの評価式を用いる。

(1) 評価モデル

降下火砕物等堆積による鉛直荷重,ポンプスラスト荷重(鉛直荷重)及び自重(鉛直荷重) 並びに風(台風)による水平荷重に対する,原動機フレーム及び据付面基礎ボルトの構造健 全性を1 質点系モデルとして計算を行う。ここで,荷重の作用点は評価上高さの1/2 とす る。ディーゼル発電機用海水ポンプの評価モデル図を図3-3及び図3-4に示す。

図 3-3 1 質点系モデル図(原動機フレーム)

図 3-4 1 質点系モデル図(据付面基礎ボルト)

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等堆積による鉛直荷重の受圧面積を図 3-5 に示す。保守的に基礎部面積分 の降下火砕物等が原動機に堆積すると仮定し、基礎部面積を受圧面積とする。

なお,基礎部面積に包含されない主回路用端子箱の一部については,堆積面積の保守 性に包含される。

図 3-5 鉛直荷重の受圧面積

(b) 原動機台,原動機フレーム及び据付面基礎ボルトに作用する原動機自重及びポンプス ラスト荷重による軸方向荷重

 $F_p = P \cdot g$
- b. 応力評価
- (a) 原動機台に生じる応力
 - イ. 圧縮応力

原動機台に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{\rm c} = \frac{F_{\rm v} + H_{\rm s}}{S_{\rm 1}}$$

ここで,

$$S_1 = \frac{\pi}{4} (B_1^2 - B_2^2)$$

原動機台の断面図を図 3-6 に示す。

図 3-6 原動機台の断面図

(b) 原動機フレームに生じる応力

イ. 曲げ応力

原動機フレームに生じる曲げ応力σьは次式より算出される。

(イ) 風(台風)による水平荷重により原動機フレームに作用するモーメントM₁

 $M_1 = W \cdot h$

(ロ) 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H_{s}\right) \cdot B_{3}}{2}$$
(ハ) 原動機フレームに作用するモーメントM
M=M_{1} + M_{2}

(ニ) 曲げ応力

$$\sigma_{b} = \frac{M}{Z}$$

$$\Xi \equiv \overline{\mathcal{C}},$$

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

ロ. 圧縮応力

原動機フレームに生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S_{2}}$$

$$\Xi \equiv \overline{\sigma},$$

$$S_{2} = \frac{\pi}{4} (B_{3}^{2} - B_{4}^{2})$$

原動機フレームの断面図を図 3-7 に示す。

図 3-7 原動機フレームの断面図

- (c) 据付面基礎ボルトに生じる応力
 - イ. 引張応力

据付面基礎ボルトに生じる引張応力σ_tは次式より算出される。

$$M=2\sum_{i=1}^{n} F_{i} \cdot L_{i} \cdot (3.1)$$

$$\frac{F_{i}}{L_{i}} = -定 \cdot (3.2)$$

$$(3.1) \quad (3.2) \quad 式より,$$

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$

ここで、Mは以下による。

$$M=W \cdot h + (F_{v} + H_{s}) \cdot \frac{L_{n}}{2}$$

(ロ) 引張応力

$$\sigma_{\rm t} = \frac{F_{\rm n}}{A_{\rm b}}$$

ここで, 据付面基礎ボルトの軸断面積Abは,

$$A_{b} = \frac{\pi}{4} d^{2}$$

ロ. せん断応力

据付面基礎ボルトに生じるせん断応力 τ は次式より算出される。据付面基礎ボルト 全本数でせん断力を受けるものとして計算する。

(イ) せん断力

$$Q_b = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

据付面基礎ボルトの配置図を図 3-8 に示す。

4×M36 (据付面基礎ボルト)

18

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-3 に示す。

q	G	С	V d	Z _b	ZG
(N/m^2)	(-)	(-)	(m/s)	(m)	(m)
960	2. 2	1.2	30	5	350

表 4-1 評価条件

F v'	α	g
(N/m ²)	(-)	(m/s ²)
7565	0.15	9.80665

表 4-2 評価条件(原動機台,原動機フレーム)

A_1	A $_2$	m	Р	B ₁	B ₂
(m^2)	(m^2)	(kg)	(kg)	(mm)	(mm)
1.138	1.690	1230	900	1100	1076

B ₃	B ₄	h
(mm)	(mm)	(mm)
449	425	490.5

表 4-3 評価条件(据付面基礎ボルト)

A 1	A_2	m	Р	L ₁	ボルト
(m^2)	(m^2)	(kg)	(kg)	(mm)	サイズ
2. 789	1.690	2130	900	1200	M36

Ν	A _b	h
(-)	(mm^2)	(mm)
4	1018	1126

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 原動台,原動機フレーム及び据付面基礎ボルトに発生する応力は,許容応力以下である。

	, 1	2000		
評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
原動機台	SS400	圧縮	1	240
百動地フレーム	55400	曲げ	5	257
尿動成ノレーム	55400	圧縮	3	222
		引張	12	180
据付面基礎ボルト	S20C	せん断	1	139
		組合せ	12	180

表 5-1 ディーゼル発電機用海水ポンプの評価結果

V-3-別添 2-1-4 ディーゼル発電機用海水ストレーナの強度計算書

1.	相	既要····································
2.	ŧ	基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1	位置
2.	2	構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	適用規格
3.	弜	魚度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
3.	3	荷重及び荷重の組合せ・・・・・・9
3.	4	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		平価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	弜	魚度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり、非常用ディーゼル発電機用海水ストレーナ及び高圧炉心スプレイ系ディーゼル発電機用海 水ストレーナ(以下「ディーゼル発電機用海水ストレーナ」という。)が降下火砕物等堆積時に おいても、海水中の固形物を除去する機能の維持を考慮して、主要な構造部材が構造健全性を有 することを確認するものである。

2. 基本方針

ディーゼル発電機用海水ストレーナは,添付書類「V-3-別添2-1 火山への配慮が必要な施設 の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,ディーゼル発電機用 海水ストレーナの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規 格」を示す。

2.1 位置

ディーゼル発電機用海水ストレーナは、添付書類「V-3-別添 2-1 火山への配慮が必要な 施設の強度計算の方針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設 置する。海水ポンプ室の位置図を図 2-1 に示す。

図 2-1 海水ポンプ室の位置図

2.2 構造概要

ディーゼル発電機用海水ストレーナは,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて,構造を設定する。

ディーゼル発電機用海水ストレーナは, 胴板と支持脚が鋳物一体となった円筒形の容器を並 べて組み合せた構造であり, 支持脚が基礎ボルトで固定されている。ストレーナの上部開口に は蓋が設置されており, 同一設計のディーゼル発電機用海水ストレーナを3台設置している。

降下火砕物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位 置より上部のストレーナの概要図を図2-2に示す。

ディーゼル発電機用海水ストレーナが風(台風)による水平荷重を受けることを想定する面の概要図を図2-3,降下火砕物等がディーゼル発電機用海水ストレーナに最も多く堆積することが想定される状態図を図2-4に示す。

図 2-2 ディーゼル発電機用海水ストレーナの概要図

図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

ディーゼル発電機用海水ストレーナの強度評価は、添付書類「V-3-別添2-1 火山への配慮 が必要な施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定し ている、荷重及び荷重の組合せ並びに許容限界を踏まえて、ストレーナの評価対象部位に作用 する応力が、許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条 件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

ディーゼル発電機用海水ストレーナの強度評価フローを図2-5に示す。ディーゼル発電機用 海水ストレーナの強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重 とこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、 評価対象部位を選定する。

降下火砕物等堆積による鉛直荷重については、ストレーナ上面の投影面積に対し降下火砕物 等が堆積した場合を設定する。また、風(台風)による水平荷重は水平方向より作用する外荷 重という観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針 重要 度分類・許容応力編 JEAG4601・補-1984」((社)日本電気協会)、「原子力発電所 耐震設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐震 設計技術指針 JEAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG4 601」という。)における1質点系モデルによる評価方法を準用する。それぞれの評価につ いては、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「5. 強 度評価方法」に示す評価式を用いる。ディーゼル発電機用海水ストレーナの許容限界は、添付 書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に 示す許容限界である、設計降伏点S_y又はJEAG4601の許容応力状態Ⅲ_ASとする。

図2-5 ディーゼル発電機用海水ストレーナの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機用海水ストレーナの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A_1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A _b	mm^2	基礎ボルトの軸断面積
а	mm	蓋の外半径
B _{x 1}	mm	支持脚の寸法
B $_{x 2}$	mm	支持脚の寸法
B _{y 1}	mm	支持脚の寸法
B $_{\rm y~2}$	mm	支持脚の寸法
С	—	建築物荷重指針・同解説により規定される風力係数
d	mm	基礎ボルト呼び径
E'	_	建築基準法施行令第87条第2項に規定する数値
F	_	建設省告示第1454号の規定によって算出した平均風速の高さ方向の分布を
L r		表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
Γ _b	Ν	基礎ボルトに対する引張力
F _d	Ν	ストレーナ自重(内包水含む)による荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f.	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容圧縮応
1 0	in a	<u>カ</u>
fs	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん断応
- 3		カ
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張応力
G	—	ガスト影響係数
g	m/s^2	重力加速度
Н	mm	ストレーナ高さ(全高)
H s	Ν	支 持脚に 常時 作用 する ストレーナ 自重 (内包水 含む)の 荷重
h	mm	蓋の板厚
h _g	mm	ストレーナ重心高さ

表 3-1 ディーゼル発電機用海水ストレーナの強度評価に用いる記号(1/2)

1		
記号	単位	定義
L 1	mm	基礎ボルト間の水平距離
L _H	mm	重心から基礎ボルト間の水平距離
m	kg	容器の有効運転質量*
Ν	—	基礎ボルトの本数
n _f	—	引張力を受ける基礎ボルトの本数
р	N/mm^2	蓋に作用する等分布荷重
Q b	Ν	基礎ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	支持脚の断面積
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張り強さ
V d	m/s	基準風速
W	Ν	風(台風)による水平荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	—	円周率
σ _b	MPa	蓋に生じる曲げ応力
σ _c	MPa	支持脚に生じる圧縮応力
σt	MPa	基礎ボルトに生じる引張応力
α	—	地表面粗度区分に応じて建設省告示1454号に掲げる数値
τ	MPa	基礎ボルトに生じるせん断応力

表 3-1 ディーゼル発電機用海水ストレーナの強度評価に用いる記号(2/2)

注記 *: 有効運転質量は、容器の満水時における質量とする。

3.2 評価対象部位

ディーゼル発電機用海水ストレーナの評価対象部位は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に 従って,蓋,支持脚及び基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向 及び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積するストレーナ上部の蓋, 蓋等のストレーナ上部を介して胴板及び支持脚に作用する。風(台風)による水平荷重につい ては,胴板及び支持脚を介して基礎ボルトに作用する。

このことから,降下火砕物等による鉛直荷重に対しては,降下火砕物が堆積する蓋及び蓋等 のストレーナ上部を介して荷重が作用する胴板及び支持脚のうち,降下火砕物が堆積する蓋及 び胴板と比較し断面積が小さく発生応力が大きくなる支持脚を評価対象部位として選定する。 また,風(台風)による水平荷重に対しては,胴板及び支持脚と比較し断面積が小さく発生応 力が大きくなる基礎ボルトを評価対象部位として選定する。

ディーゼル発電機用海水ストレーナの強度評価における評価対象部位を,図 3-1 に示す。

図 3-1 ディーゼル発電機用海水ストレーナの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組 合せを用いる。

(1) 荷重の設定

ディーゼル発電機用海水ストレーナの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は、自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v['])
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重は、添付書類「V-3-別添 2-1 火山への配慮が必要な施設 の強度計算の方針」の「4.1(3)c. 水平荷重」に示す式に従い、算出する。全高Hが5 m 以下であるため、全高HがZ_b以下の場合の式を用いる。風(台風)による水平荷重の受 圧面積を図 3-2 に示す。

$$W = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$

$$E_{r} = 1.7 \cdot (Z_{b} \neq Z_{G})^{\alpha}$$

図3-2 風(台風)による水平荷重の受圧面積

- d. 運転時の状態で作用する荷重(F_p) 運転時の状態で作用する荷重として、内包水の荷重を自重に含めて考慮する。
- (2) 荷重の組合せ

強度評価に用いる荷重の組合せは、ディーゼル発電機用海水ストレーナの評価対象部位ご とに設定する。

ディーゼル発電機用海水ストレーナの蓋及び支持脚には,自重,降下火砕物等堆積による 鉛直荷重が作用する。また,基礎ボルトには,自重,降下火砕物等堆積による鉛直荷重,風 (台風)による水平荷重が作用する。

ディーゼル発電機用海水ストレーナの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

施設名称	評価対象部位	荷重
	蓋	 ①自重 ②降下火砕物等堆積による鉛直荷重
ディーゼル発電機用 海水ストレーナ	支持脚	 ①自重 ②降下火砕物等堆積による鉛直荷重
	基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機用海水ストレーナの許容限界値は、添付書類「V-3-別添 2-1 火山への 配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従っ て、「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、 設計降伏点S_y又はJEAG4601に基づき許容応力状態Ⅲ_ASの許容応力を用いる。

ディーゼル発電機用海水ストレーナの許容限界は、蓋に対しては弾性範囲である設計降伏点 S_yとする。支持脚及び基礎ボルトに対してはJEAG4601を準用し、「クラス 2,3 支持 構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持で きるように弾性設計とするため、許容応力状態 III_A Sから算出した以下の許容応力を許容限界 とする。JEAG4601に従い、JSME付録材料図表 Part5,6の表にて許容応力を評価 する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJSME付録 材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表 Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるも のとする。

ディーゼル発電機用海水ストレーナの許容限界を表 3-3,許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界
蓋	_	一次 応力	曲げ	S _y
支持脚	III _A S	一次 応力	圧縮	1.5 f $_{\rm c}$
		Vh	引張	1.5 f $_{\rm t}$
基礎ボルト	III _A S	一次 応力	せん断	1.5 f _s
			組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }

表 3-3 ディーゼル発電機用海水ストレーナの許容限界

表 3-4 ディーゼル発電機用海水ストレーナの許容応力

評価対象 部位	材料	温度 条件 (℃)	S _y (MPa)	S u (MPa)	F (MPa)	1.5 f _c (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)
蓋	SCS14	50*	180	_	_	—	_	_
支持脚	SCS14	50*	180	429	185	184	_	_
基礎ボルト	SS400	50*	231	394	231	_	173	133

注記 *:周囲環境温度

3.5 評価方法

ディーゼル発電機用海水ストレーナの応力評価は、添付書類「V-3-別添 2-1 火山への配 慮が必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。 (1) 評価モデル

a. 等分布荷重による評価

等分布荷重による評価を行うストレーナの蓋は、平板円板モデルとする。なお、ストレ ーナの蓋はドーム型円板であるが、平板円板では鉛直荷重全てが平板円板に対する曲げ荷 重として作用するのに対し、ドーム型円板では鉛直荷重の一部は径方向への部材に対する 圧縮として作用し、曲げ荷重が緩和されるので、平板円板モデルとして評価するのは保守 的である。等分布荷重による評価に用いるモデル図を図 3-3 に示す。

図 3-3 等分布荷重による評価に用いるモデル図

b. 1質点系モデルによる評価

降下火砕物等堆積による鉛直荷重及び自重(鉛直荷重)並びに風(台風)による水平荷 重に対する,基礎ボルトの構造健全性を1質点系モデルとして計算を行う。ここで,荷重 の作用点は評価上高さの1/2より高いストレーナの重心位置とする。ディーゼル発電機用 海水ストレーナの1質点系モデル図を図3-4に示す。

図 3-4 1 質点系モデル図

Lн

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等堆積による鉛直荷重の受圧面積を図 3-5 に示す。保守的に基礎部面積分 の降下火砕物等がストレーナに堆積すると仮定し、基礎部面積を受圧面積とする。

- (b) 支持脚に常時作用するストレーナ自重による軸方向荷重
 - $H_s = F_d$

ここで,

 $F_d = m \cdot g$

- b. 応力評価
- (a) 蓋に生じる応力
 - イ. 曲げ応力

蓋に生じる曲げ応力σbは次式より算出される。

$$\sigma_{b} = 1.24 \cdot \frac{p \cdot a^{2}}{h^{2}}$$

- (b) 支持脚に生じる応力
 - イ. 圧縮応力

支持脚に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + H_{s}}{S}$$

$$\Xi \equiv \overline{C},$$

$$S = \left\{ \left(B_{x1} \cdot B_{y1} \cdot 2 \right) + \left(B_{x2} \cdot B_{y2} \right) \right\} \cdot 4$$

支持脚の断面図を図 3-6 に示す。

図 3-6 支持脚の断面図

- (c) 基礎ボルトに生じる応力
 - イ. 引張応力

基礎ボルトに生じる引張応力σ_tは次式より算出される。

最も厳しい条件として,基礎ボルトを支点とする転倒を考え,これを片側の基礎ボ ルトで受けるものとして計算する。

(イ) 引張力

$$\mathbf{F}_{b} = \frac{\mathbf{W} \cdot \mathbf{h}_{g} + (\mathbf{m} \cdot \mathbf{g} + \mathbf{F}_{v}) \mathbf{L}_{H}}{\mathbf{n}_{f} \cdot \mathbf{L}_{1}}$$

(ロ) 引張応力

$$\sigma_{t} = \frac{F_{b}}{A_{b}}$$

ここで、基礎ボルトの軸断面積Abは、

$$A_{b} = \frac{\pi}{4} d^{2}$$

ロ. せん断応力

基礎ボルトに生じるせん断応力 τ は次式より算出される。基礎ボルト全本数でせん 断力を受けるものとして計算する。

(イ) せん断力

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-3 に示す。

q	G	С	V _D	Zb	ZG
(N/m^2)	(—)	(—)	(m/s)	(m)	(m)
960	2.2	2.4	30	5	350

表 4-1 評価条件

F v' (N/m ²)	α (—)	g (m/s^2)
7565	0.15	9.80665

表 4-2 評価条件 (蓋)

р	а	h
(N/mm^2)	(mm)	(mm)
0.0103	265	18

表 4-3 評価条件(支持脚及び基礎ボルト)

A 1	A_2	B _{x 1}	B _{x 2}	B _{y 1}	B _{y 2}
(m^2)	(m^2)	(mm)	(mm)	(mm)	(mm)
1. 29	1.46	100	15	15	95

L _H	L 1	m	ボルト	N	n f
(mm)	(mm)	(kg)	サイズ	(-)	(-)
270	540	2050	M20	4	2

A _b	h _g
(mm^2)	(mm)
314.2	600

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 蓋,支持脚及び基礎ボルトに発生する応力は,許容応力以下である。

13.0	1 / 1 1/2元	电极用码从不下。	/ / / 叶 Ш 柏 木	
評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
盖	SCS14	曲げ	3	180
支持脚	SCS14	圧縮	2	184
		引張	31	173
基礎ボルト	SS400	せん断	3	133
		組合せ	31	173

表 5-1 ディーゼル発電機用海水ストレーナの評価結果

V-3-別添 2-1-5 ディーゼル発電機吸気口の強度計算書

1.	巿	既要····································
2.	麦	基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1	位置
2.	2	構造概要
2.	3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4	適用規格
3.	彭	④度評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2	評価対象部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	3	荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
3.	4	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.		平価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	彭	蚃度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり、非常用ディーゼル発電機吸気口及び高圧炉心スプレイ系ディーゼル発電機吸気口(以下 「ディーゼル発電機吸気口」という。)が降下火砕物等堆積時においても、ディーゼル発電機の 吸気機能の維持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

ディーゼル発電機吸気口は,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算 の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,ディーゼル発電機吸気口の「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

ディーゼル発電機吸気口は、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度 計算の方針」の「3.2 機能維持の方針」に示すとおり、原子炉建屋付属棟屋上に設置する。 設置位置図を図 2-1 に示す。

図 2-1 ディーゼル発電機吸気口 位置図

1

2.2 構造概要

ディーゼル発電機吸気口は,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計 算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて,構造を設定する。

ディーゼル発電機吸気口は、ディーゼル発電機1基につき2台設置しており、同一設計の吸 気口6台を設置している。降下火砕物堆積による鉛直荷重及び風(台風)による水平荷重の影 響を直接受ける据付位置より上部のディーゼル発電機吸気口概要図を図2-2に示す。

ディーゼル発電機吸気口の構造は4脚たて置円筒型容器構造であり, 胴板及び支持脚は溶接 で接合しており,支持脚は基礎部に溶接により固定している。ディーゼル発電機吸気口が風 (台風)による水平荷重を受けることを想定する面の概要図を図2-3,降下火砕物等がディー ゼル発電機吸気口に最も多く堆積することが想定される状態図を図2-4に示す。

図 2-2 ディーゼル発電機吸気口の概要図

(b) 側面図 図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

ディーゼル発電機吸気口の強度評価は,添付書類「V-3-別添2-1 火山への配慮が必要な施 設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している,荷 重及び荷重の組合せ並びに許容限界を踏まえて,吸気口の評価対象部位に作用する応力が,許 容限界に収まることを「3. 強度評価方法」に示す方法により,「4. 評価条件」に示す評価 条件を用いて計算し,「5. 強度評価結果」にて確認する。

ディーゼル発電機吸気口の強度評価フローを図2-3に示す。ディーゼル発電機吸気口の強度 評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに組み合わせる 荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象部位を選定す る。

降下火砕物等堆積による鉛直荷重については,吸気口上面の投影面積に対し降下火砕物等が 堆積した場合を設定する。また,風(台風)による水平荷重は水平方向より作用する外荷重と いう観点で地震荷重と同様なものであると考え,「原子力発電所耐震設計技術指針 重要度分 類・許容応力編 JEAG4601・補-1984」((社)日本電気協会),「原子力発電所耐震 設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐震設計 技術指針 JEAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG460 1」という。)における1質点系モデルによる評価方法を準用する。それぞれの評価について は,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「5.強度評 価方法」に示す評価式を用いる。ディーゼル発電機吸気口の許容限界は,添付書類「V-3-別 添2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す許容限界で ある,設計降伏点S_y又はJEAG4601の許容応力状態ⅢASとする。

図2-3 ディーゼル発電機吸気口の強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機吸気口の強度評価に用いる記号を表 3-1 に示す。

表3-1	ディーゼル発電機吸気口の強度評価に用いる記号(1/	/6)
1101		(\mathbf{U})

記号	単位	定義
A_1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A s	mm^2	脚の断面積
A _{sr}	mm^2	脚の半径方向軸に対する有効せん断断面積
A s t	mm^2	脚の周方向軸に対する有効せん断断面積
A_w	mm^2	支持脚基礎溶接部の有効面積
а	mm	平板の外半径
С	Ι	建築物荷重指針・同解説により規定される風力係数
C 1	mm	アタッチメントである脚の胴への取付部の幅の 1/2(胴の周方向)
C ₂	mm	アタッチメントである脚の胴への取付部の幅の 1/2(胴の軸方向)
C_{c} , C_{L}	_	応力の補正係数
D i	mm	胴の内径
Е	MPa	胴の縦弾性係数
E'	_	建築基準法施行令第87条第2項に規定する数値
F		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
L _r		布を表す係数
E _s	MPa	脚の縦弾性係数
F	MPa	JSME SSB-3121.1(1)により規定される値
Fο	Ν	振動モデル系における水平力
F _d	Ν	運転時の状態で作用する荷重
F _v	Ν	降下火砕物等堆積等による鉛直荷重
F _v '	N/m^2	単位面積当たりの降下火砕物堆積による鉛直荷重
F _s '	N/m^2	単位面積当たりの積雪による鉛直荷重
f _c	MPa	脚の許容圧縮応力
fbr	MPa	脚の半径方向軸まわりの許容曲げ応力
f _{b t}	MPa	脚の半径方向に直角な方向の軸まわりの許容曲げ応力
f s	MPa	脚の許容せん断応力
f t	MPa	脚の許容引張応力
G		ガスト影響係数
G s	MPa	脚のせん断弾性係数
g	m/s^2	重力加速度

表3-1 ディーゼル発電機吸気口の強度評価に用いる記号(2/6)

7

	A0 1	
記号	単位	定義
q	N/m^2	設計用速度圧
R	Ν	運転時質量による脚の軸力
R 1	Ν	風荷重(Z方向)により脚に作用する軸力
R ₂	Ν	降下火砕物荷重及び積雪荷重により脚に作用する軸力
r _m	mm	胴の平均半径
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
t	mm	胴の板厚
Т	Ν	支持脚に作用する引張荷重
u	mm	脚の中心軸から胴の板厚中心までの距離
V _D	m/s	基準風速
W 1	Ν	風(台風)による水平荷重
W_2	Ν	降下火砕物堆積による鉛直荷重
W 3	Ν	積雪による鉛直荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Zsr	mm ³	脚の半径方向軸に対する断面係数
Z s t	mm ³	脚の周方向軸に対する断面係数
β, β ₁ , β ₂ β _c , β _L	_	アタッチメントパラメータ
Δr	mm	運転時質量による胴の半径方向局部変位量
Δ г 1	mm	水平力Foによる胴の半径方向局部変位量
Δ x 1	mm	水平力Foによる第1脚上端の水平方向変位量
Δ_{x3}	mm	水平力 Foによる第2脚上端の水平方向変位量
Δ y 1	mm	水平力 F o による第1脚の鉛直方向変位量
θ	rad	運転時質量による胴の脚つけ根部における局部傾き角
θ ο	rad	水平力F₀による胴の中心軸の傾き角
θ_{1}	rad	水平力 Foによる第1脚の傾き角(圧縮側)
$ heta$ $_2$	rad	水平力 Foによる胴の第1脚つけ根部における局部傾き角
θз	rad	水平力 Foによる第2脚の傾き角
π	_	円周率
α	_	地表面粗度区分に応じて建設省告示 1454 号に掲げる数値

表3-1 ディーゼル発電機吸気口の強度評価に用いる記号(3/6)

X0 I /	
単位	
MPa	胴の一次一般膜応力の最大値
MPa	胴の周方向一次一般膜応力
MPa	胴の軸方向一次一般膜応力
MPa	胴の一次応力の最大値
MPa	胴の一次+二次応力の最大値
MPa	風荷重(Z方向)が作用した場合の胴の組合せ一次応力
MPa	風荷重(X方向)が作用した場合の胴の組合せ一次応力
MPa	風荷重(Z方向)が作用した場合の胴の組合せ一次+二次応力
MPa	風荷重(X方向)が作用した場合の胴の組合せ一次+二次応力
MPa	脚の組合せ応力の最大値
MPa	支持脚基礎溶接部に生じる引張応力
MPa	運転時質量による脚の圧縮応力、曲げ応力
MPa	降下火砕物荷重及び積雪荷重による脚の圧縮応力、曲げ応力
MPa	風荷重(Z方向)による脚の圧縮応力、曲げ応力
MPa	風荷重(X方向)による脚の圧縮応力、曲げ応力
MPa	脚の圧縮応力の和
MPa	脚の半径方向軸まわりの圧縮側曲げ応力の和
MPa	脚の半径方向に直角な軸まわりの圧縮側曲げ応力の和
MPa	風荷重(X方向)が作用した場合の脚の組合せ応力
MPa	風荷重(Z方向)が作用した場合の脚の組合せ応力
MPa	互いに直交する垂直応力
MPa	互いに直交する垂直応力
MPa	静水頭又は内圧による胴の軸方向応力
MPa	静水頭又は内圧による胴の周方向応力
MPa	運転時質量による胴の軸方向応力
MPa	運転時質量により生じる鉛直方向モーメントによる胴の軸方向応力
MPa	運転時質量により生じる鉛直方向モーメントによる胴の周方向応力
MPa	運転時質量により生じる半径方向荷重による胴の軸方向応力
MPa	運転時質量により生じる半径方向荷重による胴の周方向応力
MPa	応力が作用した場合の転倒モーメントによる胴の軸方向応力
MPa	降下火砕物荷重及び積雪荷重による胴の軸方向応力
MD -	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメントによ
мга	る胴の軸方向応力
	単位単位MPa

表3-1 ディーゼル発電機吸気口の強度評価に用いる記号(4/6)

9
記号	単位	定義
		降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメント
σφ8	MPa	による胴の周方向応力
	16	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による
σ _{x9}	MPa	胴の軸方向応力
	MD	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による
σ φ9	мРа	胴の周方向応力
	MDe	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメント
$0^{\circ}\phi 10, 0^{\circ}x 10$	MPa	による胴の局部応力
<i>a a</i>	MDo	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による
$0_{\phi 11}, 0_{x11}$	MI a	胴の局部応力
G at G as	MPa	風荷重(Z方向)が作用した場合の半径方向荷重による胴の軸方
0 x 61, 0 x 62	mi a	向応力
	MPa	風荷重(Z方向)が作用した場合の半径方向荷重による胴の周方
υ φ θ 1, υ φ θ 2	MI C	向応力
0 = 71. 0 = 79	MPa	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴
0 X 1 1 , 0 X 1 2		の軸方向応力
$\sigma_{\phi71}, \sigma_{\phi72}$	MPa	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴
· · · · · · · · · · · · · · · · · · ·		の周方向応力
$\sigma_{x81}, \sigma_{x82}$	MPa	風荷重(Z方向)が作用した場合の周方向モーメントによる胴
		の軸方向応力
σ φ 8 1, σ φ 8 2	MPa	風荷重(Z方向)が作用した場合の周方向モーメントによる胴
		の周方向応力
σ x 9 1, σ x 9 2	MPa	風荷重(X方向)が作用した場合の半径方向荷重による胴の軸
		方向応力
σ _φ 91,σ _φ 92	MPa	風荷重 (X方向) が作用した場合の半径方向荷重による胴の周 , , , , ,
σ _{x101} , σ _{x102}	MPa	風荷重(X方向)が作用した場合の鉛直方向モーメントによる
σ φ101, σ φ102	$\sigma_{\phi 101}, \sigma_{\phi 102}$ MPa	風荷重(X方向)が作用した場合の鉛直方向モーメントによる
σ _{x111} , σ _{x112}	MPa	風何里 (X万回) か作用した場合の周万回モーメントによる胴
$\sigma_{\phi 1 1 1}, \sigma_{\phi 1 1 2}$	MPa	風何里 (X万回) か作用した場合の周万回モーメントによる胴
		の周方同応力

表3-1 ディーゼル発電機吸気口の強度評価に用いる記号(5/6)

記号	単位	定義		
σ _{xx1} , σ _{xx2}	MPa	風荷重(X方向)が作用した場合の胴の軸方向一次応力の和		
	MD -	風荷重(X方向)が作用した場合の胴の軸方向一次+二次応力		
σ _{xx3} , σ _{xx4}	MPa	の和		
$\sigma_{\rm xz1} \sim \sigma_{\rm xz4}$	MPa	風荷重(Z方向)が作用した場合の胴の軸方向一次応力の和		
	MD -	風荷重(Z方向)が作用した場合の胴の軸方向一次+二次応力		
$\sigma_{\rm xz5} \sim \sigma_{\rm xz8}$	MPa	の和		
$\sigma_{\phi x 1}$, $\sigma_{\phi x 2}$	MPa	風荷重(X方向)が作用した場合の胴の周方向一次応力の和		
		風荷重(X方向)が作用した場合の胴の周方向一次+二次応力		
σ _{φ x} 3, σ _{φ x 4}	MPa	の和		
$\sigma_{\phi z 1} \sim \sigma_{\phi z 4}$	MPa	風荷重(Z方向)が作用した場合の胴の周方向一次応力の和		
		風荷重(Z方向)が作用した場合の胴の周方向一次+二次応力		
$\sigma_{\phi z 5} \sim \sigma_{\phi z 8}$	MPa	の和		
τ	MPa	支持脚基礎溶接部に生じるせん断応力		
		風荷重(Z方向)により胴の脚つけ根部に生じるねじりモーメ		
τ ₃	MPa	ントによるせん断応力		
		風荷重(X方向)により胴の脚つけ根部に生じるねじりモーメ		
τ ₆	MPa	ントによるせん断応力		
	MPa	風荷重(Z方向)により胴の脚つけ根部に生じる周方向せん断		
τ с 1		応力		
		風荷重(X方向)により胴の脚つけ根部に生じる周方向せん断		
τ _{c4}	MPa	応力		
τ _{L1}	MPa	運転時質量により胴の脚つけ根部に生じる軸方向せん断応力		
		風荷重(Z方向)により胴の脚つけ根部に生じる軸方向せん断		
τ μ2	MPa	応力		
	15	降下火砕物荷重及び積雪荷重により胴の脚つけ根部に生じる軸		
τ _{L3}	MPa	方向せん断応力		
		風荷重(X方向)により胴の脚つけ根部に生じる軸方向せん断		
τ _{L5}	MPa	応力		
τху	MPa	σx, σyの作用する面内のせん断応力		
	1			

表3-1 ディーゼル発電機吸気口の強度評価に用いる記号(6/6)

3.2 評価対象部位

ディーゼル発電機吸気口の評価対象部位は,添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って,平板,胴板,支持脚及び支持脚基礎溶接部とする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向 及び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する平板を介して平板を支 持している胴板及び支持脚に作用する。また,風(台風)による水平荷重は,胴板を介して支 持脚及び支持脚基礎溶接部に作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては,平板,胴板及び支持脚を評 価対象部位とする。風(台風)による水平荷重に対しては,胴板,支持脚及び支持脚基礎溶 接部を評価対象部位とする。

ディーゼル発電機吸気口の強度評価における評価対象部位を図3-1に示す。

図3-1 ディーゼル発電機吸気口の評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の 組合せを用いる。

(1) 荷重の設定

ディーゼル発電機吸気口の強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v')
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風(台風)による水平荷重(W₁)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

 α

風(台風)による水平荷重は添付書類「V-3-別添 2-1 火山への配慮が必要な施設の 強度計算の方針」の「4.1(3)c.水平荷重」に示す式に従い,算出する。全高Hが5 m以 下であるため,HがZ_b以下の場合の式を用いる。風(台風)による水平荷重の受圧面積 を図 3-2 に示す。

$$W_{1} = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$

$$E_{r} = 1.7 \cdot (Z_{b} \neq Z_{G})$$

図3-2 風(台風)による水平荷重の受圧面積

(2) 荷重の組合せ

強度評価に用いる荷重の組合せは,ディーゼル発電機吸気口の評価対象部位ごとに設定す る。

ディーゼル発電機吸気口には,自重,降下火砕物等堆積による鉛直荷重,風(台風)による水平荷重が作用する。

ディーゼル発電機吸気口の評価にて考慮する荷重の組合せを表3-2に示す。

施設名称	評価対象部位	荷重
ディーゼル発電機 吸気口	平板	①自重 ②降下火砕物等堆積による鉛直荷重
	胴板	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重
	支持脚	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重
	支持脚基礎溶接部	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機吸気口の許容限界値は、添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、設計降伏点 S_y又はJEAG4601に基づき許容応力状態Ⅲ_ASの許容応力を用いる。

ディーゼル発電機吸気口の許容限界は,平板に対しては弾性範囲である設計降伏点S_yとする。その他の評価対象部位についてはJEAG4601を準用し,胴板については「クラス2,3 容器」,支持脚及び支持脚基礎溶接部については「クラス2,3 支持構造物」の許容限界を 適用し,許容応力状態Ⅲ_ASから算出した許容応力を許容限界とする。また,座屈については 評価式を満足することを確認する。JEAG4601に従い,JSME付録材料図表 Part5,6 の表にて許容応力を評価する際は,評価対象部位の周囲環境温度に応じた値をとるものとする が,温度がJSME付録材料図表記載の中間の値の場合は,比例法を用いて評価する。ただし, JSME付録材料図表 Part5,6で比例法を用いる場合の端数処理は,小数点第1位以下を切り 捨てた値を用いるものとする。

ディーゼル発電機吸気口の許容限界を表 3-3,許容応力を表 3-4 に示す。

	200	· / I			
評価対象 部位	許容応力状態	応力の種類		許容限界	
平板	—	曲げ		S _y	
		一次一般膜		Min $(S_{y}, 0.6S_{u})$	
胴板	III _A S	一次		上欄の1.5倍	
		一次+二次		2 S _y	
去時期			合せ	1.5 f $_{\rm t}$	
XM	Ш _А З	座屈		$\sigma_{sr}/f_{br} + \sigma_{st}/f_{bt} + \sigma_{sc}/f_{c} \leq 1$	
支持脚	III _A S	一次	引張	1.5 f _t	
基礎溶接部			せん断	1.5 f _s	

表3-3 ディーゼル発電機吸気口の許容限界

支持脚については, 圧縮, 曲げの組合せ応力の最大値を求め, 引張応力の許容値で評価する。

また,溶接部について上記応力の組合せが考えられる場合, JSME SSB-3121.1(6), SSB - 3121.2を準用し,組合せ応力に対しても評価を行う。

以下に組合せ応力の許容応力の評価式を示す。

垂直応力とせん断応力を生じる構造部分の応力は、次の計算式を満足しなければならない。

1.5 f $_{t} \ge \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \cdot \sigma_{y} + 3\tau_{xy}^{2}}$

材料	温度条件	S _y	S _u	F	1.5 f $_{\rm t}$	$1.5~\mathrm{f}$ $_\mathrm{s}$
	(°C)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
SS400	50*	211	_	_	—	_
SS400	50*	241	394	-	—	_
SS400	50*	241	394	241	241	_
SS400	50*	241	394	241	241	139
	材料 SS400 SS400 SS400 SS400	材料 温度条件 (℃) SS400 50* SS400 50* SS400 50* SS400 50* SS400 50* SS400 50*	材料温度条件 (°C)S y (MPa)SS40050*211SS40050*241SS40050*241SS40050*241	材料温度条件 (℃)S y (MPa)S u (MPa)SS40050*211-SS40050*241394SS40050*241394SS40050*241394	材料温度条件 (°C)S y (MPa)S u (MPa)F (MPa)SS40050*211SS40050*241394-SS40050*241394241SS40050*241394241	材料温度条件 (°C)S y (MPa)S u (MPa)F (MPa)1.5 f t (MPa)SS400 50^* 211 $ -$ SS400 50^* 241 394 $ -$ SS400 50^* 241 394 241 241 SS400 50^* 241 394 241 241

表 3-4 ディーゼル発電機吸気口の許容応力

注記 *:周囲環境温度

3.5 評価方法

ディーゼル発電機吸気口の応力評価は、添付書類「V-3-別添 2-1 火山への配慮が必要な 施設の強度計算書の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

評価式は、JEAG4601の4脚たて置き円筒型容器に準拠するが、局部ばね乗数及び局 部応力については、3次元FEMモデルにより評価を行う。FEM解析に使用するコードは 「MSC NASTRAN」である。なお、解析コードの検証及び妥当性確認等の概要につい ては、添付書類「V-5-1 計算機プログラム(解析コード)の概要・MSC NASTRAN」 に示す。

- (1) 評価モデル
 - a. 等分布荷重による評価

ディーゼル発電機吸気ロ平板は周辺支持円板モデルとする。等分布荷重による評価に用 いるモデル図を図 3-3 に示す。

図 3-3 等分布荷重による評価に用いるモデル図

b. 1 質点系モデルによる評価

降下火砕物等堆積による鉛直荷重,自重(鉛直荷重)及び風(台風)による水平荷重に 対する,胴板,支持脚及び支持脚基礎溶接部の構造強度を1質点系モデルとして評価を行 う。ここで,荷重の作用点はディーゼル発電機吸気口高さの1/2より高い重心位置に作用 させる。ディーゼル発電機吸気口の1質点系モデル図を図3-4に,ディーゼル発電機吸気 口の変形モード図を図3-5に示す。

図 3-5 ディーゼル発電機吸気口の変形モード図

18

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_{v} = W_{2} + W_{3}$ $\Box \subset \mathcal{O},$ $W_{2} = F_{v} \cdot A_{2}$ $W_{3} = F_{s} \cdot A_{2}$

降下火砕物等による鉛直荷重の受圧面積を図 3-6 に示す。

図 3-6 鉛直荷重の受圧面積

b. 応力評価

(a) 平板に生じる応力

イ. 平板に生じる曲げ応力 σ_{max}は次式より算出される。

$$\sigma_{max} = 1.24 \frac{p+a^2}{h^2}$$

- (b) 胴板及び支持脚
 - イ. 荷重の設定

水平力の釣合より

 $2 \cdot P_1 + 2 \cdot Q = F_0$ 転倒モーメントの釣合より

 $2 \cdot M_1 - 2 \cdot M_3 + 2 \cdot R_1 \cdot r_m = F_0 (L_g - L)$

ただし,

 $r_{m} = (D_{1} + t)/2$

第1脚の水平方向変位量 Δ_{x1} , 傾き角 θ_1 , 鉛直方向変位量 Δ_{y1} は次による。

$$\theta_1 = \frac{(\mathbf{M}_1 - \mathbf{R}_1 \cdot \mathbf{u})\mathbf{L}}{\mathbf{E}_s \cdot \mathbf{I}_{s t}} + \frac{\mathbf{P}_1 \cdot \mathbf{L}^2}{2\mathbf{E}_s \cdot \mathbf{I}_{s t}}$$

胴の半径方向局部変位量Δ_{r1}と局部傾き角 θ₂は次による。

ここで, β_Lは次による。

$$\beta_{\rm L} = k_{\rm L} \sqrt[3]{\beta_1 \cdot \beta_2^2}$$
$$\beta_1 = \frac{C_1}{r_{\rm m}}$$
$$\beta_2 = \frac{C_2}{r_{\rm m}}$$

第2脚の傾き角 θ₀と水平方向変位量 Δ_{x3}は, 次による。

$$\theta_{0} = -\frac{M_{3} \cdot L}{E_{s} \cdot I_{sr}} + \frac{Q \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$
$$\bigtriangleup_{x3} = \frac{Q \cdot L^{3}}{3E_{s} \cdot I_{sr}} + \frac{Q \cdot L}{G_{s} \cdot A_{st}} - \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$

第1脚と胴の傾き角の釣合より

$$\theta_1 + \theta_2 - \theta_0 = 0$$

第2脚のねじり角と局部傾き角は等しいことから

$\theta_{3} = \frac{(\mathbf{Q} \cdot \mathbf{u} - \mathbf{M}_{c})\mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} = \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \boldsymbol{\beta}_{c}^{2} \cdot \mathbf{E}}$ ここで、 <i>β</i> cは次による。
$\beta_{\rm c} = {\rm k_c} \sqrt[3]{\beta_1^2} \cdot \beta_2$
$\beta_1 = \frac{C_1}{r_m}$
$\beta_2 = \frac{C_2}{r_m}$
脚と胴の水平方向変位の釣合より

さらに鉛直方向変位の釣合より

式を代入して

$$\frac{\mathbf{R}_{1} \cdot \mathbf{L}}{\mathbf{A}_{s} \cdot \mathbf{E}_{s}} - \frac{\mathbf{u} \left(\mathbf{M}_{1} - \mathbf{R}_{1} \cdot \mathbf{u}\right) \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} - \frac{\mathbf{u} \cdot \mathbf{P}_{1} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{r}_{m} \cdot \mathbf{M}_{3} \cdot \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} - \frac{\mathbf{r}_{m} \cdot \mathbf{Q} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} = 0$$

式を代入して

$$\frac{(\mathbf{M}_{1} - \mathbf{R}_{1} \cdot \mathbf{u})\mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{P}_{1} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{K}_{L} \cdot \mathbf{M}_{1}}{\mathbf{r}_{m}^{3} \cdot \beta_{1}^{2} \cdot \mathbf{E}} + \frac{\mathbf{M}_{3} \cdot \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} - \frac{\mathbf{Q} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} = 0$$

21

式を変形して

$$\frac{\mathbf{u} \cdot \mathbf{Q} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{M}_{c} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \beta_{c}^{2} \cdot \mathbf{E}} = 0$$

式を代入して

$$\frac{P_{1} \cdot L^{3}}{3E_{s} \cdot I_{st}} + \frac{P_{1} \cdot L}{G_{s} \cdot A_{sr}} + \frac{(M_{1} - R_{1} \cdot u)L^{2}}{2E_{s} \cdot I_{st}} + \frac{K_{r} \cdot P_{1}}{r_{m} \cdot E}$$
$$-\frac{Q \cdot L^{3}}{3E_{s} \cdot I_{sr}} - \frac{Q \cdot L}{G_{s} \cdot A_{st}} + \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{sr}} - \frac{u \cdot K_{c} \cdot M_{c}}{r_{m}^{3} \cdot \beta_{c}^{2} \cdot E} = 0$$

したがって、6 変数 P_1 , Q, R_1 , M_1 , M_3 , M_c に対して上記式を連立させることにより方程式ができる。

- ロ. 胴の応力計算
- (イ) 静水頭又は内圧による応力
 ディーゼル発電機吸気口に静水頭、内圧は発生しないため、σ_{φ1}及びσ_{x1}は 0
 となる。
- (ロ) 運転時質量及び降下火砕物と積雪荷重による応力

$$\sigma_{x2} = \frac{m_0 \cdot g}{\pi (D_i + t) t}$$
$$\sigma_{x7} = \frac{F_v}{\pi (D_i + t) t}$$

(ハ) 運転時質量による胴の脚つけ根部の応力 脚下端が固定の場合,軸力Rは次による。

$$R = \frac{m_0 \cdot g}{4}$$

脚下端が固定の場合の脚及び胴の変形を図 3-7 に示す。

図 3-7 脚下端が固定の場合の脚及び胴の変形

脚の半径方向変位量と胴の半径方向局部変位量は等しいことから

また, 脚上端の傾き角と胴の局部傾き角は等しいことから

$$\theta = \frac{(\mathbf{R} \cdot \mathbf{u} - \mathbf{M}_{\mathrm{L}})\mathbf{L}}{\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}}} - \frac{\mathbf{P} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}}} = \frac{\mathbf{K}_{\mathrm{L}} \cdot \mathbf{M}_{\mathrm{L}}}{\mathbf{r}_{\mathrm{m}}^{3} \cdot \beta_{\mathrm{L}}^{2} \cdot \mathbf{E}}$$

したがって

$$M_{L} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{m_{0} \cdot \mathbf{g} \cdot \mathbf{u} \cdot L}{4E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}$$

$$P = \frac{\frac{\frac{M_0 \cdot g}{4}u - M_L}{2E_s \cdot I_{st}}L^2}{\frac{L^3}{3E_s \cdot I_{st}} + \frac{L}{G_s \cdot A_{sr}} + \frac{K_r}{r_m \cdot E}}$$

鉛直方向モーメントM_Lにより生じる胴の局部応力は,図 3-8 に示す 3 次元FE Mモデルより求める(以下*を付記する)ことにより算定する。

図 3-8 3 次元 F E M モデル図

$$\sigma_{\phi 3} = \left[\frac{N_{\phi}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x3} = \left[\frac{N_{x}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

半径方向荷重Pにより生じる胴の局部応力は、次による。

$$\sigma_{\phi 4} = \left[\frac{N_{\phi}}{P/r_{m}}\right]^{*} \left(\frac{P}{r_{m} \cdot t}\right)$$

$$\sigma_{x 4} = \left[\frac{N_x}{P / r_m}\right]^* \left(\frac{P}{r_m \cdot t}\right)$$

反力Rによるせん断応力は、次による。

$$\tau_{\rm L\ 1} = \frac{\rm R}{\rm 4C_2 \cdot t}$$

(ニ) 風荷重による胴の曲げ応力

$$\sigma_{x\,5} = \frac{W_1(L_g - L)(D_i + 2t)}{2I}$$

(ホ) Z方向荷重による胴の脚つけ根部の応力

(i) 一次応力

半径方向荷重 P1により生じる胴の局部応力は,次による。

$$\sigma_{\phi \ 6 \ 1} = \left[\frac{N_{\phi}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$
$$\sigma_{x \ 6 \ 1} = \left[\frac{N_{x}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

$$\sigma_{\phi 7 1} = \left[\frac{N_{\phi}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x 7 1} = \left[\frac{N_{x}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi \ 8 \ 1} = \left[\frac{N_{\phi}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$
$$\sigma_{x \ 8 \ 1} = \left[\frac{N_{x}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$

ここで, β。は次式による。

$$\beta_{\rm c} = \sqrt[3]{\beta_1^2} \cdot \beta_2$$

周方向せん断力Qによるせん断応力は、次による。

$$\tau_{c 1} = \frac{Q}{4C_1 \cdot t}$$

鉛直方向せん断力R1によるせん断応力は、次による。

$$\tau_{\rm L\,2} = \frac{\rm R_1}{\rm 4\,C_2 \cdot t}$$

ねじりモーメントM3により生じる胴の局部せん断応力は,次による。

$$\tau_3 = \frac{M_3}{2 \pi \cdot C_1^2 \cdot t}$$

(ii) 二次応力半径方向荷重P₁により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi \ 6 \ 2} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} \ 6 \ 2} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 7 2} = \left[\frac{M_{\phi}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$
$$\sigma_{x 7 2} = \left[\frac{M_{x}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$

周方向曲げモーメントM。により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi \ 8 \ 2} = \left[\frac{M_{\phi}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$
$$\sigma_{x \ 8 \ 2} = \left[\frac{M_{x}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$

- (へ) X方向荷重による胴の脚つけ根部の応力
 - (i) 一次応力
 半径方向荷重 P₁により生じる胴の局部応力は、次による。
 σ_{φ 9 1} = σ_{φ 6 1}/√2
 σ_{x 9 1} = σ_{x 6 1}/√2
 - 鉛直方向曲げモーメントM₁により生じる胴の局部応力は、次による。 $\sigma_{\phi \ 1 \ 0 \ 1} = \sigma_{\phi \ 7 \ 1} / \sqrt{2}$

 $\sigma_{\text{x 1 0 1}} = \sigma_{\text{x 7 1}}/\sqrt{2}$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

 $\sigma_{\phi \ 1 \ 1 \ 1} = \sigma_{\phi \ 8 \ 1} / \sqrt{2}$

 $\sigma_{\rm x\ 1\ 1\ 1}=\sigma_{\rm x\ 8\ 1}/\sqrt{2}$

周方向せん断力 Qによるせん断応力は、次による。

$$\tau_{\rm c~4} = \tau_{\rm c~1}/\sqrt{2}$$

鉛直方向せん断力R1によるせん断応力は,次による。

$$\tau_{L5} = \tau_{L2} / \sqrt{2}$$

ねじりモーメントM₃により生じる胴の局部せん断応力は、次による。 $\tau_6 = \tau_3/\sqrt{2}$

(ii) 二次応力

半径方向荷重 P1により生じる胴の局部曲げ応力は,次による。

 $\sigma_{\phi 9 2} = \sigma_{\phi 6 2} / \sqrt{2}$ $\sigma_{x 9 2} = \sigma_{x 6 2} / \sqrt{2}$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

$$\sigma_{\phi 1 0 2} = \sigma_{\phi 7 2} / \sqrt{2}$$
$$\sigma_{x 1 0 2} = \sigma_{x 7 2} / \sqrt{2}$$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi \ 1 \ 1 \ 2} = \sigma_{\phi \ 8 \ 2} / \sqrt{2}$$

$$\sigma_{x \ 1 \ 1 \ 2} = \sigma_{x \ 8 \ 2} / \sqrt{2}$$

(ト) 降下火砕物と積雪荷重による胴の脚つけ根部の応力 脚下端を固定する場合の軸力R₂, 胴の脚つけ根部の鉛直方向モーメントM_{L2}及 び半径方向荷重P₂は, 次による。

$$R_2 = \frac{W_2 + W_3}{4}$$

$$M_{L2} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{R_{2} \cdot u \cdot L}{E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}$$

$$P_{2} = \frac{\frac{R_{2} \cdot u - M_{L2}}{2E_{s} \cdot I_{st}}L^{2}}{\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}}$$

(i) 一次応力

鉛直方向曲げモーメント ML2により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 8} = \left[\frac{N_{\phi}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$
$$\sigma_{x8} = \left[\frac{N_{x}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi 9} = \left[\frac{N_{\phi}}{P_2/r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$
$$\sigma_{x 9} = \left[\frac{N_x}{P_2/r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$

(ii) 二次応力
 鉛直方向曲げモーメントM_{L2}により生じる胴の局部応力は次による。

$$\sigma_{\phi 10} = \left[\frac{M_{\phi}}{M_{L2}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$
$$\sigma_{x10} = \left[\frac{M_{x}}{M_{L2}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi 1 1} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{6 \mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} 1 1} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{6 \mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$

せん断応力は,次による。

$$\tau_{\rm L3} = \frac{\rm R_2}{\rm 4C_2 \cdot t}$$

(チ) 組合せ応力

(イ)~(ト)項によって算出される脚つけ根部に生じる胴の応力は,次により組み合わせる。

- (i) 一次一般膜応力 $\sigma_{0\Phi} = \sigma_{\Phi 1}$ $\sigma_{0X} = \sigma_{X1} + \sigma_{X2} + \sigma_{X5} + \sigma_{X7}$ $\sigma_{0} = max [\sigma_{0\Phi} \cdot \sigma_{0X}]$
- (ii) 一次応力(膜+曲げ)胴の評価点を図 3-9 に示す。

図 3-9 胴の評価点

【Z方向荷重が作用した場合】

・第1脚つけ根部

(第1評価点)

$$\begin{split} \sigma_{\phi \ z \ 1} &= \sigma_{\phi \ 1} + \sigma_{\phi \ 3} + \sigma_{\phi \ 4} + \sigma_{\phi \ 8} + \sigma_{\phi \ 9} + \sigma_{\phi \ 6 \ 1} + \sigma_{\phi \ 7 \ 1} \\ \sigma_{x \ z \ 1} &= \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 3} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 8} + \sigma_{x \ 9} + \sigma_{x \ 6 \ 1} + \sigma_{x \ 7 \ 1} \\ \sigma_{1 \ 1} &= \frac{1}{2} \left\{ \sigma_{\phi \ z \ 1} + \sigma_{x \ z \ 1} \right) + \sqrt{(\sigma_{\phi \ z \ 1} - \sigma_{x \ z \ 1})^2} \right\} \end{split}$$

(第2評価点)

 $\sigma_{\phi\ z\ 2} = \sigma_{\phi\ 1} + \sigma_{\phi\ 4} + \sigma_{\phi\ 9} + \sigma_{\phi\ 6\ 1}$

 $\sigma_{\mathrm{x}\ \mathrm{z}\ 2}=\sigma_{\mathrm{x}\ 1}+\sigma_{\mathrm{x}\ 2}+\sigma_{\mathrm{x}\ 4}+\sigma_{\mathrm{x}\ 5}+\sigma_{\mathrm{x}\ 7}+\sigma_{\mathrm{x}\ 9}+\sigma_{\mathrm{x}\ 6\ 1}$

$$\sigma_{12} = \frac{1}{2} \left\{ \sigma_{\phi z 2} + \sigma_{x z 2} \right\} + \sqrt{(\sigma_{\phi z 2} - \sigma_{x z 2})^2 + 4(\tau_{L1} + \tau_{L2} + \tau_{L3})^2} \right\}$$

第2脚つけ根部

(第1評価点)

 $\sigma_{\phi \ z \ 3} = \sigma_{\phi \ 1} + \sigma_{\phi \ 3} + \sigma_{\phi \ 4} + \sigma_{\phi \ 8} + \sigma_{\phi \ 9}$

 $\sigma_{\mathrm{x}\ \mathrm{z}\ 3}=\sigma_{\mathrm{x}\ 1}+\sigma_{\mathrm{x}\ 2}+\sigma_{\mathrm{x}\ 3}+\sigma_{\mathrm{x}\ 4}+\sigma_{\mathrm{x}\ 7}+\sigma_{\mathrm{x}\ 8}+\sigma_{\mathrm{x}\ 9}$

$$\sigma_{1\ 3} = \frac{1}{2} \left\{ \sigma_{\phi \ z \ 3} + \sigma_{x \ z \ 3} \right) + \sqrt{\left(\sigma_{\phi \ z \ 3} - \sigma_{x \ z \ 3}\right)^{2} + 4\left(\tau_{c \ 1} + \tau_{3}\right)^{2}} \right\}$$

(第2評価点)

 $\sigma_{\phi \ z \ 4} = \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 8 \ 1}$

$$\sigma_{x\ z\ 4} = \sigma_{x\ 1} + \sigma_{x\ 2} + \sigma_{x\ 4} + \sigma_{x\ 7} + \sigma_{x\ 9} + \sigma_{x\ 8\ 1}$$

$$\sigma_{1\,4} = \frac{1}{2} \left\{ \sigma_{\phi z 4} + \sigma_{x z 4} \right\} + \sqrt{(\sigma_{\phi z 4} - \sigma_{x z 4})^2 + 4(\tau_{L1} + \tau_3 + \tau_{L3})^2} \right\}$$

【X方向荷重及び降下火砕物荷重,積雪荷重が作用した場合】 (第1評価点) $\sigma_{\phi x 1} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sigma_{\phi 4} + \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 9 1} + \sigma_{\phi 1 0 1}$ $\sigma_{x x 1} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 3} + \sigma_{x 4} + \sigma_{x 5} + \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 9 1} + \sigma_{x 1 0 1}$

$$\sigma_{1\ 5} = \frac{1}{2} \left\{ \sigma_{\phi \ x \ 1} + \sigma_{x \ x \ 1} \right\} + \sqrt{(\sigma_{\phi \ x \ 1} - \sigma_{x \ x \ 1})^2 + 4(\tau_{c \ 4} + \tau_6)^2} \right\}$$

(第2評価点)

$$\begin{split} \sigma_{\phi \ x \ 2} &= \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 9 \ 1} + \sigma_{\phi \ 1 \ 1 \ 1} \\ \sigma_{x \ x \ 2} &= \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 9} + \sigma_{x \ 9 \ 1} + \sigma_{x \ 1 \ 1 \ 1} \\ \sigma_{1 \ 6} &= \frac{1}{2} \left\{ \left(\sigma_{\phi \ x \ 2} + \sigma_{x \ x \ 2} \right) + \sqrt{\left(\sigma_{\phi \ x \ 2} - \sigma_{x \ x \ 2} \right)^2 + 4 \left(\tau_{L \ 1} + \tau_{L \ 5} + \tau_{6} + \tau_{L \ 3} \right)^2} \right\} \\ \sigma_{1} &= \max \left[\sigma_{1 \ 1}, \ \sigma_{1 \ 2}, \ \sigma_{1 \ 3}, \ \sigma_{1 \ 4}, \ \sigma_{1 \ 5}, \ \sigma_{1 \ 6} \right] \end{split}$$

(iii) 組合せ一次+二次応力

【Z方向荷重及び降下火砕物荷重,積雪荷重が作用した場合】

第1脚つけ根部

(第1評価点)

$$\sigma_{\phi \ z \ 5} = \sigma_{\phi \ 8} + \sigma_{\phi \ 9} + \sigma_{\phi \ 1 \ 0} + \sigma_{\phi \ 1 \ 1} + \sigma_{\phi \ 6 \ 1} + \sigma_{\phi \ 6 \ 2} + \sigma_{\phi \ 7 \ 1} + \sigma_{\phi \ 7 \ 2}$$

 $\sigma_{{\rm x}\,{\rm z}\,5} = \sigma_{{\rm x}\,7} + \sigma_{{\rm x}\,8} + \sigma_{{\rm x}\,9} + \sigma_{{\rm x}\,1\,0} + \sigma_{{\rm x}\,1\,1} + \sigma_{{\rm x}\,5} + \sigma_{{\rm x}\,6\,1} + \sigma_{{\rm x}\,6\,2} + \sigma_{{\rm x}\,7\,1} + \sigma_{{\rm x}\,7\,2}$

$$\sigma_{2\ 1} = \sigma_{\phi\ z\ 5} + \sigma_{x\ z\ 5} + \sqrt{(\sigma_{\phi\ z\ 5} - \sigma_{x\ z\ 5})^2}$$

(第2評価点)

 $\sigma_{\phi\ z\ 6} = \sigma_{\phi\ 9} + \sigma_{\phi\ 1\ 1} + \sigma_{\phi\ 6\ 1} + \sigma_{\phi\ 6\ 2}$

 $\sigma_{x\ z\ 6}=\sigma_{x\ 7}+\sigma_{x\ 9}+\sigma_{x\ 1\ 1}+\sigma_{x\ 5}+\sigma_{x\ 6\ 1}+\sigma_{x\ 6\ 2}$

$$\sigma_{2\,2} = \sigma_{\phi\,z\,6} + \sigma_{x\,z\,6} + \sqrt{(\sigma_{\phi\,z\,6} - \sigma_{x\,z\,6})^2 + 4(\tau_{L\,2} + \tau_{L\,3})^2}$$

・第2脚つけ根部

(第1評価点)

 $\sigma_{\phi\ z\ 7} = \sigma_{\phi\ 8} + \sigma_{\phi\ 9} + \sigma_{\phi\ 1\ 0} + \sigma_{\phi\ 1\ 1}$

 $\sigma_{x \ z \ 7} = \sigma_{x \ 7} + \sigma_{x \ 8} + \sigma_{x \ 9} + \sigma_{x \ 1 \ 0} + \sigma_{x \ 1 \ 1}$

$$\sigma_{2 3} = \sigma_{\phi z 7} + \sigma_{x z 7} + \sqrt{(\sigma_{\phi z 7} - \sigma_{x z 7})^2 + 4(\tau_{c 1} + \tau_3)^2}$$

(第2評価点)

$$\sigma_{\phi z 8} = \sigma_{\phi 9} + \sigma_{\phi 1 1} + \sigma_{\phi 8 1} + \sigma_{\phi 8 2}$$

$$\sigma_{x z 8} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 1 1} + \sigma_{x 8 1} + \sigma_{x 8 2}$$

$$\sigma_{2 4} = \sigma_{\phi z 8} + \sigma_{x z 8} + \sqrt{(\sigma_{\phi z 8} - \sigma_{x z 8})^{2} + 4(\tau_{3} + \tau_{L 3})^{2}}$$
[X方向荷重が作用した場合]
(第1評価点)
$$\sigma_{\phi x 3} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 1 0} + \sigma_{\phi 1 1} + \sigma_{\phi 9 1} + \sigma_{\phi 1 0 1} + \sigma_{\phi 9 2} + \sigma_{\phi 1 0 2}$$

$$\sigma_{x x 3} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 1 0} + \sigma_{x 1 1} + \sigma_{x 5} + \sigma_{x 9 1} + \sigma_{x 1 0 1} + \sigma_{x 9 2} + \sigma_{x 1 0 2}$$

$$\sigma_{2 5} = \sigma_{\phi x 3} + \sigma_{x x 3} + \sqrt{(\sigma_{\phi x 3} - \sigma_{x x 3})^2 + 4(\tau_{c 4} + \tau_{6})^2}$$

(第2評価点)

$$\begin{split} \sigma_{\phi x 4} &= \sigma_{\phi 9} + \sigma_{\phi 1 1} + \sigma_{\phi 9 1} + \sigma_{\phi 9 2} + \sigma_{\phi 1 1 1} + \sigma_{\phi 1 1 2} \\ \sigma_{x x 4} &= \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 1 1} + \sigma_{x 5} + \sigma_{x 9 1} + \sigma_{x 9 2} + \sigma_{x 1 1 1} + \sigma_{x 1 1 2} \\ \sigma_{2 6} &= \sigma_{\phi x 4} + \sigma_{x x 4} + \sqrt{(\sigma_{\phi x 4} - \sigma_{x x 4})^2 + 4(\tau_{L 5} + \tau_6 + \tau_{L 3})^2} \\ \sigma_{2} &= \max \left[\sigma_{2 1}, \sigma_{2 2}, \sigma_{2 3}, \sigma_{2 4}, \sigma_{2 5}, \sigma_{2 6} \right] \end{split}$$

- ハ. 脚の応力計算
- (イ) 運転時質量による応力

$$\sigma_{s\,1} = \frac{R}{A_s}$$

$$\sigma_{s\,2} = \frac{\max\left[|R \cdot u - M_L - P \cdot L|, |R \cdot u - M_L|\right]}{Z_{s\,t}}$$
(ロ) 降下火砕物荷重,積雪荷重による応力
$$\sigma_{s\,3} = \frac{R_2}{A_s}$$

$$\sigma_{s\,4} = \frac{\max\left[|R_2 \cdot u - M_{L\,2} - P_2 \cdot L|, |R_2 \cdot u - M_{L\,2}|\right]}{Z_{s\,t}}$$

- (ハ) 風荷重(Z方向)による応力(i) 第1脚
 - $\sigma_{s 5} = \frac{R_1}{A_s}$ $\sigma_{s 6} = \frac{\max\left[\left|R_1 \cdot u M_1 P_1 \cdot L\right|, \left|R_1 \cdot u M_1\right|\right]}{Z_{s t}}$
 - (ii) 第2脚

$$\sigma_{s7} = \frac{\max \left[\left| \mathbf{Q} \cdot \mathbf{L} - \mathbf{M}_{3} \right|, \left| \mathbf{M}_{3} \right| \right]}{Z_{sr}}$$
(iii) X方向荷重による応力

$$\sigma_{s 8} = \frac{R_1}{\sqrt{2} \cdot A_s}$$

$$\sigma_{s 9} = \frac{\max\left[\left|R_1 \cdot u - M_1 - P_1 \cdot L\right|, \left|R_1 \cdot u - M_1\right|\right]}{\sqrt{2} \cdot Z_{s t}}$$

$$\sigma_{s 1 0} = \frac{\max\left[\left|Q \cdot L - M_3\right|, \left|M_3\right|\right]}{\sqrt{2} \cdot Z_{s t}}$$

(ニ) 組合せ応力

脚の最大応力は,下記式による。

- (i) Z方向荷重及び降下火砕物荷重,積雪荷重が作用した場合
 - 第1脚 $\sigma_{s\ z\ 1} = \sigma_{s\ 1} + \sigma_{s\ 2} + \sigma_{s\ 3} + \sigma_{s\ 4} + \sigma_{s\ 5} + \sigma_{s\ 6}$
 - 第2脚

 $\sigma_{\mathrm{s\ z\ 2}}=\sigma_{\mathrm{s\ 1}}+\sigma_{\mathrm{s\ 2}}+\sigma_{\mathrm{s\ 3}}+\sigma_{\mathrm{s\ 4}}+\sigma_{\mathrm{s\ 7}}$

(ii) X方向荷重が作用した場合

 σ_{s x} = σ_{s 1} + σ_{s 2} + σ_{s 3} + σ_{s 4} + σ_{s 8} + σ_{s 9} + σ_{s 10}

$$\sigma_{s} = \max \left[\sigma_{s z 1}, \sigma_{s z 2}, \sigma_{s x} \right]$$

(ホ) 組合せ圧縮応力

- (i) Z方向荷重が作用した場合
 - 第1脚
 - $\sigma_{s\ c} = \sigma_{s\ 1} + \sigma_{s\ 3} + \sigma_{s\ 5}$

32

$$\sigma_{s t} = \sigma_{s 2} + \sigma_{s 4} + \sigma_{s 6}$$

$$\sigma_{s r} = 0$$

$$\hat{\mathfrak{R}} 2 \mathfrak{I} \mathfrak{I} \mathfrak{I}$$

$$\sigma_{s c} = \sigma_{s 1} + \sigma_{s 3}$$

$$\sigma_{s t} = \sigma_{s 2} + \sigma_{s 4}$$

 $\sigma_{s r} = \sigma_{s 7}$

•

- (ii) X方向荷重が作用した場合
 - $\sigma_{sc} = \sigma_{s1} + \sigma_{s3} + \sigma_{s8}$ $\sigma_{st} = \sigma_{s2} + \sigma_{s4} + \sigma_{s9}$ $\sigma_{sr} = \sigma_{s10}$

圧縮と曲げの組合せについて、座屈評価用の式を次式より求める。

$$\frac{\sigma_{s\ r}}{f_{b\ r}} + \frac{\sigma_{s\ t}}{f_{b\ t}} + \frac{\sigma_{s\ c}}{f_{c}} \leq 1$$

ニ. 支持脚基礎溶接部の応力計算

(イ) 引張応力の算出

風圧力による荷重W₁によるモーメントMにより,2本の支持脚には吸気口の支 持脚基礎溶接部に作用する引張荷重Tが作用する。

モーメントの釣り合いを考えると,

$$M = W_1 \cdot L_g + (m_0 \cdot g + F_v) \quad L_H = 2 \cdot T \cdot L_1$$

よって、吸気口の支持脚基礎溶接部に作用する引張荷重Tは以下のようになる。

$$T = \frac{W_{1} \cdot L_{g} + (m_{0} \cdot g + F_{v}) L_{H}}{2L_{1}}$$

吸気口の支持脚基礎溶接部に生じる引張応力σ_tは以下のようになる。

$$\sigma_{t} = \frac{T}{A_{w}} = \frac{W_{1} \cdot L_{g} + (m_{0} \cdot \mathbf{g} + F_{v}) L_{H}}{2L_{1} \cdot A_{w}}$$

(ロ) せん断応力の算出

吸気口の支持脚基礎溶接部に作用するせん断荷重Qは以下のようになる。

$$Q_1 = \frac{W_1}{4}$$

よって, 吸気口の支持脚基礎溶接部に生じるせん断応力τは以下のようになる。

$$\tau = \frac{\mathbf{Q}_1}{\mathbf{A}_W} = \frac{\mathbf{W}_1}{4\mathbf{A}_W}$$

(ハ) 組合せ応力の算出

$$\sigma = \sqrt{\sigma_{t}^{2} + 3\tau^{2}}$$

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-4 に示す。

	1		1	1	1
q	G	С	V d	$Z_{\rm b}$	ZG
(N/m^2)	(-)	(-)	(m/s)	(m)	(m)
960	2. 2	1.2	30	5	350

表 4-1 評価条件(風(台風)による水平荷重)

F_{v}	α	g	A 1
(N/m ²)	(-)	(m/s ²)	(m ²)
7565	0.15	9.80665	4. 526

表 4-2 評価条件(平板)

р	а	h
(N/mm^2)	(mm)	(mm)
0.0153	770.0	100. 0

表 4-3 評価条件(胴板及び支持脚)(1/2)

A _s	A _{sr}	A _{st}	C 1	C ₂	D _i
(mm^2)	(mm^2)	(mm^2)	(mm)	(mm)	(mm)
8550	4336	4728	150.0	347.5	1531
Е	E _s	Fο	G s	Ι	Isr
(MPa)	(MPa)	(N)	(MPa)	(mm^4)	(mm^4)
201000	201000	1	77300	6. 398×10^9	3. 155×10^7
I st	J s	L	L c	L g	m 0
(mm^4)	(mm^4)	(mm)	(mm)	(mm)	(kg)
2. 697×10^7	4. 316×10^7	1027.5	1702.0	1555. 0	1800

r m	t	W_1	W_2	W ₃	Z_{sr}
(mm)	(mm)	(N)	(N)	(N)	(mm ³)
767.8	4.5	5214	13800	393	3.824×10^5

表 4-3 評価条件(胴板及び支持脚)(2/2)

$Z_{\rm s\ t}$
(mm^3)
3.569×10^{5}

表 4-4 評価条件(支持脚基礎溶接部)

W 1	F _v	L g	m ₀	L _H	L ₁
(N)	(N)	(mm)	(kg)	(mm)	(mm)
5214	14193	1555. 0	1800	601.75	1203. 5

A_{w}	
(mm^2)	
4455	

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 平板,胴板,支持脚及び支持脚基礎溶接部に発生する応力は許容応力以下である。

評価部位	材料	応力		発生応力 (MPa)	許容応力 (MPa)
平板	SS400	曲げ		2	211
胴板	SS400	一次一般膜		2	236
		一次		5	354
		一次+二次		10	482
支持脚	SS400	組合せ		5	241
		座屈(圧縮+曲げ)*		0.03	1
	SS400	一次	引張	3	241
支持脚基礎溶接部			せん断	1	139
			組合せ	4	241

表 5-1 ディーゼル発電機吸気口の評価結果

注記 *:検定比 (下式) による。 $\sigma_{sr}/f_{br} + \sigma_{st}/f_{bt} + \sigma_{sc}/f_{c} \leq 1$ V-3-別添 2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書

1.	概要1
2.	基本方針1
2.	1 位置1
2.	2 構造概要
2.	3 評価方針
2.	4 適用規格5
3.	強度評価方法
3.	1 記号の定義
3.	2 評価対象部位
3.	3 荷重及び荷重の組合せ9
3.	4 許容限界12
3.	5 評価方法
4.	評価条件19
5.	強度評価結果

1. 概要

本資料は、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」に示すと おり、非常用ディーゼル発電機室ルーフベントファン及び高圧炉心スプレイ系ディーゼル発電機 室ルーフベントファン(以下「ディーゼル発電機室ルーフベントファン」という。)が降下火砕 物堆積時においても、ディーゼル発電機室内の空気を排出する機能の維持を考慮して、主要な構 造部材が構造健全性を有することを確認するものである。

2. 基本方針

ディーゼル発電機室ルーフベントファンは,添付書類「V-3-別添 2-1 火山への配慮が必要な 施設の強度計算書の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,ディーゼル発電 機室ルーフベントファンの「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適 用規格」を示す。

2.1 位置

ディーゼル発電機室ルーフベントファンは,添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」に示すとおり,原子炉建屋付属棟屋上に設置する。設置位置図を図 2-1に示す。

図 2-1 ディーゼル発電機室ルーフベントファン 位置図

2.2 構造概要

ディーゼル発電機室ルーフベントファンは,添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,構造を設定す る。

ディーゼル発電機室ルーフベントファンは,据付面からケーシングまでのファン部と,ケー シングより上部の吐出フードからなる軸流ファンであり,同一設計のディーゼル発電機室ルー フベントファンを2C非常用ディーゼル発電機室用,2D非常用ディーゼル発電機室用及び高 圧炉心スプレイ系ディーゼル発電機室用にそれぞれ2台,計6台を設置している。降下火砕物 等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位置より上部の ディーゼル発電機室ルーフベントファンの概要図を図2-2に示す。

ディーゼル発電機室ルーフベントファンの形状は,円筒形を基本としたケーシングに吐出フ ードを取付ボルトで接合しており,ケーシングは基礎部に基礎ボルトで固定している。ディー ゼル発電機室ルーフベントファンが風(台風)による水平荷重を受けることを想定する面の概 要図を図 2-3,降下火砕物等がディーゼル発電機室ルーフベントファンに最も多く堆積するこ とが想定される状態図を図 2-4 に示す。

(a) 上面図

(b) 側面図 図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

2.3 評価方針

ディーゼル発電機室ルーフベントファンの強度評価は、添付書類「V-3-別添2-1 火山への 配慮が必要な施設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設 定している、荷重及び荷重の組合せ並びに許容限界を踏まえて、評価対象部位に作用する応力 が許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す 評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

ディーゼル発電機室ルーフベントファンの強度評価フローを図2-5に示す。ディーゼル発電 機室ルーフベントファンの強度評価においては、その構造を踏まえ、降下火砕物等堆積による 鉛直荷重とこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を 考慮し、評価対象部位を選定する。

降下火砕物等堆積による鉛直荷重については、ディーゼル発電機室ルーフベントファン上面の投影面積に対し降下火砕物等が堆積した場合を設定する。また、風(台風)による水平荷重は水平方向より作用する外荷重という観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針」EAG4601・補-1984」((社)日本電気協会)、「原子力発電所耐震設計技術指針」EAG4601-1987」((社)日本電気協会)、(以下「JEAG4601」という。)における1質点系モデルによる評価方法を準用し、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」に示す評価式を用いる。ディーゼル発電機室ルーフベントファンの許容限界は、添付書類「V-3-別添2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」に示す許容限界である、設計降伏点S_y又はJEAG4601の許容応力状態Ⅲ_ASとする。

図2-5 ディーゼル発電機室ルーフベントファンの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984
 ((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機室ルーフベントファンの強度評価に用いる記号を表3-1に示す。

記号	単位	定義		
а	mm	天板の短辺		
A 1	m ²	吐出フードの受圧面積(風向に垂直な面に投影した面積)		
A 1 '	m ²	ケーシングの受圧面積(風向に垂直な面に投影した面積)		
A_2	m^2	降下火砕物の堆積面積		
A _b	mm^2	ボルトの軸断面積		
B 1	mm	ケーシング外径		
B ₂	mm	ケーシング内径		
C 1	—	吐出フードの風力係数		
C 2	—	ケーシングの風力係数		
E'	—	建築基準法施行令第87条第2項に規定する数値		
E		建設省告示第1454号の規定によって算出した平均風速の高さ方		
E _r	—	向の分布を表す係数		
F	MPa	JSME SSB-3121.1(1)により規定される値		
Fь	Ν	ボルトに対する引張力		
F _d	Ν	常時作用する荷重		
F i	Ν	各ボルトに作用する引張力		
F _n	Ν	ボルトに作用する最大引張力		
F _v	Ν	降下火砕物等堆積による鉛直荷重		
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重		
£	MD -	J SME SSB-3121.1により規定される供用状態A及びBでの許		
I _c	MPa	容圧縮応力		
f	MPa	J SME SSB-3121.1により規定される供用状態A及びBでの許		
İ _s		容せん断応力		
f	MPa	J SME SSB-3121.1により規定される供用状態A及びBでの許		
I t		容引張応力		
G	—	ガスト影響係数		
g	m/s ²	重力加速度		
Н	mm	ルーフベントファン(全高)		
h	mm	取付面から荷重作用点までの距離		
h t	mm	天板厚さ		

表3-1 ディーゼル発電機室ルーフベントファンの強度評価に用いる記号(1/2)
記号	単位	定義
$L_1 \sim L_7$	mm	支点と評価ボルト間の距離
L i	mm	各ボルト間の距離
L n	mm	各ボルト間のうち最長距離
М	N•mm	ファンに作用するモーメント
m	kg	質量
Ν	—	ボルトの本数
р	N/mm^2	天板に作用する等分布荷重
$Q_{\rm b}$	Ν	ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	ケーシングの断面積
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張強さ
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
V d	m/s	基準風速
W	Ν	風荷重による複合荷重
Z _b	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
ZG	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
β	—	天板の最大応力の係数(機械工学便覧から算出)
π	—	円周率
σь	MPa	吐出フード天板に生じる曲げ応力
σ _c	MPa	ケーシングに生じる圧縮応力
σ _t	MPa	ボルトに生じる引張応力
α	—	地表面祖度区分に応じて建設省告示 1454 号に掲げる数値
τ	MPa	ボルトに生じるせん断応力

表3-1 ディーゼル発電機室ルーフベントファンの強度評価に用いる記号(2/2)

3.2 評価対象部位

ディーゼル発電機室ルーフベントファンの評価対象部位は,添付書類「V-3-別添 2-1 火山 への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に 従って,吐出フード天板,ケーシング,吐出フード取付ボルト及び基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及 び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する吐出フード天板を介し て支持している吐出フード及びケーシングに作用する。また,風(台風)による水平荷重は吐 出フード及びケーシングを介してケーシングに固定されている吐出フード取付ボルト及び基礎 ボルトに作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては,吐出フード天板及びケーシン グを評価対象部位とする。また,風(台風)による水平荷重に対しては,吐出フード及びケー シングと比較し断面積が小さく発生応力が大きくなる吐出フード取付ボルト及び基礎ボルトを 評価対象部位として選定する。

なお、吐出フード天板は、板材としてはフランジ部を境界に天板部と先端部に分かれるが、 天板部の方が面積が大きく、降下火砕物等による鉛直荷重に対し発生応力が大きくなること及 びフランジ以降の先端部は防雨が目的であり、仮に変形が生じてもファンの排気機能に直接影 響を与えないことから、先端部は評価対象部位には含めない。

ディーゼル発電機室ルーフベントファンの強度評価における評価対象部位を図 3-1 に示す。

図 3-1 ディーゼル発電機室ルーフベントファンの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは,添付書類「V-3-別添 2-1 火山への配慮が必要 な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合 せを用いる。

(1) 荷重の設定

ディーゼル発電機室ルーフベントファンの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,吐出フードを含めたファンの自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v')
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重は添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1(3)c.水平荷重」に示す式に従い,算出する。全高Hが5m以下であるため,HがZ_b以下の場合の式を用いる。

吐出フード取付ボルトの評価において,風(台風)による水平荷重を受ける面積は,吐 出フードの面積を包含する面積とする。

基礎ボルトの評価において,風(台風)による水平荷重を受ける面積は,吐出フード及 びケーシングの面積を包含する面積とする。

風(台風)による水平荷重Wは以下のようにして求める。風(台風)による水平荷重の 受圧面積を図 3-2 に示す。

・吐出フード取付ボルトの評価 W=q・C₁・A₁ ・基礎ボルトの評価 W=q・(C₁・A₁+C₂・A₁') ここで q=0.6・E'・V_D² E'=E_r²・G E_r=1.7・(Z_b/Z_G)^α

図3-2 風(台風)による水平荷重の受圧面積

(2) 荷重の組合せ

強度評価に用いる荷重の組合せは、ディーゼル発電機室ルーフベントファンの評価対象部 位ごとに設定する。

ディーゼル発電機室ルーフベントファンには,自重,降下火砕物等堆積による鉛直荷重及 び風(台風)による水平荷重が作用する。

ディーゼル発電機室ルーフベントファンの強度評価にて考慮する荷重の組合せを表 3-2 に 示す。

施設名称	評価対象部位	荷重
	吐出フード天板	 ①自重 ②降下火砕物等堆積による鉛直荷重
ディーゼル発電機室	ケーシング	①自重 ②降下火砕物等堆積による鉛直荷重
ルーフベントファン	吐出フード 取付ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重
	基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重

11

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機室ルーフベントファンの許容限界は、添付書類「V-3-別添 2-1 火山への 配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、

「3.2 評価対象部位」にて設定している評価対象部位ごとに,機能損傷モードを考慮し,設計降伏点S_v又はJEAG4601に基づき許容応力状態Ⅲ_ASの許容応力を用いる。

ディーゼル発電機室ルーフベントファンの許容限界は、吐出フード天板に対しては弾性範囲 である設計降伏点S_yとする。その他の評価対象部位についてはJEAG4601を準用し、 「クラス2,3支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される 安全機能を維持できるように弾性設計とするため、許容応力状態Ⅲ_ASから算出した以下の許 容応力を許容限界とする。JEAG4601に従い、JSME付録材料図表Part5,6の表にて 許容応力を評価する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度 がJSME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSM E付録材料図表Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた 値を用いるものとする。

ディーゼル発電機室ルーフベントファンの許容限界を表 3-3,許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力0	D種類	許容限界
吐出フード天板	_	一次応力	曲げ	S _y
ケーシング	III _A S	一次応力	圧縮	1.5 f $_{\rm c}$
	III _A S	一次応力	引張	1.5 f $_{\rm t}$
吐出フード 取付ボルト			せん断	1.5 f s
			組合せ	Min {1.5 f t, (2.1 f t -1.6τ) }
		一次応力	引張	1.5 f _t
基礎ボルト	III _A S		せん断	1.5 f s
			組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }

表 3-3 ディーゼル発電機室ルーフベントファンの許容限界

表 3-4	デイ	ーゼル発	電機室ル・	ーフベン	トファ	アン(の許容応対	力

苏尔与内尔马	材料	温度条件	S _y	S _u	F	1.5 f $_{\rm c}$	1.5 f $_{\rm t}$	1.5 f $_{\rm s}$
計個对象的位		(°C)*	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
吐出フード天板	SS400	50	241	—	—	—	—	—
ケーシング	SS400	50	241	394	241	240	—	—
吐出フード 取付ボルト	SS400	50	231	394	231	—	173	133
基礎ボルト	SS400	50	231	394	231	—	173	133

注記 *:周囲環境温度

NT2 補② V-3-別添 2-1-6 R8

3.5 評価方法

ディーゼル発電機室ルーフベントファンの応力評価は,添付書類「V-3-別添 2-1 火山への 配慮が必要な施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用い る。

- (1) 評価モデル
 - a. 等分布荷重による評価

等分布荷重による評価を行う吐出フード天板は,吐出フード天板の端部から吐出フード フランジまでの四辺固定の長方形板(四辺固定)として評価を行う。等分布荷重による評 価に用いるモデル図を図 3-3 に示す。

図 3-3 等分布荷重による評価に用いるモデル図

b. 1質点系モデルによる評価

降下火砕物等堆積による鉛直荷重及び自重(鉛直荷重)並びに風(台風)による水平荷 重に対する,吐出フード取付ボルト及び基礎ボルトの構造健全性を1質点系モデルとして 計算を行う。ここで,荷重の作用点はファンの上端とする。ディーゼル発電機室ルーフベ ントファンの1質点系モデル図を図 3-4 に示す。

図 3-4 1 質点系モデル図

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等による鉛直荷重の受圧面積を図 3-5 に示す。保守的に吐出フード先端部 及びフード曲り部にも降下火砕物等が堆積すると仮定し,評価を行う。

図3-5 鉛直荷重の受圧面積

b. 応力評価

(a) 吐出フード天板部に生じる応力

イ. 曲げ応力

吐出フード天板部は,保守的に吐出フード曲がり部も平面とみなして評価を行う。 吐出フード天板の評価面積図を図 3-6 に示す。

(b)側面図図3-6 吐出フード天板の評価用面積図(2/2)

吐出フード天板部に生じる曲げ応力 σ b は次式より算出される。

$$\sigma_{\rm b} = \beta \cdot \frac{\mathbf{p} \cdot \mathbf{a}^2}{\mathbf{h}_{\rm t}^2}$$

(b) ケーシングに生じる応力

イ. 圧縮応力

ケーシングに生じる圧縮応力 σ。は次式より算出される。

$$\sigma_{c} = \frac{F_{v} + F_{d}}{S}$$

ここで、
$$F_{d} = m \cdot g$$

$$S = \frac{\pi}{4} (B_{1}^{2} - B_{2}^{2})$$

ケーシングの断面図を図 3-7 に示す。

図 3-7 ケーシングの断面図

- (c) 吐出フード取付ボルト及び基礎ボルトに生じる応力
 - イ. 引張応力

吐出フード取付ボルト及び基礎ボルトに生じる引張応力σ_tは次式より算出される。 (イ) 引張力

$$M=2\sum_{i=1}^{n} F_{i} \cdot L_{i} \quad . . \quad (3.1)$$

$$\frac{F_{i}}{L_{i}} = - 定$$
 ・・・ (3.2)

(3.1) (3.2) 式より,

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$

ここで, Mは以下による。

$$M = W \cdot h + (m \cdot g + F_V) \cdot \frac{L_n}{2}$$

(ロ) 引張応力

$$\sigma_{\rm t} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

吐出フード取付ボルト及び基礎ボルトに生じるせん断応力 τ は次式より算出される。 ボルト全本数でせん断力を受けるものとして計算する。

(イ) せん断力Q_b=W

(ロ) せん断応力

$$\tau = \frac{Q_{_{b}}}{A_{_{b}} \cdot N}$$

吐出フード取付ボルトの配置図を図 3-8,基礎ボルトの配置図を図 3-9 に示す。

図 3-8 吐出フード取付ボルト配置図

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-5 に示す。

q	G	C 1	C 2	V _D	Z _b
(N/m ²)	(-)	(-)	(-)	(m/s)	(m)
960	2.2	1.2	2.4	30	5

表 4-1 評価条件

Z _G	F v'	α	g
(m)	(N/m ²)	(-)	(m/s ²)
350	7565	0.15	9.80665

表 4-2 評価条件(吐出フード天板)

β	р	a	h t
(—)	(N/mm²)	(mm)	(mm)
0.45	8.258 $\times 10^{-3}$	1557	9

表 4-3 評価条件 (ケーシング)

A 2	m	B 1	B 2
(m ²)	(kg)	(mm)	(mm)
3. 394	2440	1418	1400

ſ	A_1	A_2	m	L ₁	L ₂	L ₃
	(m^2)	(m^2)	(kg)	(mm)	(mm)	(mm)
	1.980	3. 394	1500	403.2	973.4	1376.6

表 4-4 評価条件(吐出フード取付ボルト)

ボルト	Ν	A _b	h
サイズ	(-)	(mm^2)	(mm)
M16	8	201.1	1612

表 4-5 評価条件(基礎ボルト)

A ₁	A 1'	A_2	m	L ₁	L ₂
(m^2)	(m^2)	(m^2)	(kg)	(mm)	(mm)
1.980	3. 514	3.394	2440	118.7	338.0

L ₃	L ₄	L 5	L ₆	L ₇	ボルト
(mm)	(mm)	(mm)	(mm)	(mm)	サイズ
624.6	934.8	1221.4	1440.7	1559.4	M24

Ν	A _b	h
(-)	(mm^2)	(mm)
16	452.4	2812

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。

吐出フード天板,ケーシング,吐出フード取付ボルト及び基礎ボルトに発生する応力は許容応 力以下である。

評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
吐出フード天板	SS400	曲げ	112	241
ケーシング	SS400	圧縮	2	240
吐出フード 取付ボルト		引張	47	173
	SS400	せん断	6	133
		組合せ	47	173
基礎ボルト		引張	16	173
	SS400	せん断	2	133
		組合せ	16	173

表 5-1 ディーゼル発電機室ルーフベントファンの強度評価結果

21

V-3-別添 2-1-7 建屋の強度計算書

1. 概要
2. 基本方針 · · · · · · · · · · · · · · · · · · ·
2.1 位置
2.2 構造概要 ····································
2.3 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4 適用規格・・・・・・・・・・・・・・・11
3. 強度評価方法及び評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1 評価対象部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 荷重及び荷重の組合せ······12
3.2.1 荷重の設定·······12
3.2.2 荷重の組合せ・・・・・19
3.3 許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.4 評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.4.1 屋根に対する評価・・・・・26
3.4.2 耐震壁に対する評価・・・・・59
3.4.3 鉄骨架構に対する評価・・・・・59
4. 強度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1 屋根に対する評価結果・・・・・ 60
4.1.1 原子炉建屋原子炉棟・・・・・・60
4.1.2 原子炉建屋付属棟・・・・・・62
4.1.3 タービン建屋・・・・・・64
4.1.4 使用済燃料乾式貯蔵建屋 ······66
4.2 耐震壁に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2.1 原子炉建屋原子炉棟及び原子炉建屋付属棟・・・・・・・・・・・・・・・・・・・・・・・68
4.2.2 タービン建屋・・・・・・69
4.2.3 使用済燃料乾式貯蔵建屋······70
4.3 鉄骨架構に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.1 原子炉建屋付属棟·······71

1. 概要

本資料は、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」に示す とおり、原子炉建屋原子炉棟、原子炉建屋付属棟、タービン建屋及び使用済燃料乾式貯蔵建屋が 降下火砕物及び積雪の堆積時においても、内包する防護すべき施設に降下火砕物を堆積させない 機能の維持を考慮して、建屋全体又は建屋の主要な構造部材が構造健全性を有することを確認す るものである。

また,原子炉建屋原子炉棟については,上記に加え,放射性物質の閉じ込め機能(以下「気密 性」という。)及び放射線の遮蔽機能(以下「遮蔽性」という。)の維持を考慮して,部材又は 建屋全体として構造健全性を有することを確認するものである。 2. 基本方針

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋は,添付 書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方針」 に示す構造計画を踏まえ,本資料では,各建屋の「2.1 位置」,「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

原子炉建屋原子炉棟,原子炉建屋付属棟タービン建屋及び使用済燃料乾式貯蔵建屋は,添付 書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の方 針」に示す位置に設置する。原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用 済燃料乾式貯蔵建屋の配置を図 2-1 に示す。

2.2 構造概要

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋は,添 付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「3.2 機能維持の 方針」に示す構造計画を踏まえて,構造を設定する。

原子炉建屋原子炉棟及び原子炉建屋付属棟は,主体構造が鉄筋コンクリート造で,鉄骨造陸 屋根をもつ地下2階,地上6階の建物である。中央部には,平面が45.5m(南北方向)×42.5 m(東西方向)の原子炉建屋原子炉棟があり,その周囲には,平面が南北方向68.5 m,東西方 向68.25mの原子炉建屋付属棟を配置している。陸屋根を支える屋根トラスの平面形状は45.5 m(南北方向)×42.5m(東西方向)の長方形であり,6階面(EL.46.5m)からの高さは17.58mで ある。

タービン建屋は、平面が 71.0m(南北方向)×105.5m(東西方向)で、主体構造が鉄筋コン クリート造で鉄骨造陸屋根をもつ地上2階、地下1階の建物である。陸屋根を支える屋根トラ スの平面形状は 39.0 m(南北方向)×105.5 m(東西方向)の長方形であり、2階面(EL. 18.0 m) からの高さは 22.45 m である。

使用済燃料乾式貯蔵建屋は,平面が 53.8 m(南北方向)×26.0 m(東西方向)で,主体構造が鉄筋コンクリート造で鉄骨造陸屋根をもつ地上1階の建物である。陸屋根を支える屋根トラスの平面形状は 53.8 m(南北方向)×26.0 m(東西方向)の長方形であり,1 階面(EL.8.30 m)からの高さは 20.90 m である。

原子炉建屋原子炉棟及び原子炉建屋付属棟の概略平面図及び概略断面図を図 2-2~図 2-5 に, タービン建屋の概略平面図及び概略断面図を図 2-6~図 2-8 に,使用済燃料乾式貯蔵建屋の概 略平面図及び概略断面図を図 2-9~図 2-11 に示す。

図 2-5 原子炉建屋原子炉棟及び原子炉建屋付属棟の概略断面図(B-B 断面)

図 2-7 タービン建屋の概略断面図(A-A 断面)

図 2-8 タービン建屋の概略断面図(B-B 断面)

図 2-11 使用済燃料乾式貯蔵建屋の概略断面図(B-B 断面)

2.3 評価方針

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の強度 評価は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」のうち「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している荷重,荷重の組合せ及び許容限界を 踏まえて,建屋の評価対象部位に発生する応力等が,許容限界に収まることを「3. 強度評価 方法及び評価条件」に示す方法及び評価条件を用いて計算し,「4. 強度評価結果」にて確認 する。

強度評価フローを図 2-12 に示す。

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の強度 評価においては、その構造を踏まえ降下火砕物堆積による鉛直荷重及びこれに組み合わせる荷 重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象部位を選定する。

各建屋において,降下火砕物堆積による鉛直荷重に対しては,鉛直荷重に抵抗する評価対象 部位として以下のとおり選定した。

・原子炉建屋原子炉棟:屋根スラブ,主トラス,二次部材(母屋)

・原子炉建屋付属棟 :屋根スラブ,二次部材(母屋)

・タービン建屋: 屋根スラブ,主トラス,二次部材(母屋)

・使用済燃料乾式貯蔵建屋:屋根スラブ,主トラス,二次部材(サブトラス)

なお,風荷重による水平荷重に対しては,各建屋の耐震壁及び鉄骨架構を評価対象部位とする。

設計荷重は, 添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の 「4.1 荷重及び荷重の組合せ」に従い設定する。

屋根に作用する荷重は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算 の方針」の「5. 強度評価方法」に従い,応力解析モデルを用いて評価する。

また,耐震壁及び鉄骨架構の変形量は,添付書類「V-3-別添 2-1 火山への配慮が必要な 施設の強度計算の方針」の「5. 強度評価方法」に従い,質点系解析モデルを用いて評価する。

許容限界は、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の 「4.2 許容限界」に従い、降下火砕物の堆積に対し、降下火砕物堆積時の機能維持を考慮し て、内包する防護すべき施設に降下火砕物の荷重が作用することを防止するために、建屋全体 又は建屋の主要な構造部材が構造健全性を維持するものである。

図 2-12 強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005)
- (4) 鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会, 1999)
- (5) 原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005)
- (6) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (7) 鋼構造限界状態設計指針·同解説((社)日本建築学会,2010)
- (8) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (9) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社)日本電気協会)
- (10) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- (11) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国 立研究開発法人建築研究所 2015)

(参考文献)

- ・ 鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316. 1991(谷口元,加藤勉ほか)
- ・ 原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻 第661号, pp571-580, 2011(鈴木琢也,貫井泰ほか)
- ・建築構造設計基準の資料(国土交通省 平成27年度)

- 3. 強度評価方法及び評価条件
- 3.1 評価対象部位

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の評価 対象部位は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」のう ち「4.2 許容限界」にて示している評価対象部位に従って,各建屋の屋根,耐震壁及び鉄骨 架構とする。

各建屋の屋根において,降下火砕物堆積による鉛直荷重に対しては,鉛直荷重に抵抗する評 価対象部位として以下のとおり選定した。

- ・原子炉建屋原子炉棟:屋根スラブ,主トラス,二次部材(母屋)
- ・原子炉建屋付属棟 :屋根スラブ,二次部材(母屋)
- ・タービン建屋 : 屋根スラブ, 主トラス, 二次部材(母屋)
- ・使用済燃料乾式貯蔵建屋:屋根スラブ,主トラス,二次部材(サブトラス)

なお,風荷重による水平荷重に対しては,各建屋の耐震壁及び鉄骨架構を評価対象部位とする。

3.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の 組合せを用いる。

- 3.2.1 荷重の設定
 - (1) 固定荷重(F_d)
 - a. 屋根スラブ

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の屋根スラブに作用する固定荷重を表 3.2-1~表 3.2-4 に示す。

部位	仕上げ	固定荷重(F _d)
屋根スラブ	防水シート	3 kgf/m^2
	アスファルト防水層	37 kgf/m^2
	コンクリート (t=100 mm)	240 kgf/m^2
	デッキプレート部コンクリート	45 kgf/m^2
	デッキプレート	18 kgf/m^2
	合 計	343 kgf/m²→3370 N/m²
母屋	$(H - 390 \times 300 \times 10 \times 16)$	1050 N/m^2

表 3. 2-1 原子炉建屋原子炉棟 屋根スラブ及び母屋検討用の固定荷重

部位	仕上げ	固定荷重(F _d)
屋根スラブ (鉄筋コンクリート诰)	機器・配管荷重 コンクリート (t=400 mm)	21570 N/m ² 9600 N/m ²
	合 計	31170 N/m^2
	機器・配管荷重	13000 N/m^2
	押えコンクリート (t=80 mm)	1920 N/m^2
屋根スラブ (鉄骨造)	アスファルト防水層	150 N/m^2
	コンクリート (t=150 mm)	3600 N/m^2
	デッキプレート	200 N/m^2
	合 計	18870 N/m^2
母屋	$(H-400 \times 200 \times 8 \times 13)$	650 N/m

表 3.2-2 原子炉建屋付属棟*屋根スラブ及び母屋 検討用の固定荷重

注記 *:評価結果を記載した代表部位のみ示す

表 3.2-3 タービン建屋 屋根スラブ及び母屋 検討用の固定荷重

部 位 仕上げ 固定荷重(F_d) 機器・配管荷重 3730 N/m^2 屋根スラブ コンクリート (t=350 mm) 8400 N/m^2 (鉄筋コンクリート造) 12130 N/m^2 合 計 軽量コンクリートブロック 54 kgf/m^2 60 kgf/m^2 空練モルタル敷(貧調合) アスファルト防水層 37 kgf/m^2 屋根スラブ コンクリート (t=100 mm) 240 kgf/m^2 (鉄骨造) デッキプレート部コンクリート 45 kgf/m^2 デッキプレート 18 kgf/m^2 合 計 454 kgf/m² \rightarrow 4460 N/m² 母屋 $(H - 396 \times 302 \times 12 \times 19)$ 1250 N/m

部位	仕上げ	固定荷重(F _d)
屋根スラブ	砂利(t=30 mm) アスファルト防水層	63 kgf/m² 20 kgf/m²
	スラブ (t=450+34=484 mm) デッキプレート	1162 kgf/m ² 29 kgf/m ²
	合 計	1274 kgf/m²→12500 N/m²

表 3. 2-4 使用済燃料乾式貯蔵建屋 屋根スラブ 検討用の固定荷重

b. 主トラス

原子炉建屋原子炉棟,タービン建屋及び使用済燃料乾式貯蔵建屋の主トラスに作用する固定荷重を表 3.2-5~表 3.2-7 に示す。

表 3.2-5	主トラス 樽	(討用の固定荷重
部位	部材	固定荷重(F _d)
屋根面 (EL. 64.08 m) -	屋根スラブ トラス鋼材	343 kgf/m² 204 kgf/m²
	合 計	547 kgf/m²→5370 N/m²

表 3.	2-6 主トラス 検討,	用の固定荷重
部位	部材	固定荷重(F _d)
屋根面 (EL. 40.45 m)	屋根スラブ トラス鋼材	454 kgf/m² 125 kgf/m²
	合 計	579 kgf/m²→5680 N/m²

表 3.2-7		主トラス及びサブト	ラス 検討用の固定荷重
部 位		部材	固定荷重(F _d)
屋根面 (EL. 29.20 m)	屋根スラブ トラス鋼材	1274 kgf/m² 150 kgf/m²	
	合 計	1424 kgf/m ² \rightarrow 14000N/m ²	

243

(2) 積載荷重(F₁)

積載荷重は、「建築構造設計基準の資料(国土交通省 平成27年版)」における「屋上 (通常人が使用しない場合)」の床版計算用積載荷重における980 N/m²を包絡するように 除灰時の人員荷重として1000 N/m²とする。なお、除灰においては、重機等の大型機器は 使用しない。積載荷重を表3.2-8 に示す。

表 3.2-8 積載荷重

積載荷重	(F ₁)
1000	N/m^2

(3) 積雪荷重(F_s)

積雪荷重は,茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)に よる東海村の垂直積雪量30 cmに平均的な積雪荷重*を与えるための係数0.35を考慮した 10.5 cmに設定し,積雪量1 cmごとに20 N/m²の積雪荷重が作用することを考慮し設定す る。積雪荷重を表3.2-9に示す。

注記 *:建築物の構造関係技術基準解説書

表 3.2-9 積雪荷重

利	責雪荷重(F _s)	
	210 N/m^2	

(4) 降下火砕物堆積による鉛直荷重(F_{v0})

降下火砕物堆積による単位面積あたりの鉛直荷重は,7355 N/m²とする。降下火砕物堆 積による鉛直荷重を表 3.2-10 に示す。

表 3.2-10 降下火砕物堆積による鉛直荷重

降下火砕物堆積による鉛直荷重(F _{v0})	
7355 N/m^2	

- (5) 風荷重(W)
 - a. 記号の定義

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋 の強度評価において風荷重の算定に用いる記号を表 3.2-11 に示す。

記号	単位	定義
А	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С	_	風力係数
Е'		建築基準法施行令第87条第2項に規定する数値
E _r	_	建設省告示第1454号第2項の規定によって算出した平均風速の 高さ方向の分布を表す係数
G	_	ガスト影響係数
Н	m	全高
q	N/m^2	設計用速度圧
$V_{\rm D}$	m/s	基準風速
W	Ν	風荷重
Z_{G}	m	地表面粗度区分に応じて建設省告示第1454号に揚げる数字
$Z_{\rm b}$	m	地表面粗度区分に応じて建設省告示第1454号に揚げる数字
α	_	地表面粗度区分に応じて建設省告示第1454号に揚げる数字

表 3.2-11 風荷重の算定に用いる記号

b. 風荷重(W)の算定

風荷重の算出に用いる基準風速は、30 m/s とする。

風荷重Wは、添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方 針」の「4.1(3)c 水平荷重」に示す式に従い算出する。全高Hが5 m以上であるため、 HがZ_b以上の場合の式を用いる。風荷重Wの算出は、建屋の形状を考慮して算出した 風力係数C及び風の受圧面積Aに基づき実施し、風荷重Wの算出に用いる受圧面積の算 定において、隣接する建屋の遮断効果は、安全側の評価となるよう考慮しない。

W=q・C・A ここで、 q=0.6E'・V_D² E'=E_r²・G E_r=1.7・(H/Z_a) (HがZ_bを超える場合) E_r=1.7・(Z_b/Z_G)^{α} (HがZ_G以下の場合) 風荷重算定に使用する入力条件を表 3.2-12~表 3.2-15 に示す。

基準風速 全高 7			ガスト	設計用		
施設名称	$V_{\rm D}$	Н	\mathcal{L}_{G}	α	影響係数	速度圧
	(m/s)	(m)	(m)		G	$q (N/m^2)$
原子炉建屋原子炉棟 原子炉建屋付属棟	30	55.65	350	0.15	2.00	1798
タービン建屋	30	32.64	350	0.15	2.05	1571
使用済燃料乾式貯蔵建屋	30	21.20	350	0.15	2.13	1430

表 3.2-12 設計風荷重の条件

表 3.2-13

の風力係数及び受圧面積

(a) NS 方回					
高さ(EL.)	風力係数C		受圧面積	責A (m ²)	
(m)	風上	風下	風上	風下	
$63.65 \sim 57.00$	0.80	0.4	331	331	
57.00 \sim 46.50	0.77	0.4	447	447	
46.50 \sim 38.80	0.72	0.4	328	328	
$38.80 \sim 34.70$	0.67	0.4	175	175	
34.70 \sim 29.00	0.64	0.4	266	266	
29.00 \sim 20.30	0.60	0.4	581	581	
$20.30 \sim 14.00$	0.51	0.4	430	430	
14.00 \sim 8.20	0.41	0.4	396	396	

(b) EW 方向

高さ(EL.)	風力係数C		受圧面積	₹A (m ²)
(m)	風上	風下	風上	風下
$63.65 \sim 57.00$	0.80	0.4	354	354
57.00 \sim 46.50	0.77	0.4	478	478
46.50 \sim 38.80	0.72	0.4	351	351
$38.80 \sim 34.70$	0.67	0.4	187	187
$34.70 \sim 29.00$	0.64	0.4	283	283
$29.00 \sim 20.30$	0.60	0.4	570	570
$20.30 \sim 14.00$	0.51	0.4	432	432
$14.00 \sim 8.20$	0. 41	0.4	398	398

表 3. 2-14	の風力係数及び		受圧面積	
	(a) NS	方向		
高さ(EL.)	風力係数C		受圧面積A(m ²)	
(m)	風上	風下	風上	風下
$40.64 \sim 28.00$	0.80	0.4	1408	1408
$28.00 \sim 18.00$	0.69	0.4	1129	1129
$18.00 \sim 8.20$	0.56	0.4	1034	1034

(b) EW 方向

高さ(EL.)	風力係数C		《力係数C 受圧面積A	
(m)	風上	風下	風上	風下
$40.64 \sim 28.00$	0.80	0.4	585	585
$28.00 \sim 18.00$	0.69	0.4	733	733
$18.00 \sim 8.20$	0.56	0.4	696	696

表 3. 2-15 の風力係数及び受圧面積 (a) NS 方向				
高さ(EL.)	風力係数C		受圧面積A(m ²)	
(m)	風上	風下	風上	風下
29.20 \sim 17.75	0. 80	0.4	318	318
$17.75 \sim 8.30$	0. 63	0.4	254	254

(b) EW 方向

高さ(EL.)	風力係数C		受圧面積	$A (m^2)$
(m)	風上	風下	風上	風下
29.20 \sim 17.75	0.80	0.4	657	657
$17.75 \sim 8.30$	0.63	0.4	525	525

3.2.2 荷重の組合せ

強度評価に用いる荷重の組合せは,建屋の評価対象部位ごとに設定する。建屋に水平方 向の風荷重が作用すると,屋根に対し鉛直上向きの荷重が働き,鉛直下向きの荷重が低減 されるため,保守的に考え,風による鉛直方向の荷重は考慮しない。

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の 評価に用いる荷重の組合せを表 3.2-16 に示す。

施設 分類	施設名称	評価対象部位	荷重
建屋	 ・原子炉建屋原子炉棟 ・原子炉建屋付属棟 ・タービン建屋 ・使用済燃料乾式貯蔵建屋 	屋根	 ①固定荷重 ②積載荷重 ③積雪荷重 ④降下火砕物堆積による鉛直荷重
	 ・原子炉建屋原子炉棟 ・原子炉建屋付属棟 ・タービン建屋 ・使用済燃料乾式貯蔵建屋 	耐震壁	 ①固定荷重 ②積載荷重 ③積雪荷重 ④降下火砕物堆積による鉛直荷重 ⑤風荷重
	・原子炉建屋付属棟	鉄骨架構	 ①固定荷重 ②積載荷重 ③積雪荷重 ④降下火砕物堆積による鉛直荷重 ⑤風荷重

表 3.2-16 荷重の組合せ
3.3 許容限界

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋の許容 限界は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って,「3.1 評価対象部位」にて設定している建 屋の評価対象部位ごとに設定する。

原子炉建屋原子炉棟の屋根スラブは、気密性及び遮蔽性を担保するために、原子力施設鉄 筋コンクリート構造計算規準・同解説に基づく短期許容応力度を許容限界として設定する。 また、構造健全性を維持する設計とすることを構造強度設計上の性能目標としている主トラ ス及び母屋(二次部材)は、終局耐力に対して妥当な安全裕度を有する許容限界、耐震壁は、 JEAG4601に基づき最大せん断ひずみ2.0×10⁻³を許容限界として設定する。

原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋については,各部位が構造 健全性を維持する設計とすることを構造強度設計上の性能目標としているため.屋根スラブ は終局耐力,主トラス,母屋(二次部材)及びサブトラス(二次部材)は,崩壊機構が形成 されないこと,耐震壁は,JEAG4601に基づき最大せん断ひずみ4.0×10⁻³,鉄骨架構 は建築基準法施行令に基づき層間変形角1/200を許容限界として設定する。

常時作用する固定荷重,除灰時の人員荷重としての積載荷重,積雪荷重及び降下火砕物堆積による鉛直荷重に対する屋根の評価において,積雪荷重及び降下火砕物堆積による鉛直荷重は,30日以内に除雪・除灰することから短期荷重として扱う。

各建屋の評価における許容限界を表 3.3-1~表 3.3-4 のとおり設定する。また,鋼材,コン クリート及び鉄筋の許容応力度を表 3.3-5,表 3.3-6 及び表 3.3-7 に示す。

-								
要求機能	構造強度 設計上の 性能目標	部位		部位		構造健全性維持 のための考え方	許容限界	評価に用いる 基準
			屋根 スラブ	部材に生じる応力が構	終局耐力に対し妥 当な安全余裕を有 する許容限界	RC-N規準の 短期許容応力度*1		
	構造健全性		主トラス	造強度を確保するため の許容限界を超えない ことを確認	終局耐力に対し妥 当な安全余裕を有 する許容限界	弾性限耐力*2		
-	を維持する こと		母屋 (二次部材)					
			耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 2.0×10 ⁻³	最大せん断 ひずみ 2.0×10 ⁻³		
気密性	換気性能と あいまって 気密機能するこ と	屋根 スラブ		部材に生じる応力が気 密性を維持するための 許容限界を超えないこ とを確認	短期許容応力度	RC-N規準の 短期許容応力度		
遮蔽性	遮蔽体の損 傷により遮 蔽機能を損 なわないこ と		屋根 スラブ	部材に生じる応力が遮 蔽性を維持するための 許容限界を超えないこ とを確認	短期許容応力度	RC-N規準の 短期許容応力度		

表 3.3-1 原子炉建屋原子炉棟の屋根及び耐震壁の許容限界

注記 *1:構造強度に対しては、「終局耐力に対し妥当な安全余裕を有する許容限界」が許容限 界となるが、気密性、遮蔽性において「短期許容応力度」を許容限界としていること から、「RC-N規準」の短期許容応力度で評価

*2:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第 2464号に基づきF値×1.1を適用

要求機能	構造強度 設計上の 性能目標	部位		構造健全性維持 のための考え方	許容限界*1	評価に用いる 基準	
		屋	屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	弾性限耐力*2	
_	 内包する防 護すべき施 一 設に波及的 影響を及ぼ さないこと 	根有面包	根	母屋 (二次部材)	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成さ れないこと	崩壊機構が形成 されないこと ^{*3}
			耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ ^{*7} 2.0×10 ⁻³	
			鉄骨架構	層間変形角が構造強度 を確保するための許容 限界を超えないことを 確認	層間変形角 1/200	層間変形角 1/200	

表 3.3-2 原子炉建屋付属棟の屋根,耐震壁及び鉄骨架構の許容限界

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として母屋が崩壊しないことを許容限界とする。

- *2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用
- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第
 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991(谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻 第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)
- *7:原子炉建屋原子炉棟と一体構造であることから,原子炉建屋原子炉棟の許容限界を適 用する。

要求機能	構造強度 設計上の 性能目標	部位		構造健全性維持 のための考え方	許容限界*1	評価に用いる 基準
			屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	弾性限耐力*2
	内包する防 護すべき施 - 設に波及的 影響を及ぼ さないこと - ないこと - たラス 母屋 (二次部材)	屋根	主トラス	内包する防護すべき施 設に波及的影響を及ぼ	111 Julie 146 Julie 3 Store 10 - 6	
_		母屋 (二次部材)	さないために崩壊機構 が形成されないことを 確認	朋壊機構が形成されないこと	崩壊機構か形成 されないこと*3	
			耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 3.3-3 タービン建屋の屋根及び耐震壁の許容限界

注記 *1:複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として主トラス、母屋が崩壊しないことを許容限界とす る。

- *2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用
- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第
 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991 (谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)

要求機能	構造強度 設計上の 性能目標		部位	構造健全性維持 のための考え方	許容限界*	評価に用いる 基準
			屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	終局耐力	RC-N規準の 短期許容応力度
_	内包する防 護すべき施 設に波及的 影響を及ぼ さないこと	屋根	主トラス サブトラス (二次部材)	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成さ れないこと	S規準の 短期許容応力度
			耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 3.3-4 使用済燃料乾式貯蔵建屋の屋根及び耐震壁の許容限界

注記 *:複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局耐 力を許容限界とし、構造体として主トラス、サブトラスが崩壊しないことを許容限界 とする。

			下估	短期		
建屋	種類	領	F 1但 (N/mm ²)	引張 (N/mm²)	圧縮及び曲げ (N/mm ²)	せん断 (N/mm ²)
原子炉建屋原子炉棟 原子炉建屋付属棟 タービン建屋	SS400*1	t≦40 (mm)	235	235	235*2	135
使用済燃料 乾式貯蔵建屋	SS400 SM400A	t≦40 (mm)	235	235	235^{*2}	135

表 3.3-5 鋼材の許容応力度

注記 *1: 建設当時の鋼材の種類は SS41 であるが,現在の規格(SS400) に読み替えた許容応 力度を示す。

*2:上限値であり、座屈長さ等を勘案して設定する。

表 3.3-6 コンクリートの許容応力度

	設計其進始度	短	期	
建屋	(N/mm^2)	圧縮	せん断	
		(N/mm^2)	期 せん断 (N/mm ²) 1.06 1.08	
原子炉建屋原子炉棟				
原子炉建屋付属棟	22.1	14.7	1.06	
タービン建屋		14.7 1.00		
使用済燃料乾式貯蔵建屋	23. 5	15.6	1.08	

表 3.3-7 鉄筋の許容応力度

		短期		
建屋	種類	引張及び圧縮	面外せん断補強	
		(N/mm^2)	期 面外せん断補強 (N/mm ²) 345 345	
原子炉建屋原子炉棟				
原子炉建屋付属棟	SD345*	345 345		
タービン建屋				
使用済燃料乾式貯蔵建屋	SD345	345	345	

注記 *: 建設当時の鉄筋の種類は SD35 であるが,現在の規格(SD345) に読み替えた許容応 力度を示す。

3.4 評価方法

- 3.4.1 屋根に対する評価
 - 3.4.1.1 原子炉建屋原子炉棟
 - (1) 屋根スラブ

曲げモーメントによる鉄筋応力度及び面外せん断応力度を算定し,許容限界を超えな いことを確認する。なお,評価においては,表3.3-1に示すように,機能設計上の性能 目標の構造強度に対する許容限界は,終局耐力に対し妥当な安全裕度を有する許容限界 となるが,気密性,遮蔽性において,短期許容応力度を許容限界としていることから, 屋根スラブについては,RC-N規準の短期許容応力度で評価する。

a. 応力解析モデル及び諸元

屋根スラブは母屋で支持された1方向スラブとして単位幅を取り出し,等分布荷重 を受ける両端固定梁として応力を算定する。なお,原子炉建屋原子炉棟の屋根スラブ は単一断面であり,屋根面に作用する等分布荷重は屋根面全体で均一であることか ら,支持スパンの長い部位を対象に評価を行う。

屋根スラブの評価モデル図を図 3.4-1 に,評価部位の位置を図 3.4.-2 に,検討条件を表 3.4-1 に示す。

【両端固定梁】

図 3.4-1 原子炉建屋原子炉棟 屋根スラブ 評価モデル図(両端固定粱)

26

図 3.4-2 原子炉建屋原子炉棟 屋根スラブ 評価部位の位置

屋根スラブ 検討条件 表 3.4-1 スラ 有効 配筋量 支持スパン せい (片側) 評価対象部位* ブ厚 配筋 (m) (mm^2/m) (mm) (mm) 100 D13@180 703.9 EL. 64.08 m 50 2.27

注記 *:支持スパンが長い部位を記載

b. 曲げモーメントに対する屋根スラブ断面の評価方法

曲げモーメントに対する断面の評価は、RC-N規準に基づき、次式をもとに計算 した評価対象部位に生じる曲げモーメントによる鉄筋応力度が、許容限界を超えない ことを確認する。

$$\sigma_{t} = \frac{M}{a_{t} \cdot j}$$

ここで,

σ_t:鉄筋の引張応力度 (N/mm²)

M :曲げモーメント (N・mm)

a_t:引張鉄筋断面積(mm²)

j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)

c. 面外せん断力に対する屋根スラブ断面の評価方法

面外せん断力に対する断面の評価は、RC-N規準に基づき、評価対象部位に生じ る面外せん断応力度が、次式をもとに計算した許容限界を超えないことを確認する。

 $Q_{A} = b \cdot j \cdot \alpha \cdot f_{s}$

ここで,

- Q_A :許容面外せん断力(N)
- b : 断面の幅 (mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- α :許容せん断力の割り増し係数

(2を超える場合は2,1未満の場合は1とする。)

f 。:コンクリートの短期許容せん断応力度 (N/mm²)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$
ここで、
M :曲げモーメント (N・mm)
Q :せん断力 (N)

d : 断面の有効せい (mm)

(2) 主トラス

主トラスは、3次元フレームモデルによる応力解析より主トラスの応力度を算定し、 許容限界を超えないことを確認する。

応力解析は、3次元フレームモデルを用いた弾性応力解析を実施する。解析に使用するコードは「DYNA2E」である。なお、解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-2 計算機プログラム(解析コード)の概要・DYNA2 E」に示す。

a. 応力解析モデル及び諸元

応力解析モデルは,原子炉建屋原子炉棟については EL.46.5m より上部の耐震壁, 柱,梁,主トラス及び屋根スラブをモデル化した解析モデルを用いる。

解析モデル図を図 3.4-3 に, 主トラスの部材リストを表 3.4-2 に, 材料物性値を表 3.4-3 に示す。

解析モデルに使用する要素は、シェル要素、梁要素及びトラス要素とする。また、 解析モデルの脚部は固定とする。

図 3.4-3 原子炉建屋原子炉棟 主トラス 解析モデル図

衣 3.4-2 尿丁炉建烇尿丁侬 土下ノク 前州リクト				
部 位	部 材	断面積 A (cm²)	断面 2 次 モーメント I (cm ⁴)	
上弦材・下弦材	$H - 400 \times 400 \times 13 \times 21$	218.7	66600	
斜材	$2 L_{s} - 200 \times 200 \times 15 + 2 F B_{s} - 9 \times 150$	142.5	_	
斜材・束材	$2 L_{s} - 200 \times 200 \times 15$	115.5	_	
斜材・束材	$2 L_{s} - 150 \times 150 \times 15$	85.48	_	
斜材・束材	$2 L_{s} - 150 \times 100 \times 12$	57.12	—	
つなぎ梁・束材	$2 L_{s} - 100 \times 100 \times 10$	38.00	—	
母屋	$H - 390 \times 300 \times 10 \times 16$	136.0	38700	
上弦面つなぎ梁	$H - 582 \times 300 \times 12 \times 17$	174.5	103000	
下弦面つなぎ梁	$H - 250 \times 250 \times 9 \times 14$	92.18	10800	
上弦面水平 ブレース	$2 \text{ C T}_{\text{s}} - 200 \times 400 \times 13 \times 21$	218.6	_	
下弦面水平 ブレース	$CT - 300 \times 200 \times 11 \times 17$	67.21	_	
つなぎ梁 鉛直ブレース	$2 L_s - 90 \times 90 \times 10$	34.00		

表 3.4-2 原子炉建屋原子棟 主トラス 部材リスト

表 3.4-3 原子炉建屋原子炉棟 主トラス 材料物性値

使用材料	ヤング係数 E (N/mm ²)	せん断弾性係数 G (N/mm ²)	
鉄筋コンクリート:F _c 22.1	2. 21×10^4	9. 21×10^3	
鉄 骨 : SS400*	2. 05×10^5	7.9 $\times 10^4$	

注記 *:建設当時の鋼材の種類はSS41であるが,現在の規格(SS400)に読み替え

b. 鋼材断面の評価法

断面の評価は、S規準に基づき、次式をもとに計算した評価対象部位に生じる軸力 及び曲げモーメントによる応力度が許容限界を超えないことを確認する。

なお,許容限界については,表 3.3-1 に示すように,終局耐力に対し妥当な安全裕 度を有する許容限界を設定し,その許容限界は,弾性限耐力としてS規準の短期許容 応力度の評価式に平成12年建設省告示第2464号に基づきF値×1.1を適用する。

(圧縮)

$$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}} \leq 1.0$$

ただし,
 $\sigma_{c} = \frac{N_{c}}{A}$
 $\sigma_{b} = \frac{M}{Z}$
ここで,
 σ_{c} : 圧縮応力度 (N/mm²)
N_c : 圧縮軸力 (N)
M : 曲げモーメント (N·mm)
 f_{c} : 弾性限圧縮応力度 (N/mm²)
 f_{b} : 弾性限曲げ応力度 (N/mm²)

- σ_b:曲げ応力度 (N/mm²)
- A : 軸断面積 (mm²)
- Z :断面係数 (mm³)

(引張)

$$\frac{\sigma_{t} + \sigma_{b}}{f_{t}} \leq 1.0$$
ただし,
$$\sigma_{t} = \frac{N_{t}}{A}$$

$$\sigma_{b} = \frac{M}{Z}$$
ここで,
$$\sigma_{t} : 引張応力度 (N/mn^{2})$$

$$\sigma_{b} :$$

$$M_{t} : 引張軸力 (N)$$

$$M_{t} : 曲げモーメント (N \cdot mm)$$

$$T_{t} : 弾性限引張応力度 (N/mm^{2})$$

- σ_b:曲げ応力度 (N/mm²)
- A : 軸断面積 (mm²)
- Z : 断面係数 (mm³)

(3) 母屋 (二次部材)

母屋(二次部材)における曲げモーメント及びせん断力による応力度を算定し,許容 限界を超えないことを確認する。

a. 応力解析モデル及び諸元

母屋は主トラスで支持されたスパンの支配幅を取り出し,等分布荷重を受ける単純 梁(両端ピン支持の梁)として応力を算定する。なお,屋根面に作用する等分布荷重 は屋根面全体で均一であることから,支持スパンが長く,断面の小さい鉄骨部材を使 用している部位を対象に評価を行う。

母屋の評価モデル図を図 3.4-4 に,評価部材の位置を図 3.4-5 に,検討条件を表 3.4-4 に示す。

【単純梁】

図 3.4-4 原子炉建屋原子炉棟 母屋(二次部材) 評価モデル図(単純梁)

表:	3. 4-4	母屋(二	次部材) 材		
評価	支配幅 (m)	支持 スパン (m)	断面 係数 (cm ³)	せん断 断面積 (mm ²)	
EL. 64.08 m	$H - 390 \times 300 \times 10 \times 16$	2.57	7.70	1980	3580

注記 *: 支配スパンが長く断面の小さい部位を記載

b. 曲げモーメントに対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じる曲げモーメントによる 応力度が許容限界を超えないことを確認する。

$$\sigma_{\rm b} = \frac{\rm M}{Z}$$

ここで,

σ_b :曲げ応力度 (N/mm²)

M :曲げモーメント (N・mm)

Z : 断面係数 (mm³)

c. せん断力に対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じるせん断応力度が許容限 界を超えないことを確認する。

$$\tau = \frac{Q}{A_s}$$

ここで,

τ : せん断応力度 (N/mm²)

Q : せん断力 (N)

A_s : せん断断面積 (mm²)

- 3.4.1.2 原子炉建屋付属棟
 - (1) 屋根スラブ

曲げモーメントによる鉄筋応力度及び面外せん断応力度を算定し,許容限界を超えな いことを確認する。なお,評価においては,表3.3-2に示すように,屋根スラブの落下 により内包する外部事象防護対象施設を損傷させる可能性があることから,機能設計上 の性能目標の内包する防護すべき施設に波及的影響を及ぼさないことに対する許容限界 は,終局耐力となるが,本評価では,屋根スラブについて,RC-N規準の短期許容応 力度の評価式にF値を1.1倍した弾性限耐力で評価する。

a. 応力解析モデル及び諸元

原子炉建屋付属棟のうち,鉄骨架構上の屋根スラブは母屋で支持された1方向スラ ブとして単位幅を取り出し,等分布荷重を受ける両端固定梁として応力を算定する。 なお,原子炉建屋付属棟の鉄骨架構上の屋根スラブは,単一断面であることから,支 持スパンの長い部位を対象に評価を行う。

原子炉建屋付属棟のうち,鉄筋コンクリート躯体上の屋根スラブは,鉄筋コンクリ ートの大梁又は壁で支持された四辺固定又は三辺固定の長方形版として応力を算定す る。なお,原子炉建屋付属棟の鉄筋コンクリート躯体上の部位は,場所によって部材 断面と支持条件が異なるため,全てを対象として評価を行う。

屋根スラブの評価モデル図を図 3.4-6 に,評価部位の位置を図 3.4-7 に,検討条件 を表 3.4-5 に示す。

【両端固定梁】

- ・端部モーメント $M_E = \frac{1}{12}W \cdot 1^2$ 支持スパン (1) ・中央モーメント $M_c = \frac{1}{24}W \cdot 1^2$
- ・端部せん断力 Q_F=0.5W・1

図 3.4-6 原子炉建屋付属棟 屋根スラブ 評価モデル図(両端固定梁)

図 3.4-7 原子炉建屋付属棟 屋根スラブ 評価部位の位置

屋根スラブ 検討条件(鉄骨架構上)

評価対象部位*	スラ ブ厚 (mm)	有効 せい (mm)	支持スパン (m)	配筋	配筋量 (片側) (mm²/m)
EL. 30.0 m	150	100	1.866	D13@200	633. 5

注記 *:支持スパンが長い部位を記載

表	表 3.4-5 (2/2)								
評価対象	要部位	スラブ 「 「	有効	支持ン (r	スパン n)	配筋		配筋量 (mm ⁴	(片側) ²/m)
高さ	記号)子 (mm)	(mm)	短辺	長辺	短辺	長辺	短辺	長辺
EL. 39.8 m	S30	300	249	5.00	6.45	D19@200	D16@200	1432.5	993.0
	SE5-1	400	349	4.85	10.6	D19@200	D19@200	1432.5	1432.5
	SE5-2	400	349	4.85	10.6	D19@200	D19@200	1432.5	1432.5
	SE5-3	400	349	6.75	10.6	D19@200	D19@200	1432.5	1432.5
	SE5-4	400	349	6.55	10.6	D19@200	D19@200	1432.5	1432.5
EL 20.2 m	SE5-5	400	349	6.55	10.6	D19@200	D19@200	1432.5	1432.5
EL. 30.3 III	SE5-6	400	349	4.05	10.6	D19@200	D19@200	1432.5	1432.5
	SE5-7	400	349	7.05	10.6	D19@200	D19@200	1432.5	1432.5
	SE5-8	400	349	3.45	10.6	D19@200	D19@200	1432.5	1432.5
	SE6-1	1100	1046	5.65	10.0	D25@200	D25@200	2533.5	2533.5
	SE6-2	1100	1046	5.90	10.0	D25@200	D25@200	2533.5	2533.5
	S8-1	800	747	6.00	6.00	D22@200	D22@200	1935.5	1935.5
EL 22.0 m	S8-2	800	747	5.75	6.00	D22@200	D22@200	1935.5	1935.5
EL. 22.0 m	S8-3	800	747	6.00	6.40	D22@200	D22@200	1935.5	1935.5
	S9	800	747	6.00	6.15	D22@100	D22@100	3871.0	3871.0
EL. 17.2 m	Sa	2000	1946	6.90	11.5	D25@200	D25@200	2533.5	2533.5
EL. 12.0 m	SM19	200	151	1.20	5.50	D16@200	D16@200	993.0	993.0
EL. 12.24	SM20	200	151	3.30	13.7	D16@200	D16@200	993.0	993.0
	SB6a-1	800	745.5	1.10	5.70	D25@200	D25@200	2533.5	2533.5
	SB6a-2	800	745.5	1.50	2.35	D25@200	D25@200	2533.5	2533.5
	SB6a-3	800	745.5	0.55	3.50	D25@200	D25@200	2533.5	2533.5
EL. 9.0 m	SB12a-1	1400	1338	7.60	10.2	D38@170	D38@170	6705.9	6705.9
	SB12a-2	1400	1338	5.80	8.20	D38@170	D38@170	6705.9	6705.9
	SB12a-3	1400	1338	4.85	10.0	D38@170	D38@170	6705.9	6705.9
	SB12a-4	1400	1338	5.00	8.20	D38@170	D38@170	6705.9	6705.9

b. 曲げモーメントに対する屋根スラブ断面の評価方法

曲げモーメントに対する断面の評価は、RC-N規準に基づき、次式をもとに計算 した評価対象部位に生じる曲げモーメントによる鉄筋応力度が、許容限界を超えない ことを確認する。

$$\sigma_{t} = \frac{M}{a_{t} \cdot j}$$

ここで,

σ_t:鉄筋の引張応力度 (N/mm²)

M :曲げモーメント (N・mm)

a_t:引張鉄筋断面積(mm²)

j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)

c. 面外せん断力に対する屋根スラブ断面の評価方法

面外せん断力に対する断面の評価は、RC-N規準に基づき、評価対象部位に生じ る面外せん断応力度が、次式をもとに計算した許容限界を超えないことを確認する。

 $Q_{A} = b \cdot j \cdot \alpha \cdot f_{s}$

ここで,

- Q_A :許容面外せん断力 (N)
- b : 断面の幅 (mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- α :許容せん断力の割り増し係数

(2を超える場合は2,1未満の場合は1とする。)

f 。:コンクリートの短期許容せん断応力度 (N/mm²)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$
ここで、
M :曲げモーメント (N・mm)
Q :せん断力 (N)

d : 断面の有効せい (mm)

(2) 母屋 (二次部材)

母屋(二次部材)における曲げモーメント及びせん断力による応力度を算定し,許容 限界を超えないことを確認する。

a. 応力解析モデル及び諸元

母屋は鉄骨架構で支持されたスパンの支配幅を取り出し,等分布荷重を受ける単純 梁(両端ピン支持の梁)として応力を算定する。なお,原子炉建屋付属棟の屋根面に 作用する等分布荷重は屋根面全体で均一であることから,支持スパンが長く,屋根面 の支配面積の大きな母屋が最も厳しい条件となる。また,原子炉建屋付属棟の母屋は 断面の異なる複数の鉄骨部材を使用しているため,部材ごとに条件の最も厳しい部位 を対象に評価を行う。

母屋の評価モデル図を図 3.4-8 に,評価部位の位置を図 3.4-9 に,検討条件を表 3.4-6 に示す。

【単純粱】

表	母屋(二)	次部材) 栲	科条件		
評征	支配幅 (m)	支持 スパン (m)	断面 係数 (cm ³)	せん断 断面積 (mm ²)	
	H-400×200× 8×13	1.782	5. 200	1180	2992
	$H - 500 \times 200 \times 10 \times 16$	1.822	6. 500	1870	4680
EL. 35.0 m	$H - 500 \times 200 \times 10 \times 16$	1.782	6. 575	1870	4680
	$H - 600 \times 300 \times 14 \times 25$	1.825	6. 575	4780	7700
EL. 30.3 m	H-400×200× 8×13	1.940	5.744	1180	2992
EL. 30.0 m	$H-450\times200\times~9\times14$	2.067	4.944	1460	3798
EL. 22.0 m	$H\!-\!350\!\times\!175\!\times\ 7\!\times\!11$	1.825	3. 700	771	2296
	$H - 600 \times 200 \times 11 \times 17$	1.994	7.125	2520	6226
	$H - 600 \times 200 \times 11 \times 17$	1.940	7.325	2520	6226
	$H - 600 \times 200 \times 11 \times 17$	1.825	7.350	2520	6226
	$H - 600 \times 300 \times 14 \times 25$	3. 386	7.325	4780	7700

注記 *:支持面積が大きくなる部位を記載

b. 曲げモーメントに対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じる曲げモーメントによる 応力度が許容限界を超えないことを確認する。

$$\sigma_{b} = \frac{M}{Z}$$

ここで、
 σ_{b} :曲げ応力度 (N/mm²)
M :曲げモーメント (N·mm)
Z :断面係数 (mm³)

c. せん断力に対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じるせん断応力度が許容限 界を超えないことを確認する。

$$\tau = \frac{Q}{A_s}$$

ここで,

τ : せん断応力度 (N/mm²)

Q : せん断力 (N)

A_s : せん断断面積 (mm²)

3.4.1.3 タービン建屋

(1) 屋根スラブ

曲げモーメントによる鉄筋応力度及び面外せん断応力度を算定し,許容限界を超えな いことを確認する。なお,評価においては,表3.3-3に示すように,屋根スラブの落下 により内包する外部事象防護対象施設を損傷させる可能性があることから,機能設計上 の性能目標の内包する防護すべき施設に波及的影響を及ぼさないことに対する許容限界 は,終局耐力となるが,本評価では,屋根スラブについて,RC-N規準の短期許容応 力度の評価式にF値を1.1倍した弾性限耐力で評価する。

a. 応力解析モデル及び諸元

主トラス上の屋根スラブ(EL. 40.45 m)は母屋で支持された1方向スラブとして 単位幅を取り出し、等分布荷重を受ける両端固定梁として応力を算定する。なお、主 トラス上の屋根スラブは、単一断面であり、屋根面に作用する等分布荷重は屋根面全 体で均一であることから、支持スパンの長い部位を対象に評価を行う。

鉄筋コンクリート躯体上の屋根スラブ(EL. 28.0 m, 33.0 m)は、鉄筋コンクリートの大梁または壁で支持された四辺固定の長方形版として応力を算定する。なお、鉄筋コンクリート上の屋根スラブは単一断面であり、屋根面に作用する等分布荷重は屋根面全体で均一であるため、支持スパンが短辺及び長辺で最大の部位を対象に評価を行う。

屋根スラブの評価モデル図を図 3.4-10 に,評価部位の位置を図 3.4-11 に,検討条件を表 3.4-7 に示す。

【両端固定梁】

- ・端部モーメント $M_E = \frac{1}{12} W \cdot 1^2$ ・中央モーメント $M_c = \frac{1}{24} W \cdot 1^2$ 第分布荷重 (W)
- ・端部せん断力 Q_F=0.5W・1

図 3.4-10 タービン建屋 屋根スラブ 評価モデル図(両端固定梁)

				•
⊠ 3.4-11 (1/2)	屋根スラブ	評価部位の位置	(主トラス上:EL.	40.45 m)

図 3.4-11 (2/2)	屋根スラブ	評価部位の位置	(RC躯体上:EL.	28.0 m)

表 3.4-7		屋根スラ	ブ 検討条件(主ト	ラス上)	
評価対象部位*	スラ ブ厚 (mm)	有効 せい (mm)	支持スパン (m)	配筋	配筋量(片側) (mm²/m)
EL. 40.45 m	100	50	2.08	D13@200	633. 5

注記 *:支持スパンの長い部位を記載

表 3.4-7	(2/2)			屋根スラ	ブ検討	条件(RC	躯体上)	
評価対象部位*	スラ ブ厚	有効 せい	支持	スパン (m)	西日	筋	配筋量 (mm [*]	(片側) ²/m)
	(mm)	(mm)	短辺	長辺	短辺	長辺	短辺	長辺
EL. 28.0 m	300	299	10.0	12.0	D19@200	D19@200	1432.5	1432.5

注記 *:支持スパンが短辺及び長辺で最大の部位を記載

b. 曲げモーメントに対する屋根スラブ断面の評価方法

曲げモーメントに対する断面の評価は、RC-N規準に基づき、次式をもとに計算 した評価対象部位に生じる曲げモーメントによる鉄筋応力度が、許容限界を超えない ことを確認する。

$$\sigma_{t} = \frac{M}{a_{t} \cdot j}$$

ここで,

σ_t:鉄筋の引張応力度 (N/mm²)

M :曲げモーメント (N・mm)

a_t:引張鉄筋断面積(mm²)

j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)

c. 面外せん断力に対する屋根スラブ断面の評価方法

面外せん断力に対する断面の評価は、RC-N規準に基づき、評価対象部位に生じ る面外せん断応力度が、次式をもとに計算した許容限界を超えないことを確認する。

 $Q_{A} = b \cdot j \cdot \alpha \cdot f_{s}$

ここで,

- Q_A :許容面外せん断力(N)
- b : 断面の幅 (mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- α :許容せん断力の割り増し係数

(2を超える場合は2,1未満の場合は1とする。)

f 。:コンクリートの短期許容せん断応力度 (N/mm²)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$
ここで、
M :曲げモーメント (N・mm)
Q :せん断力 (N)

44

(2) 主トラス

主トラスは、3次元フレームモデルによる応力解析より主トラスの応力度を算定し、 各許容限界を超えないことを確認する。

応力解析は、3次元フレームモデルを用いた弾性応力解析を実施する。解析に使用するコードは「DYNA2E」である。なお、解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-2 計算機プログラム(解析コード)の概要・DYNA2 E」に示す。

a. 応力解析モデル及び諸元

応力解析モデルは、タービン建屋については EL. 18.0m より上部の耐震壁、柱、 梁、主トラス及び屋根スラブをモデル化した解析モデルを用いる。

解析モデル図を図 3.4-12 に,主トラスの部材リストを表 3.4-8 に,材料物性値を 表 3.4-9 に示す。

解析モデルに使用する要素は、シェル要素、梁要素及びトラス要素とする。また、 解析モデルの脚部は固定とする。

図 3.4-12 タービン建屋 主トラス 解析モデル図

	₹ 0.10 / C>定座 エーノハ п		
部位	部 材	断面積 A (cm²)	断面2次 モーメントI (cm ⁴)
上弦材・下弦材	$H - 428 \times 407 \times 20 \times 35$	360.7	119000
斜材・束材	$2 L_{s} - 200 \times 200 \times 20$	152.0	_
束材	$2 L_{s} - 200 \times 200 \times 15$	115.5	_
斜材	$2 L_{s} - 150 \times 150 \times 19$	106.8	_
束材	$2L_{s} - 150 \times 150 \times 15$	85.48	
斜材	$2 L_{s} - 130 \times 130 \times 12$	59.52	
斜材	$2 L_{s} - 100 \times 100 \times 10$	38.00	
斜材・束材	$2L_{s} - 130 \times 130 \times 9$	45.48	
母屋	$H - 396 \times 302 \times 12 \times 19$	161.9	46700
下弦面つなぎ梁	$H - 248 \times 249 \times 8 \times 13$	84.70	9930
水平ブレース	$CT - 175 \times 175 \times 7 \times 11$	31.57	

表 3.4-8 タービン建屋 主トラス 部材リスト

表 3.4-9 タービン建屋 主トラス 材料物性値

使用材料	ヤング係数 E (N/mm ²)	せん断弾性係数 G (N/mm ²)		
鉄筋コンクリート:F _c 22.1	2. 21×10^4	9. 21×10^3		
鉄 骨 : SS400*	2. 05×10^5	7.9 $\times 10^4$		

注記 *: 建設当時の鋼材の種類は SS41 であるが現在の規格 (SS400) に読み替え

b. 鋼材断面の評価法

断面の評価は、S規準に基づき、次式をもとに計算した評価対象部位に生じる軸力 及び曲げモーメントによる応力度が許容限界を超えないことを確認する。

なお,許容限界については,表3.3-3に示すように,内包する防護すべき施設に波 及的影響を及ぼさないために崩壊機構が形成されないことを確認する。各部材の構造 健全性評価においては,弾性限耐力*1が基本となるが,一部の部材が弾性限耐力を超 過した場合は,その部材に対して,修正若林式*^{2,*3}及び鋼構造限界状態設計指針・ 同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を評価する。

注記 *1:弾性限耐力として、S規準の短期許容応力度の評価式に平成12 年建設省
 告示第2464 号に基づきF値×1.1を適用する。

- *2:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学 論文集, Vol. 37B, pp. 303-316, 1991 (谷口元, 加藤勉ほか)
- *3:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造 系論文集 第76巻 第661号, pp571-580, 2011(鈴木琢也, 貫井泰ほか)

(圧縮)

$$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}} \leq 1.0$$
ただし,

$$\sigma_{c} = \frac{N_{c}}{A}$$

$$\sigma_{b} = \frac{M}{Z}$$
ここで,

$$\sigma_{c} : 圧縮応力度 (N/mm^{2})$$

$$N_{c} : 圧縮軸力 (N)$$

$$M : 曲げモーメント (N \cdot mm)$$

$$f_{c} : 弾性限圧縮応力度 (N/mm^{2})$$

$$f_{b} : 弾性限曲げ応力度 (N/mm^{2})$$

:曲げ応力度 (N/mm²)

 (mm^2) (mm^3)

- : 軸断面積 (mm²)
- :断面係数 (mm³)

(引張)

$$\frac{\sigma_{t} + \sigma_{b}}{f_{t}} \leq 1.0$$
ただし,
$$\sigma_{t} = \frac{N_{t}}{A}$$

$$\sigma_{b} = \frac{M}{Z}$$
ここで,
$$\sigma_{t} : 引張応力度 (N/mn^{2})$$

$$N_{t} : 引張軸力 (N)$$

$$M : 曲げモーメント (N \cdot mn)$$

$$f_{t} : 弾性限引張応力度 (N/mn^{2})$$

(座屈耐力)

・軸力のみを負担する部材の評価方法

$$n_0 = 1 - 0.4 \left(\frac{\lambda}{\Lambda}\right)^2$$
 $(\lambda \le \Lambda)$

ただし,

$$\Lambda = \sqrt{\frac{\pi^2 E}{0.6 F}}$$

ここで,

- λ : 圧縮材の細長比
- Λ :限界細長比
- E :ヤング係数

【修正若林: 圧縮側耐力曲線】

$$\frac{\mathbf{n}}{\mathbf{n}_0} = \frac{1}{\left(\overline{\zeta} - \mathbf{P}_n\right)^{1/6}} \leq 1$$

ただし,

$$n = \frac{N}{N_y}$$

$$P_n = \left(n_E/4\right) - 5$$

$$n_{E} = \frac{\pi^{2}E}{\lambda_{e}^{2}\sigma_{y}}$$

ここで, N :軸力 N_y :降伏軸力

 ζ : 無次元化圧縮側累積塑性歪

・軸力のみを負担する部材の評価方法

$$M_{c} = M_{p} \qquad \left(\lambda_{b} \leq \lambda_{b}\right)$$
$$M_{c} = \left(1.0 - 0.4 \frac{\lambda_{b} - \lambda_{b}}{e^{\lambda_{b}} - \lambda_{b}}\right) M_{p} \qquad (p \lambda_{b} < \lambda_{b} \leq \lambda_{b})$$

$$\begin{split} \mathbf{M}_{c} &= \frac{1}{\lambda_{b}^{2}} \mathbf{M}_{p} \qquad (\lambda_{b} >_{e} \lambda_{b}) \\ \neq \neq \downarrow \downarrow, \\ \lambda_{b} &= \sqrt{\frac{M_{p}}{M_{e}}} \\ e \lambda_{b} &= \sqrt{\frac{M_{p}}{M_{e}}} \\ e \lambda_{b} &= \frac{1}{\sqrt{0.6}} \\ p \lambda_{b} &= 0.6 + 0.3 \left(\frac{M_{2}}{M_{1}}\right) \\ \mathbf{M}_{e} &= C_{b} \sqrt{\frac{\pi^{4} \mathbf{E} \mathbf{I}_{y} \cdot \mathbf{E} \mathbf{I}_{w}}{k^{1} \frac{4}{b}}} + \frac{\pi^{2} \mathbf{E} \mathbf{I}_{y} \cdot \mathbf{G} \mathbf{J}}{1\frac{2}{b}} \\ \mathbf{M}_{p} &= \mathbf{F}_{y} \cdot \mathbf{Z}_{p} \\ C_{b} &= 1.75 + 1.05 \left(\frac{M_{2}}{M_{1}}\right) + \left(\frac{M_{2}}{M_{1}}\right)^{2} \leq 2.3 \end{split}$$

ここで,

- M_c : 横座屈限界耐力
- M_p : 全塑性モーメント
- F_v:降伏強さ
- Z_p : 塑性断面係数
- λ_b : 横座屈細長比
- 。λь : 弹性限界細長比
- _рλ_b:塑性限界細長比
- M_e:弾性横座屈モーメント
- EIy: :弱軸まわりの曲げ剛性
- E I w :曲げねじり剛性
- GJ : サンブナンねじり剛性
- _k1_b :横座屈長さ
 - 1 b: : 材長あるいは横座屈補剛間長さ
- Сь : モーメント係数

(3) 母屋(二次部材)

母屋(二次部材)における曲げモーメント及びせん断力による応力度を算定し,許容 限界を超えないことを確認する。

a. 応力解析モデル及び諸元

母屋は主トラスで支持されたスパンの支配幅を取り出し,等分布荷重を受ける単純 梁(両端ピン支持の梁)として応力を算定する。なお,タービン建屋の母屋に使用す 鉄骨部材は同一断面であり,屋根面に作用する等分布荷重は屋根面全体で均一である ことから,支持スパンが長く,支配面積の大きな部位を対象に評価を行う。

母屋の評価モデル図を図 3.4-13 に,評価部位の位置を図 3.4-14 に,検討条件を表 3.4-10 に示す。

【単純梁】

	表 3.4-10	母屋(二社	次部材) 検	討条件	
	評価対象部位	支配幅 (m)	支持 スパン (m)	塑性断面 係数 (cm ³)	せん断 断面積 (mm ²)
EL.40.45 m	$H - 396 \times 302 \times 12 \times 19$	2.31	13.0	2620	4296

b. 曲げモーメントに対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じる曲げモーメントによる応 力度が許容限界を超えないことを確認する。

$$\sigma_{b} = \frac{M}{Z}$$

ここで,

σ_b :曲げ応力度 (N/mm²)

M :曲げモーメント (N・mm)

Z : 断面係数 (mm³)

c. せん断力に対する断面の評価方法

断面の評価は,次式をもとに計算した評価対象部位に生じるせん断応力度が許容限界 を超えないことを確認する。

$$\tau = \frac{Q}{A_{_{S}}}$$

ここで,

τ : せん断応力度 (N/mm²)

Q : せん断力 (N)

A_s : せん断断面積 (mm²)

- 3.4.1.4 使用済燃料乾式貯蔵建屋
 - (1) 屋根スラブ

曲げモーメントによる鉄筋応力度及び面外せん断応力度を算定し、許容限界を超えな いことを確認する。なお、評価においては、表3.3-4に示すように、屋根スラブの落下 により内包する外部事象防護対象施設を損傷させる可能性があることから、機能設計上 の性能目標の内包する防護すべき施設に波及的影響を及ぼさないことに対する許容限界 は、終局耐力となるが、本評価では、屋根スラブについて、RC-N規準の短期許容応 力度で評価する。

a. 応力解析モデル及び諸元

屋根スラブは1方向スラブとして単位幅を取り出し,等分布荷重を受ける両端固定 梁として応力を算定する。なお,屋根スラブは単一断面及び単一スパンであるため, 配筋量の最も少ない部位を対象に評価を行う。

屋根スラブの評価モデル図を図 3.4-15 に,評価部位の位置を図 3.4-16 に,検討条件を表 3.4-11 に示す。

【両端固定梁】

図 3.4-15 使用済燃料乾式貯蔵建屋 屋根スラブ 評価モデル図(両端固定梁)

注記 *: 配筋量が最も少ない部位を記載

b. 曲げモーメントに対する屋根スラブ断面の評価方法

曲げモーメントに対する断面の評価は、RC-N規準に基づき、次式をもとに計算 した評価対象部位に生じる曲げモーメントによる鉄筋応力度が、許容限界を超えない ことを確認する。

$$\sigma_{t} = \frac{M}{a_{t} \cdot j}$$

ここで,

σ_t:鉄筋の引張応力度 (N/mm²)

M :曲げモーメント (N・mm)

a_t : 引張鉄筋断面積 (mm²)

j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)

c. 面外せん断力に対する屋根スラブ断面の評価方法

面外せん断力に対する断面の評価は、RC-N規準に基づき、評価対象部位に生じ る面外せん断応力度が、次式をもとに計算した許容限界を超えないことを確認する。

$$Q_A = b \cdot j \cdot \alpha \cdot f_s$$

ここで,

- Q_A : 許容面外せん断力 (N)
- b : 断面の幅 (mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- α :許容せん断力の割り増し係数(保守側に1とする。)
- f。:コンクリートの短期許容せん断応力度 (N/mm²)

(2) 主トラス及びサブトラス(二次部材)

主トラスは、3次元フレームモデルによる応力解析より主トラス及びサブトラス(二 次部材)の応力度を算定し、許容限界を超えないことを確認する。

応力解析は、3次元フレームモデルを用いた弾性応力解析を実施する。解析に使用するコードは「MSC NASTRAN」である。なお、解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-1 計算機プログラム(解析コード)の概要・MSC NASTRAN」に示す。

a. 応力解析モデル及び諸元

応力解析モデルは、使用済燃料乾式貯蔵建屋については、EL.7.05 mより上部の耐震 壁、柱、梁、主トラス、サブトラス及び屋根スラブをモデル化した解析モデルを用いる。 解析モデル図を図 3.4-17 に、主トラス及びサブトラスの部材リストを表 3.4-12 に、 材料物性値を表 3.4-13 に示す。

解析モデルに使用する要素は、シェル要素、梁要素及びトラス要素とする。また、解 析モデルの脚部は固定とする。

備考:Xa~Xd はサブトラス識別用の仮設通り名を示す。

図 3.4-17(1/2) 使用済燃料乾式貯蔵建屋解析モデル図(EW 方向フレーム架構モデル図)
図 3.4-17(2/2) 使用済燃料乾式貯蔵建屋解析モデル図(NS方向フレーム架構モデル図)

部 位	部 材	断面積 A (cm ²)	断面 2 次 モーメント I (cm ⁴)
上弦材・下弦材	$\rm BH\!-\!500\!\times\!400\!\times\!16\!\times\!28$	295.0	137000
斜材・垂直材	$BH-250\times250\times9\times14$	92.18	_
斜材	$\rm BH\!-\!300\!\times\!300\!\times\!12\!\times\!16$	130.9	—
斜材	$\rm BH\!-\!350\!\times\!350\!\times\!12\!\times\!19$	173.9	40300
垂直材	$\rm BH{-}298{\times}299{\times}9{\times}14$	109.5	18600
垂直材	$\rm BH\!-\!344\!\times\!348\!\times\!10\!\times\!16$	144.0	32800
上弦材・下弦材 (サブトラス)	$H - 175 \times 175 \times 7.5 \times 11$	51.43	2900
垂直材,斜材,方杖 (サブトラス)	$C T - 75 \times 150 \times 7 \times 10$	19.82	

表 3.4-12 使用済燃料乾式貯蔵建屋 主トラス及びサブトラス部材リスト

(市田材料)	ヤング係数 F	せん断弾性係数		
12/11/17/17	(N/mm^2)	(N/mm^2)		
鉄筋コンクリート:Fc23.5	2. 25×10^4	9. 38×10^3		
鉄 骨:SS400	2.05×10^{5}	$7,00 \times 10^{4}$		
SM400A	2.03×10	1. 50 ~ 10		

表 3.4-13 使用済燃料乾式貯蔵建屋 材料物性值

b. 鋼材断面の評価法

断面の評価は、S規準に基づき、次式をもとに計算した評価対象部位に生じる軸力 及び曲げモーメントによる応力度が許容限界を超えないことを確認する。

なお,許容限界については,表 3.3-4 に示すように,内包する防護すべき施設に波 及的影響を及ぼさないために崩壊機構が形成されないことを確認する。

(圧縮)

 $\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}} \leq 1.0 \qquad \forall 2 \sim \frac{t \sigma_{b} - \sigma_{c}}{f_{t}} \leq 1.0$ ただし、 $\sigma_{\rm c} = \frac{N_{\rm c}}{\Delta}$ $_{c} \sigma_{b} = \frac{M}{Z}$ $_{t} \sigma_{b} = \frac{M}{Z}$ ここで, σ。: E縮応力度 (N/mm²) 。σ_b : 圧縮側曲げ応力度 (N/mm²) N_c : 圧縮軸力 (N) _t σ_b : 引張り側曲げ応力度 (N/mm²) M :曲げモーメント (N・mm) A : 軸断面積 (mm²) Z 。 : 圧縮側断面係数 (mm³) Z_t :引張側断面係数 (mm^3) f。: E縮応力度 (N/mm²) f_b:曲げ応力度 (N/mm²) f_t:引張応力度 (N/mm²) ただし、 σ_{c} , $c\sigma_{b}$, $t\sigma_{b}$ の値は絶対値とする。

286

$\frac{t \sigma_{b} \sigma_{c}}{1.0} \leq 1.0$	$\frac{\sigma_{\rm c}}{c} + \frac{c^{\rm c}\sigma_{\rm b}}{c} \leq 1.0$
f _t	f _c f _b
ただし,	
$\sigma_{\rm t} = \frac{\rm N_{t}}{\rm A}$	
$_{\rm c} \sigma_{\rm b} = \frac{M}{Z_{\rm c}}$	
$_{\rm t} \sigma_{\rm b} = \frac{\rm M}{\rm Z_{t}}$	
ここで、	
σ _c : 圧縮応力度 (N/mm ²)	_c σ _b : 圧縮側曲げ応力度(N/mm ²)
_t σ _b :引張り側曲げ応力度(N/mm ²)	σ _t :引張応力度(N/mm ²)
N _t :引張軸力(N)	A : 軸断面積 (mm ²)
M :曲げモーメント (N・mm)	
Z _c : 圧縮側断面係数 (mm ³)	
Z _t : 引張側断面係数 (mm ³)	
f 。 : 圧縮応力度 (N/mm ²)	
f _b :曲げ応力度(N/mm ²)	
f t : 引張応力度 (N/mm ²)	
ただし, σ _c , _c σ _b , _t σ _b の値は絶対	値とする。

3.4.2 耐震壁に対する評価

原子炉建屋原子炉棟,原子炉建屋付属棟,タービン建屋及び使用済燃料乾式貯蔵建屋に ついて,建屋の質点系解析モデルを用いて,風荷重により耐震壁に発生するせん断ひずみ 度を評価し,許容限界を超えないことを確認する。なお,降下火砕物の各質点系解析モデ ルの復元力特性の設定においては,降下火砕物堆積による鉛直荷重による軸力を考慮する と第1折れ点の増大が見込まれるため,本評価では保守的に降下火砕物堆積による鉛直荷 重を考慮しない。

原子炉建屋(原子炉棟及び付属棟),タービン建屋及び使用済燃料乾式貯蔵建屋の質点 系解析モデルの詳細は、添付書類「V-2-2-1 原子炉建屋の地震応答計算書」、添付書類 「V-2-11-2-12 タービン建屋の耐震性についての計算書」、添付書類「V-2-2-4 使用 済燃料乾式貯蔵建屋の地震応答計算書」による。

3.4.3 鉄骨架構に対する評価

原子炉建屋付属棟の鉄骨架構部は原子炉建屋原子炉棟及び原子炉建屋付属棟の鉄筋コン クリート部と一体となっており, 柱脚及び鉄筋コンクリート部に接する梁端部は, 鉄筋コ ンクリート躯体に剛接合されている。また, 鉄骨部屋根スラブも鉄筋コンクリート部と一 体的に施工されている。鉄骨部屋根スラブの面内剛性は, 鉄骨架構の水平剛性に比べ十分 に大きく, 屋根面は剛床とみなせる。従って, 風荷重に対し, 鉄骨架構は鉄筋コンクリー ト部の層間変形に追従すると考えられる。

風荷重に対する建屋変形は、せん断変形+曲げ変形となるが、曲げ変形は、せん断変形 に比べワンオーダー以上小さいことから、曲げ変形を考慮不要とすることで、層間変位÷ 層の高さ=耐震壁のせん断ひずみとなり、「鉄骨架構の層間変形角=耐震壁のせん断ひず み」と考えられ、耐震壁と同様に質点系解析モデルを用いて、許容限界を超えないことを 確認する。

4. 強度評価結果

- 4.1 屋根に対する評価結果
 - 4.1.1 原子炉建屋原子炉棟
 - (1) 屋根スラブ

「3.4 評価方法」に基づいた評価結果を表 4.1-1 に示す。

降下火砕物堆積による鉛直荷重等によって,曲げモーメントに対する必要鉄筋量を超え ないこと,発生する面外せん断力が短期許容応力度を超えないことを確認した。

	表 4.1-1		屋根スラブ評価結果
評価対象部位		来部位	EL. 64.08 m
	厚さ t	(mm)	100
	有効ゼ d (mm	n)	50
(配 創 (鉄筋断面和	窃 責 mm ²)	D13@180 (703. 9)
	発生曲け M	「モーメント (kN・m)	5. 1
ー げ モ ー	鉄的 σ _t	5応力度 (N/mm²)	165. 7
メント	計 (N	F容値 N/mm ²)	345
	植	定值	0. 49
	発生す	せん断力) (kN)	13. 5
 せ	せん τ (新応力度 (N/mm ²)	0. 309
ん断力	せん断ス る割増	、パン比によ し係数 α	1.00
	計 (N	F容値 N/mm²)	1.06
	楨	定值	0. 30

(2) 主トラス

「3.4 評価方法」に基づいた評価結果を表 4.1-2 に示す。 降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる軸応力及び曲げモー

メントによる応力度が弾性限界耐力*を超えないことを確認した。

:	表 4.1-2		主トラス	スの評価結果	
評価対象部位		発生応力	応力度 (N/mm ²)	許容値 (N/mm ²)	検定値
	上弦材	圧縮	35.4	256	0.26
		曲げ	29.5	254	0.20
EL. 64.08 m	下弦材	引張	164.1	258	0.76
		曲げ	30.4	258	0.70
	斜材	引張	204.9	258	0.80
	東材	圧縮	150.3	172	0. 88

注記 *:「S規準」の短期許容応力度の評価式に平成12年建設省告示第2464号に基づきF 値×1.1を適用

(3) 母屋

「3.4 評価方法」に基づいた評価結果を表 4.1-3 に示す。

降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる曲げモーメント及び せん断による応力度が弾性限界耐力*を超えないことを確認した。

	表 4.1-3			母屋(の評価結果	
	評価対象部位	発生応力	応力 (N/mm	度 n²)	許容値 (N/mm ²)	検定値
	EL. 64.08 m	曲げ	118.	8	258	0.47
		せん断	34.	2	148	0. 24

注記 *:「S規準」の短期許容応力度の評価式に平成 12 年建設省告示第 2464 号に基づき F 値×1.1 を適用

4.1.2 原子炉建屋付属棟

(1) 屋根スラブ

「3.4 評価方法」に基づいた評価結果を表 4.1-4 に示す。

降下火砕物堆積による鉛直荷重等によって,曲げモーメントに対する必要鉄筋量を超え ないこと,発生する面外せん断力が,終局耐力*を超えないことを確認した。

	表 4.1-4	J.	屋根スラブ評価結果		
	赵伍县舟如片	EL 20.0	EL. 30.30 m (SE5-7)		
	計1個 刘 家 前 1 业	EL. 30.0 m	短辺	長辺	
	厚さt(mm)	150	400	400	
	有効せい d (mm)	100	349	349	
	配 筋 (鉄筋断面積 mm ²)	D13@200 (633.5)	D19@200 (1432.5)	D19@200 (1432.5)	
Ш.	発生曲げモーメント M(kN·m)	8.0	137.6	68.8	
m げモー	鉄筋応力度 σ _t (N/mm ²)	144. 4	314. 6	157.3	
メント	許容値 (N/mm ²)	379	379	379	
	検定値	0.39	0.84	0.42	
	発生せん断力 Q(kN)	25.6	145. 7	131.7	
t	せん断応力度 $ au$ (N/mm ²)	0. 293	0. 478	0. 432	
しん断力	せん断スパン比によ る割増し係数 α	1.00	1.08	1.60	
	許容値 (N/mm ²)	1.06	1.14	1.69	
	検定値	0.28	0.42	0.26	

注記 *:「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示第2464号に基づきF値×1.1を適用した弾性限界耐力を超えないことを確認

(2) 母屋

「3.4 評価方法」に基づいた評価結果を表 4.1-5 に示す。

降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる曲げモーメント及び せん断による応力度から崩壊機構が形成されないこと*を確認した。

表 4.1-5	母屋の評価結果			
評価対象部位	発生応力	応力度 (N/mm ²)	許容値 (N/mm ²)	検定値
EL. 30.30 m	曲げ	188.5	258	0.74
	せん断	51.8	148	0. 35

注記 *:「S規準」の短期許容応力度の評価式に平成 12 年建設省告示第 2464 号に基づき F 値×1.1 を適用

63

4.1.3 タービン建屋

(1) 屋根スラブ

「3.4 評価方法」に基づいた評価結果を表 4.1-6 に示す。

降下火砕物堆積による鉛直荷重等によって,曲げモーメントに対する必要鉄筋量を超え ないこと,発生する面外せん断力が,終局耐力*を超えないことを確認した。

	表 4.1-6	4.1-6 屋根スラブ評価結果			
	亚伍地布如佐	EL 40.45	EL. 28.00 m		
評価对象部位		EL. 40.45 m	短辺	長辺	
	厚さt(mm)	100	350	350	
	有効せい d (mm)	50	299	299	
(配 筋 (鉄筋断面積 mm ²)	D13@200 (633. 5)	D19@200 (1432.5)	D19@200 (1432.5)	
曲	発生曲げモーメント M(kN·m)	4.7	116. 3	58.2	
III げモー	鉄筋応力度 σ _t (N/mm ²)	169.6	310. 4	155. 3	
メント	許容値 (N/mm²)	379	379	379	
検定値		0.45	0.82	0.41	
	発生せん断力 Q(kN)	13.5	101.4	95.2	
せ	せん断応力度 $ au$ (N/mm ²)	0. 309	0. 388	0. 364	
しん断力	せん断スパン比によ る割増し係数 α	1.00	1.00	1. 31	
	許容値 (N/mm ²)	1.06	1.06	1. 38	
	検定値	0.30	0. 37	0.27	

注記 *:「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示第2464号に基 づきF値×1.1を適用した弾性限界耐力を超えないことを確認

(2) 主トラス

「3.4 評価方法」に基づいた評価結果を表 4.1-7 に示す。 降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる軸応力及び曲げモー メントによる応力度から,崩壊機構が形成されないこと*1を確認した。

	表 4.1-7		主トラスの	評価結果	
評価対象部位		発生応力	応力度 (N/mm ²)	許容値 (N/mm ²)	検定値
上弦材 EL. 40.45 m 下弦材 斜材 東材	レマナナナ	圧縮	40.9	257	0.26
	1.721/1	曲げ	49.2	255	0.30
	下弦材	圧縮	68.0	154	0.02
		曲げ	116.3	242	0.93
	斜材	引張	229.3	258	0.89
	東材	圧縮	171.4	176	0. 98

注記 *1:「S規準」の短期許容応力度の評価式に平成 12 年建設省告示第 2464 号に基づき F 値×1.1 を適用した弾性限界耐力を超えないことを確認

(3) 母屋

「3.4 評価方法」に基づいた評価結果を表 4.1-8 に示す。

降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる曲げモーメント及び せん断による応力度から,崩壊機構が形成されないことを確認した。

表 4.1-	-8	母屋の評	価結果	
評価対象部位	発生応力	応力度 (N/mm²)	許容値 (N/mm ²)	検定値
EL. 40.45 m	曲げ	252.7	258	0.98
	せん断	47.5	148	0.33

- 4.1.4 使用済燃料乾式貯蔵建屋
 - (1) 屋根スラブ

「3.4 評価方法」に基づいた評価結果を表 4.1-9 に示す。

降下火砕物堆積による鉛直荷重等によって,曲げモーメントに対する必要鉄筋量を超え ないこと,発生する面外せん断力が終局耐力を超えないこと*を確認した。

表	₹ 4. 1-9	屋根スラブ評価結果
評価対象部位		EL 29.20 m
	厚さt(mm)	450
	有効せい d (mm)	368
	配 筋	D19@250
((鉄筋断面積 mm ²)	(1148.0)
ш Ш	発生曲げモーメント M(kN·m)	10.4
H ゴ げ モ ー	鉄筋応力度 σ _t (N/mm ²)	28.2
メント	許容値 (N/mm²)	345
	検定値	0.09
	発生せん断力 Q(kN)	25.7
世	せん断応力度 $ au$ (N/mm ²)	0. 0799
ん断力	せん断スパン比によ る割増し係数 α	1.00
	許容値 (N/mm ²)	1.08
	検定値	0.074

注記 *:「RC-N規準」の短期許容応力度を超えないことを確認

(2) 主トラス

「3.4 評価方法」に基づいた評価結果を表 4.1-10 に示す。 降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる軸応力及び曲げモー メントによる応力度から,崩壊機構が形成されないこと*を確認した。

表	4. 1-10	主トラスの評価結果				
評価対象部位		発生応力	応力度 (N/mm²)		許容値 (N/mm ²)	検定値
上弦林 EL. 29.20 m 下弦林 斜材 垂直林	レマナナナ	圧縮	1.6		219	検定値 0.24 0.54 0.41
	1.7247	曲げ	53.4		233	
	┯╼┶┶┶┶	引張	96.7		235	0. 54
	1 2242	曲げ	28.6		233	
	斜材	引張	95.3		235	0.41
	垂直材	圧縮	90.2		227	0. 40

注記 *:「S規準」の短期許容応力度を超えないことを確認

(3) サブトラス

「3.4 評価方法」に基づいた評価結果を表 4.1-11 に示す。

降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる軸応力及び曲げモー メントによる応力度から,崩壊機構が形成されないこと*を確認した。

表 4	. 1–11	サブトラスの評価結果				
評価対象	良部位	発生応力	応力度 (N/mm ²)	許容値 (N/mm ²)	検定値	
		引張	2.2	235	0 12	
EL. 29.20 m	777473	曲げ	24.5	230	0.12	
	<u>+++</u> +=	圧縮	62.8	93	0. 78	
	ניו אני ין	曲げ	23.6	230		
	斜材	圧縮	89.2	98	0.92	
	垂直材	圧縮	56.5	180	0.32	

注記 *:「S規準」の短期許容応力度を超えないことを確認

4.2 耐震壁に対する評価結果

4.2.1 原子炉建屋原子炉棟及び原子炉建屋付属棟

「3.4 評価方法」に基づいた評価結果を表 4.2-1 に示す。

風荷重による水平荷重によって、最大せん断ひずみが許容限界(2.0×10⁻³)を超えないことを確認した。

表 4.2-1 (1/2) 原子炉建屋原子炉棟及び原子炉建屋付属棟 耐震壁の評価結果 (NS 方向)

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
	1	0.0028	2.0
	2	0.0066	2.0
せん断ひずみ	3	0.0012	2.0
	4	0.0022	2.0
	5	0.0024	2.0
	6	0.0021	2.0
	7	0.0022	2.0
	8	0.0015	2.0

表 4.2-1(2/2) 原子炉建屋原子炉棟及び原子炉建屋付属棟 耐震壁の評価結果	(EW 方向)
---	---------

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
	1	0.0033	2.0
	2	0.0075	2.0
	3	0.0017	2.0
ナノドバナフ	4	0.0022	2.0
せんめびりみ	5	0.0023	2.0
	6	0.0020	2.0
	7	0.0025	2.0
	8	0.0018	2.0

4.2.2 タービン建屋

「3.4 評価方法」に基づいた評価結果を表 4.2-2 に示す。

風荷重による水平荷重によって、最大せん断ひずみが許容限界(4.0×10⁻³)を超えな いことを確認した。

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
せん断ひずみ	1	0.0074	4.0
	2	0.0056	4.0
	3	0.0032	4.0

表 4.2-2(1/2) タービン建屋 耐震壁の評価結果(NS 方向)

表 4.2-2(2/2) タービン建屋 耐震壁の評価結果(EW 方向)

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
せん断ひずみ	1	0.0019	4.0
	2	0.0024	4.0
	3	0.0021	4.0

4.2.3 使用済燃料乾式貯蔵建屋

「3.4 評価方法」に基づいた評価結果を表 4.2-3 に示す。

風荷重による水平荷重によって、最大せん断ひずみが許容限界(4.0×10⁻³)を超えないことを確認した。

表 4.2-3 (1/2) 使用済燃料乾式貯蔵建屋 耐震壁の評価結果 (NS 方向)

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
せん断ひずみ	BM03	0.0025	4.0
	BM02	0.0033	4.0

表 4.2-3(2/2) 使用済燃料乾式貯蔵建屋 耐震壁の評価結果(EW 方向)

評価項目	要素番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
山/ 転71 平7,	BM03	0.0052	4.0
でんめいすみ	BM02	0.0061	4.0

4.3 鉄骨架構に対する評価結果

4.3.1 原子炉建屋付属棟

「3.4 評価方法」に基づいた評価結果を表 4.3-1 に示す。

風荷重による水平荷重によって,層間変形角が許容限界(1/200)を超えないことを確認した。

表 4.3-1 (1/2) 原子炉建屋付属棟 鉄骨架構の評価結果 (NS 方向)

評価項目	要素番号	層間変形角	許容限界
層間変形角	4	1/454545	1/200
	5	1/416666	1/200
	6	1/476190	1/200
	7	1/454545	1/200

表 4.3-1 (2/2) 原子炉建屋付属棟 鉄骨架構の評価結果 (EW 方向)

評価項目	要素番号	層間変形角	許容限界
層間変形角	4	1/454545	1/200
	5	1/434782	1/200
	6	1/500000	1/200
	7	1/400000	1/200

V-3-別添 2-2 防護対策施設の強度計算の方針

1.	概要
2.	強度評価の基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	1 強度評価の対象施設・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	構造強度設計
3.	1 構造強度の設計方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	2 機能維持の方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	荷重及び荷重の組合せ並びに許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	1 荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	2 許容限界
5.	強度評価方法
5.	1 防護対策施設・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.1.1 中央制御室換気系冷凍機防護対策施設
6.	適用規格

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)第7条及び「実用発電用原子炉及びその附属施設の技術基準に関する規則の解 釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される「重大 事故等対処設備」を踏まえた重大事故等対処設備に配慮する設計とするため、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち「V-1-1-2-4-3 降下火砕物の影響を考慮する施設の設計方針」(以下「V-1-1-2-4-3」という。)に設定してい る降下火砕物の影響を考慮する施設が、降下火砕物に対して構造健全性を維持することを確認す るための強度評価方針について説明するものである。

強度評価は、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する 説明書」のうち「V-1-1-2-4-1 火山への配慮に関する基本方針」(以下「V-1-1-2-4-1」とい う。)に示す適用規格を用いて実施する。

降下火砕物の影響を考慮する施設のうち,防護対策施設に対する具体的な計算の方法及び結果 は、添付書類「V-3-別添2-2-1 防護対策施設の強度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「2.1 強度評価の対象施設」に示す評価対象施設について、「4.1 荷重及び荷 重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組合せ荷重により発 生する応力が、「4.2 許容限界」で示す許容限界内にあることを、「5. 強度評価方法」で示 す評価方法及び考え方を使用し、「6. 適用規格」で示す適用規格を用いて確認する。

2.1 強度評価の対象施設

V-1-1-2-4-3の「4. 要求機能及び性能目標」にて設定している構造物への荷重を考慮する施設のうち,強度評価の対象施設(以下「評価対象施設」という。)となる防護対策施設を表 2-1 に示す。なお,防護対策施設以外の評価対象施設の強度評価の方針は,添付書類「V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針」に示す。

施設分類	評価対象施設
防護対策施設	 中央制御室換気系冷凍機防護対策施設

表 2-1 評価対象施設

3. 構造強度設計

V-1-1-2-4-1で設定している降下火砕物特性に対し,「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が,構造強度設計上の性能目標を達成するように, V-1-1-2-4-3の「5. 機能設計」で設定している各施設が有する機能を踏まえて,構造強度の設計方 針を設定する。

防護対策施設の構造強度の設計方針を設定し、想定する荷重及び荷重の組合せを設定し、それ らの荷重に対し、各施設の構造強度を保持するように構造設計と評価方針を設定する。

3.1 構造強度の設計方針

V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標 を達成するための設計方針を示す。

- (1) 防護対策施設
 - a. 中央制御室換気系冷凍機防護対策施設

中央制御室換気系冷凍機防護対策施設は、V-1-1-2-4-3 の「4. 要求機能及び性能 目標」の「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ、想 定する降下火砕物、積雪及び風(台風)による荷重に対し、降下火砕物堆積時の機能維 持を考慮して、原子炉建屋付属棟屋上面のコンクリート基礎に基礎ボルトで固定し、中 央制御室換気系冷凍機防護対策施設の主要な構造部材が構造健全性を維持する設計とす る。降下火砕物による荷重を短期荷重とするために、30 日以内に降下火砕物を適切に 除去することを保安規定に定める。

3.2 機能維持の方針

V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を 達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえV-1-1-2-4-1の「2.1.3
(2) 荷重の組合せ及び許容限界」で設定している荷重条件を適切に考慮して、各施設の構造 設計及びそれを踏まえた評価方針を設定する。

- (1) 防護対策施設
 - a. 中央制御室換気系冷凍機防護対策施設
 - (a) 構造設計

中央制御室換気系冷凍機防護対策施設は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とする。

中央制御室換気系冷凍機防護対策施設は,中央制御室換気系冷凍機へ降下火砕物が 堆積することを防止する防護鋼板,防護鋼板を支持する架構及び架構をコンクリート 基礎に固定する基礎ボルトから構成される。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物等が堆積する防護 鋼板に作用し,架構に伝達する構造とする。また,風荷重は,架構を介して基礎ボル トに作用する構造とする。

 $\mathbb{R}8$

中央制御室換気系冷凍機防護対策施設の構造計画を表3-1に示す。

(b) 評価方針

中央制御室換気系冷凍機防護対策施設は、「(a) 構造設計」を踏まえ、以下の強 度評価方針とする。想定する降下火砕物、積雪及び風(台風)を考慮した荷重に対 し、荷重の作用する部位及び荷重が伝達する部位を踏まえて、中央制御室換気系冷凍 機防護対策施設を構成する防護鋼板、架構及び基礎ボルトが、おおむね弾性状態に留 まることを「5. 強度評価方法」に示す応力解析モデル等を用いて確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を,添付書類「V-3-別 添2-2-1 防護対策施設の強度計算書」に示す。

表 3-1 中央制御室換気系冷凍機防護対策施設の構造計画

4. 荷重及び荷重の組合せ並びに許容限界

評価対象施設の強度評価に用いる荷重及び荷重の組合せを「4.1 荷重及び荷重の組合せ」 に、許容限界を「4.2 許容限界」に示す。

4.1 荷重及び荷重の組合せ

評価対象施設の強度評価にて考慮する荷重は,添付書類「V-1-1-2 発電用原子炉施設の自 然現象等による損傷の防止に関する説明書」のうちV-1-1-2-4-3にて設定しており,それらを 「(1) 荷重の種類」に示す。また,評価対象施設の強度評価にて考慮する荷重の組合せの考 え方は,添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に関する説明 書」のうちV-1-1-2-4-3にて定めており,これらを踏まえて,強度評価において考慮すべき荷 重の組合せを設定する。評価対象施設の荷重の組合せを「(2) 荷重の組合せ」に示す。

- (1) 荷重の種類
 - a. 常時作用する荷重(F_d)
 常時作用する荷重は、V-1-1-2-4-1の「2.1.3(2)a. 荷重の種類」で設定している
 常時作用している荷重に従って、持続的に生じる荷重である自重とする。
 - b. 降下火砕物による荷重(F_{v0})

降下火砕物による荷重は、V-1-1-2-4-1の「2.1.2 設計に用いる降下火砕物特性」 の降下火砕物の特性及び「2.1.3(2)a. 荷重の種類」に示す降下火砕物による荷重を踏 まえて、湿潤密度1.5 g/cm³の降下火砕物が50 cm堆積した場合の荷重とする。

c. 積雪荷重(F_s)

積雪深は、添付書類「V-1-1-2 発電用原子炉施設の自然現象等による損傷の防止に 関する説明書」のうち添付資料「V-1-1-2-1-1 発電用原子炉施設の自然現象等による 損傷の防止に関する基本方針」(以下「V-1-1-2-1-1」という。)の「4.1(4) 自然現 象の組合せの方針」に示す組み合わせる積雪深を踏まえて、茨城県建築基準法等施行細 則(昭和45年3月9日茨城県規則第9号)による東海村の垂直積雪量30 cmに平均的な積雪 荷重*を与えるための係数0.35を考慮し10.5 cmとする。積雪荷重については、建築基 準法施行令第86条第2項により、積雪量1 cmごとに20 N/m²の積雪荷重が作用することを 考慮し設定する。

注記 *: 建築物の構造関係技術基準解説書

d. 風荷重(W)

風速は、V-1-1-2-1-1 の「4.1(4) 自然現象の組合せの方針」に示す組み合わせる 風速を踏まえて、建築基準法施行令に基づく平成12年建設省告示第1454号に定められ た東海村の基準風速である30 m/s とする。風荷重については、施設の形状により風力 係数等が異なるため、施設ごとに設定する。

e. 運転時の状態で作用する荷重(F_p) 運転時の状態で作用する荷重は,配管等に作用する内圧等であり,評価対象施設には 作用しないため考慮しない。

- (2) 荷重の組合せ
 - a. 降下火砕物による荷重,積雪荷重及び風荷重の組合せ 降下火砕物による荷重,積雪荷重及び風荷重については,それらの組合せを考慮し, 自然現象の荷重として扱う。自然現象の荷重は短期荷重として扱う。
 - b. 評価対象施設の荷重の組合せ

評価対象施設の荷重の組合せについては,自然現象の荷重及び常時作用する荷重を組 み合わせる。

ただし,静的構造物である中央制御室換気系冷凍機防護対策施設は,運転時の状態で 作用する荷重は考慮しない。

なお,常時作用する荷重,積雪荷重及び風荷重については,組み合わせることで降 下火砕物による荷重の抗力となる場合には,評価結果が保守的となるよう荷重の算出 において考慮しないこととする。

上記を踏まえ,評価対象施設の強度評価における荷重の組合せの設定については,施 設の設置状況及び構造等を考慮し設定する。荷重の組合せの考え方を表 4-1 に示す。

		荷 重*						
施設分類	強度評価の	常時作用する 荷重(F _d)		降下火砕	積雪	国	運転時の	
	対象施設	白鱼	積載 荷重	水頭圧	物による 荷重 (F _v)	傾当 荷重 (F _s)	荷重 (W)	れ感でFF 用する荷 重等 (F _p)
防護対策施設	中央制御室換気系 冷凍機防護対策施設	0	_	_	0	0	0	_

表 4-1 対象施設ごとの荷重の組合せ

注記 *: 〇は考慮する荷重を示す。

5

(3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重のうち,「4.1(2)a. 降下火砕物による 荷重,積雪荷重及び風荷重の組合せ」で設定している自然現象の荷重の鉛直荷重及び水平 荷重の算出式を以下に示す。鉛直荷重については,添付書類「V-3-別添 2-2-1 防護対 策施設の強度計算書」にて使用するための算出式を用いた荷重の算出も行う。

a. 記号の定義

荷重の算出に用いる記号を表 4-2 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С	—	風力係数
E'	—	建築基準法施行令第 87 条第 2 項に規定する数値
F		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の
L _r		分布を表わす係数
F _{v0}	N/m^2	湿潤状態の降下火砕物による荷重
F s	N/m^2	積雪荷重
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f s	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
G	_	ガスト影響係数
g	m/s^2	重力加速度
Н	m	全高
H _v	m	降下火砕物の層厚
H s	cm	組合せ荷重として考慮する積雪深
q	N/m^2	設計用速度圧
V D	m/s	基準風速
W	Ν	風荷重
Z _b	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
α	_	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ρ	kg/m^3	降下火砕物の湿潤密度

表 4-2 荷重の算出に用いる記号

6

b. 鉛直荷重

鉛直荷重については,湿潤状態の降下火砕物及び積雪を考慮する。 湿潤状態の降下火砕物による荷重は,次式のとおり算出する。

 $\mathbf{F}_{\mathbf{v} \mathbf{0}} = \rho \cdot \mathbf{g} \cdot \mathbf{H}_{\mathbf{v}}$

積雪荷重は、次式のとおり算出する。

 $F_s = f_s \cdot H_s$

表 4-3 に入力条件を示す。

表 4-3 入力条件

ρ		g	H _v	f s	H s
(kg/	m ³)	(m/s^2)	(m)	$(N/(m^2 \cdot cm))$	(cm)
150	00	9.80665	0.5	20	10.5

上記式より, F_{v0}=7355 N/m², F_s=210 N/m²である。

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重(以下「降下火砕物等堆積による鉛 直荷重」という。)は,次式のとおり算出する。

 $F_{v} = F_{v0} + F_{s}$

以上より, F_v'=7565 N/m²とする。

c. 水平荷重

水平荷重については,風を考慮する。風速を建築基準法施行令の基準風速に基づき 30 m/s に設定し,風荷重については施設の形状により異なるため施設ごとに算出する。

風荷重の算出式は建築基準法施行令第87条に基づき、以下のとおりである。

W=q・C・A₁ ここで, q=0.6・E'・V_D² E'=E_r²・G E_r=1.7・(H/Z_G)^α(HがZ_bを超える場合) E_r=1.7・(Z_b/Z_G)^α(HがZ_b以下の場合) 4.2 許容限界

許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計 上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに 設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象 部位ごとの許容限界を表 4-4 に示す。

対象施設ごとの許容限界の詳細は,各計算書で評価対象部位の損傷モードを踏まえ,評価項 目を選定し定める。

- (1) 防護対策施設
 - a. 中央制御室換気系冷凍機防護対策施設

中央制御室換気系冷凍機防護対策施設の許容限界は、V-1-1-2-4-3 の「4. 要求機 能及び性能目標」で設定している中央制御室換気系冷凍機防護対策施設の構造強度設計 上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位 ごとに設定する。

(a) 防護鋼板,架構及び基礎ボルト

中央制御室換気系冷凍機防護対策施設の構造強度評価においては、降下火砕物等堆 積による鉛直荷重、風荷重及びその他の荷重に対し、中央制御室換気系冷凍機防護対 策施設を構成する防護鋼板、架構及び基礎ボルトが、おおむね弾性状態に留まること を計算により確認する評価方針としていることを踏まえ、防護鋼板に対しては弾性範 囲内である設計降伏点Sy並びに架構及び基礎ボルトに対してはJEAG4601に 準じて許容応力状態ⅢASの許容応力を許容限界として設定する。

		衣 4 ⁻ 4 的硬刈	來施成 ⁽⁷⁾ 百谷政/	7	
旋乳友升	荷重の	評価対象	機能損	新应阻周	
旭苡石怀	組合せ	部位	応力等の状態	限界状態	計谷吸外
中央制御室 換気系冷凍機 防護対策施設	$F_{d} + F_{v}$	防護鋼板	曲げ		弾性範囲内で ある設計降伏 点S _y とする。
	F _d +F _v	架構	曲げ 圧縮 引張 せん断 組合せ	部 材 が 弾 性 域 に 留 ま ら ず 塑 性 域 に て マ ち 、 入 る 状態	JEAG46 01に準じて 許容応力状態
	i対策施設 F _d +F _v +W		引張 せん断 組合せ		Ⅲ _A Sの許容応 力以下とする*

表 4-4 防護対策施設の許容限界

F d: 常時作用する荷重

W:風荷重

F_v:降下火砕物等堆積による鉛直荷重

注記 *:表 4-5 JEAG4601「その他支持構造物」の許容限界を準用する。

表 4-5 JEAG4601「その他支持構造物」の許容限界

		許容	許容限界*			
許容応	(ボルト以外)				(ボル	ト等)
力状態		一次応力				応力
	圧縮	曲げ	引張	せん断	引張	せん断
III _A S	$1.5~f_{\rm c}$	1.5 f _b	1.5 f $_{\rm t}$	1.5 f _s	1.5 f $_{\rm t}$	1.5f s

注記 *:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既文献にお いて適用が妥当とされる手法に基づき実施することを基本とする。

- ・FEM等を用いた解析法
- ・定式化された評価式を用いた解析法

風荷重を考慮した,降下火砕物等堆積による鉛直荷重が作用する場合に強度評価を行う施 設のうち,防護対策施設の強度評価方法を以下に示す。

- 5.1 防護対策施設
 - 5.1.1 中央制御室換気系冷凍機防護対策施設
 - (1) 評価条件

中央制御室防護対策施設の強度評価を行う場合、以下の条件に従うものとする。

- a. 降下火砕物が堆積する防護鋼板は,等分布荷重が作用する長方形板として機械工学便 覧の計算方法を準用して評価を行う。計算モデルを図 5-1 に示す。
- b. 架構及び基礎ボルトは, FEM解析を用いて構成部材に対する発生荷重及び発生モー メントを算定し評価を行う。計算モデルを図 5-2 に示す。
- c. 計算に用いる寸法は、公称値を使用する。
- d. 降下火砕物等堆積による鉛直荷重については,防護鋼板の水平投影面積に対し降下火 砕物等の層厚より上載質量を算出し入力荷重として設定する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-1 に示す。

評価対象部位	応力等の状態
防護鋼板	曲げ
架構	曲げ、圧縮、引張、せん断、組合せ
基礎ボルト	引張, せん断, 組合せ

表 5-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

中央制御室換気系冷凍機防護対策施設の強度評価に用いる記号を表 5-2 に示す。

記号	単位	定義
а	mm	防護鋼板の短辺
А	mm^2	架構の断面積
A_2	mm^2	降下火砕物の堆積面積
A a	mm^2	基礎ボルトの1本当たりの断面積
A z	mm^2	架構の強軸方向のせん断断面積
A y	mm^2	架構の弱軸方向のせん断断面積
b	mm	防護鋼板の長辺
F _a	Ν	架構に作用する最大引抜き力(1箇所当たり)
F _c	Ν	架構に作用する圧縮力
$F_{\rm t}$	Ν	架構に作用する引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
h	mm	防護鋼板の厚さ
H s	mm	防護対策施設の全高
M_{z}	N•mm	架構に作用する強軸まわりの曲げモーメント
M_{y}	N•mm	架構に作用する弱軸まわりの曲げモーメント
m	kg	防護鋼板1枚の質量
n		架構1箇所当たりの基礎ボルトの本数
$P_{\rm f}$	Ν	自重により架構に作用する軸力でFtZはF。のいずれか大きい方
р	N/mm	防護鋼板に作用する等分布荷重
Q a	Ν	架構脚部基礎ボルトに作用する最大せん断力
Q z	Ν	架構に作用する強軸方向のせん断力
Q y	Ν	架構に作用する弱軸方向のせん断力
V_{D}	m/s	基準風速
Zz	mm ³	架構の強軸まわりの断面係数
Z _y	mm ³	架構の弱軸まわりの断面係数
β	_	防護鋼板の最大応力の係数(機械工学便覧から算出)
σ	MPa	積雪及び降下火砕物堆積により防護鋼板に生じる曲げ応力
σa	MPa	基礎ボルトに生じる引張応力
σ _b	MPa	架構に生じる曲げ応力

表 5-2 中央制御室換気系冷凍機防護対策施設の強度評価に用いる記号(1/2)

記号	単位	定義
σс	MPa	架構に生じる圧縮応力
σ _f	MPa	架構に生じる組合せ応力
σ _t	MPa	架構に生じる引張応力
τ	MPa	架構に生じるせん断応力
au a	MPa	基礎ボルトに生じるせん断応力

表 5-2 中央制御室換気系冷凍機防護対策施設の強度評価に用いる記号(2/2)

b. 評価モデル

図 5-1 等分布荷重による計算モデル図

図 5-2 FEM解析に用いるモデル図

- c. 強度評価方法
 - (a) 防護鋼板に生じる応力
 - イ. 曲げ応力

防護鋼板に生じる曲げ応力σは次式より算出される。

$$\sigma = \beta \, \frac{\mathbf{p} \, \cdot \mathbf{a}^2}{\mathbf{h}^2}$$

ここで

$$\mathbf{p} = \mathbf{F}'_{\mathbf{v}} + \frac{\mathbf{m} \cdot \mathbf{g}}{\mathbf{a} \cdot \mathbf{b}}$$

- (b) 架構に生じる応力
 - イ. 引張応力

架構に生じる引張応力σ t は次式より算出される。

$$\sigma_{t} = \frac{F_{t}}{A}$$

ロ. 圧縮応力

架構に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{\rm c} = \frac{F_{\rm c}}{A}$$

ハ. せん断応力

架構に生じるせん断応力τは次式より算出される。

$$\tau = \sqrt{\left(\frac{Q_z}{A_z}\right)^2 + \left(\frac{Q_y}{A_y}\right)^2}$$

二. 曲げ応力

架構に生じる曲げ応力 σ b は次式より算出される。

$$\sigma_{\rm b} = \frac{M_z}{Z_z} + \frac{M_y}{Z_y}$$

ホ. 組合せ応力

架構に生じる軸力、曲げモーメント及びせん断力による組合せ応力 σ_{f} は次式より算出される。

$$\sigma_{\rm f} = \sqrt{\left(\frac{\mathrm{P}_{\rm f}}{\mathrm{A}} + \frac{\mathrm{M}_{\rm z}}{\mathrm{Z}_{\rm z}} + \frac{\mathrm{M}_{\rm y}}{\mathrm{Z}_{\rm y}}\right)^2 + 3 \cdot \left\{\left(\frac{\mathrm{Q}_{\rm z}}{\mathrm{A}_{\rm z}}\right)^2 + \left(\frac{\mathrm{Q}_{\rm y}}{\mathrm{A}_{\rm y}}\right)^2\right\}}$$

ここで、P_fはF_t又はF_cのいずれか大きい方とする。

- (c) 基礎ボルト
 - イ. 引張応力

基礎ボルトに生じる引張応力σ aは次式より算出される。

$$\sigma_{a} = \frac{F_{a}}{A_{a} \cdot n}$$

ロ. せん断応力

基礎ボルトに生じるせん断応力τ aは次式より算出される。基礎ボルトは全本数 でせん断力を受けるものとして計算する。

$$\tau_{a} = \frac{Q_{a}}{A_{a} \cdot n}$$

6. 適用規格

V-1-1-2-4-1 においては,降下火砕物の影響を考慮する施設の設計に係る適用規格を示している。

これらのうち、評価対象施設の強度評価に用いる規格、基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984
 ((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

Ⅴ-3-別添 2-2-1 防護対策施設の強度計算書

1.	柑	モ要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	L
2.	j	「本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・」	L
2.	. 1	位置	L
2.	. 2	構造概要	2
2.	. 3	評価方針 · · · · · · · · · · · · · · · · · · ·	ł
2.	. 4	適用規格 · · · · · · · · · · · · · · · · · · ·	5
3.	弜		3
3.	. 1	記号の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	. 2	評価対象部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	. 3	荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
3.	. 4	許容限界······11	L
3.	. 5	評価方法······13	}
4.		₽価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
5.	弜	〕度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7

目次

1. 概要

本資料は、添付書類「V-3-別添 2-2 防護対策施設の強度計算の方針」に示すとおり、中央 制御室換気系冷凍機防護対策施設が降下火砕物等堆積時においても、中央制御室換気系冷凍機の 安全機能維持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

中央制御室換気系冷凍機防護対策施設は,添付書類「V-3-別添 2-2 防護対策施設の強度計 算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ,防護対策施設の「2.1 位置」, 「2.2 構造概要」,「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

中央制御室換気系冷凍機防護対策施設は、添付書類「V-3-別添 2-2 防護対策施設の強度 計算の方針」の「3.2 機能維持の方針」に示すとおり、原子炉建屋付属棟屋上に設置する。 中央制御室換気系冷凍機防護対策施設の位置図を図 2-1 に示す。

図 2-1 中央制御室換気系冷凍機防護対策施設の位置図
2.2 構造概要

中央制御室換気系冷凍機防護対策施設は,添付書類「V-3-別添 2-2 防護対策施設の強度 計算の方針」に示す構造計画を踏まえて,構造を設定する。

中央制御室換気系冷凍機防護対策施設は,中央制御室換気系冷凍機へ降下火砕物が堆積する ことを防止する防護鋼板,防護鋼板を支持する架構及び基礎ボルトから構成される。

降下火砕物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位 置より上部の概要図を図 2-2 に示す。

中央制御室換気系冷凍機防護対策施設が風(台風)による水平荷重を受けることを想定する 面の概要図を図 2-3,降下火砕物等が中央制御室換気系冷凍機防護対策施設に最も多く堆積す ることが想定される状態図を図 2-4 に示す。

図 2-2 防護対策施設の概要図(1/2)

図 2-3 風(台風)による水平荷重を受けることを想定する面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

中央制御室換気系冷凍機防護対策施設の強度評価は、添付書類「V-3-別添2-2 防護対策施 設の強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷 重及び荷重の組合せ並びに許容限界を踏まえて、中央制御室換気系冷凍機防護対策施設の評価 対象部位に作用する応力が、許容限界に収まることを「3. 強度評価方法」に示す方法により、 「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

中央制御室換気系冷凍機防護対策施設の強度評価フローを図2-5に示す。中央制御室換気系 冷凍機防護対策施設の強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直 荷重とこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮 し、評価対象部位を選定する。

降下火砕物等堆積による鉛直荷重については,防護鋼板上面の投影面積に対し降下火砕物等 が堆積した場合を想定する。また,風(台風)による水平荷重は,架構及び基礎ボルトに対し 算出し入力荷重として設定する。それぞれの評価については,添付書類「V-3-別添2-2 防護 対策施設の強度計算の方針」の「5. 強度評価方法」に示す評価式を用いる。なお,架構及び 基礎ボルトは,FEM解析を用いて構成部材に対する発生荷重及び発生モーメントを算定する。

中央制御室換気系冷凍機防護対策施設の許容限界は、添付書類「V-3-別添2-2 防護対策施設の強度計算書の方針」の「4.2 許容限界」に示す許容限界である、設計降伏点又はJEA C4601の許容応力状態 Ⅲ_ASとする。

図2-5 中央制御室換気系冷凍機防護対策施設の強度評価フロー

2.4 適用規格

適用する規格,基準,指針等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 建築物荷重指針·同解説((社)日本建築学会,2004改定)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (7) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)
- (8) 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立 研究開発法人建築研究所 2015)
- (9) 新版機械工学便覧(1987年 日本機械学会編)

3. 強度評価方法

3.1 記号の定義

強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
а	mm	防護鋼板の短辺
А	mm^2	架構の断面積
A 1	m^2	風の受圧面積(風向きに垂直な面に投影した面積)
A_2	mm^2	降下火砕物の堆積面積
A _a	mm^2	基礎ボルトの1本当たりの断面積
A z	mm^2	架構の強軸方向のせん断断面積
Ау	mm^2	架構の弱軸方向のせん断断面積
b	mm	防護鋼板の長辺
С	—	建築物荷重指針・同解説により規定される風力係数
E'	—	建築基準法施行令第87条第2項に規定する数値
Б		建設省告示第1454号の規定によって算出した平均風速の高さ方向の分布を
Ε _r	_	表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
F _a	Ν	架構に作用する最大引抜き力(1箇所当たり)
F _c	Ν	架構に作用する圧縮力
F _t	Ν	架構に作用する引張力
f _c	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容圧縮応力
C	МД	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん断応
Is	мра	カ
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張応力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
G	—	ガスト影響係数
~	m / a ²	金力加速産
g	III/ S-	重力加速度
h	mm	防護鋼板の厚さ
Н	mm	防護対策施設の地表面からの高さ
M z	N•mm	架構に作用する強軸まわりの曲げモーメント
My	N•mm	架構に作用する弱軸まわりの曲げモーメント

表 3-1 中央制御室換気系冷凍機防護対策施設の強度評価に用いる記号(1/2)

-	K J I J	「人間岬主換系統目孫機的愛利來過取り強度計圖に用する正方(2/2)
記号	単位	定義
m	kg	防護鋼板1枚の質量
n	_	架構1箇所当たりの基礎ボルトの本数
P _f	Ν	自重により架構に作用する軸力でF _t 又はF _c のいずれか大きい方
р	N/mm	防護鋼板に作用する等分布荷重
Q a	Ν	架構脚部基礎ボルトに作用する最大せん断力
Q z	Ν	架構に作用する強軸方向のせん断力
Q y	Ν	架構に作用する弱軸方向のせん断力
q	N/m^2	設計用速度圧
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V _D	m/s	基準風速
W	Ν	風(台風)による水平荷重
Z G	m	地表面祖度区分に応じて建設省告示 1454 号に掲げる数値
Z _z	mm ³	架構の強軸まわりの断面係数
Zу	mm ³	架構の弱軸まわりの断面係数
β	—	防護鋼板の最大応力の係数(機械工学便覧から算出)
σ	MPa	積雪及び降下火砕物堆積により防護鋼板に生じる曲げ応力
σa	MPa	基礎ボルトに生じる引張応力
σь	MPa	架構に生じる曲げ応力
σ _c	MPa	架構に生じる圧縮応力
$\sigma_{ m f}$	MPa	架構に生じる組合せ応力
σ _t	MPa	架構に生じる引張応力
α	_	地表面粗度区分に応じて建設省告示 1454 号に掲げる数値
τ	MPa	架構に生じるせん断応力
τ _a	MPa	基礎ボルトに生じるせん断応力

表 3-1 中央制御室換気系冷凍機防護対策施設の強度評価に用いる記号(2/2)

3.2 評価対象部位

中央制御室換気系冷凍機防護対策施設の評価対象部位は添付書類「V-3-別添 2-2 防護対 策施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って,防護 鋼板,架構及び基礎ボルトとする。

評価対象部位は「2.2 構造概要」にて設定している構造に基づき,設計荷重の作用方向及 び伝達過程を考慮して設定している。

降下火砕物等堆積による鉛直荷重は,降下火砕物が堆積する防護鋼板を介して架構に作用する。風(台風)による水平荷重については,架構を介して基礎ボルトに作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては防護鋼板及び架構を,風(台風) による水平荷重に対しては架構及び基礎ボルトを評価対象部位とする。

中央制御室換気系冷凍機防護対策施設の強度評価における評価対象部位を図 3-1 に示す。

図 3-1 中央制御室換気系冷凍機防護対象施設の評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、添付書類「V-3-別添 2-2 防護対策施設の強 度評価の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用い る。

(1) 荷重の設定

防護対策施設の強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重としては,自重を考慮する。
- b. 降下火砕物等堆積による荷重(F_v')
 単位面積当たりの降下火砕物等堆積による鉛直荷重は7565 N/m²とする。
- c. 風(台風)による水平荷重(W)

風(台風)による水平荷重は、基準風速 30 m/s に基づき算定する。

風(台風)による水平荷重WはV-3-別添 2-2「防護対策施設の強度計算の方針」の 「4.1(3)c. 水平荷重」に示す式に従い,算出する。Hが 5m以上であるため,HがZ_b 超える場合の式を用いる。風(台風)による水平荷重の受圧面積を図 3-2 に示す。

$$W = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$

$$E_{r} = 1.7 \cdot (H \neq Z_{G})^{\alpha}$$

図 3-2 風(台風)による水平荷重の受圧面積

(2) 荷重の組合せ

強度評価に用いる荷重の組合せは,中央制御室換気系冷凍機防護対策施設の評価対象部位 ごとに設定する。

中央制御室換気系冷凍機防護対策施設の防護鋼板には,自重及び降下火砕物等堆積による 鉛直荷重が作用する。また,架構及び基礎ボルトには,自重,降下火砕物等堆積による鉛直 荷重及び風(台風)による水平荷重が作用する。なお,防護鋼板に対し,風(台風)による 水平荷重が作用すると鉛直上向きの荷重が働き,鉛直した下向きの荷重が低減されるため, 保守的に風(台風)による水平荷重は考慮しない。

中央制御施設換気系冷凍機防護対策施設の強度評価にて考慮する荷重の組合せを表 3-2 に 示す。

施設名称	評価対象部位	荷重		
	防護鋼板	 ①自重 ②降下火砕物等堆積による鉛直荷重 		
中央制御室換気系 冷凍機防護対策施設	架構	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 		
	基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風(台風)による水平荷重 		

表 3-2 荷重の組合せ

3.4 許容限界

中央制御室換気系冷凍機防護対策施設は,添付書類「V-3-別添 2-2 防護対策施設の強度 計算の方針」の「4.2 許容限界」にて設定している許容限界に従って,「3.2 評価対象部位」 にて設定した評価対象部位ごとに,機能損傷モードを考慮し,設計降伏点又はJEAG460 1に基づき許容応力状態ⅢASの許容応力を用いる。

中央制御室換気系冷凍機防護対策施設の許容限界は、防護鋼板に対しては弾性範囲である設計降伏点S_yとする。架構及び基礎ボルトに対してはJEAG4601を準用し、「その他支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される機能を維持できるように弾性設計とするため、許容応力状態III_ASから算出した以下の許容応力を許容限界とする。JEAG4601に従い、JSME付録材料図表 Part5, 6 の表にて許容応力を評価する際は、評価対象部位の周囲温度に応じた値をとるものとするが、温度がJSME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表 Part5, 6 で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるものとする。中央制御室換気系冷凍機防護対策施設の許容限界を表 3-3、許容応力を表 3-4 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界
防護鋼板	_	一次 応力	曲げ	S _y
			曲げ	1.5 f t
架構	III _A S	一次応力	圧縮	1.5 f $_{\rm c}$
			引張	1.5 f $_{\rm t}$
			せん断	1.5 f _s
			組合せ	1.5 f $_{\rm t}$
		M.	引張	1.5 f $_{\rm t}$
基礎ボルト	${\rm I\!I\!I}_AS$	一次 応力	せん断	1.5 f s
			組合せ	Min {1.5 f $_{\rm t}$, (2.1 f $_{\rm t}$ -1.6 τ) }

表 3-3 中央制御室換気系冷凍機防護対策施設の許容限界

11

評価対象 部位	材料	環境 条件 (℃)	S y (MPa)	S _u (MPa)	F (MPa)	1.5 f _c (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)
防護鋼板	SS400	50^{*1}	241					
架構	STKR400	50* ¹	241	394	241	* 2	241	139
	SS400		241	394	241	* 2	241	139
基礎 ボルト	SS400	50^{*1}	231	394	231	_	173	133

表 3-4 中央制御室換気系冷凍機防護対策施設の許容応力

注記 *1:周囲環境温度

*2:部材長さに応じて算出

3.5 評価方法

中央制御室換気系冷凍機防護対策施設の応力評価は、添付書類「V-3-別添 2-2 防護対策 施設の強度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

- (1) 評価モデル
 - a. 等分布荷重による評価

等分布荷重による評価を行う防護鋼板は,長方形板(四辺固定)モデルとする。等分布 荷重による評価に用いるモデル図を図 3-3 に示す。

図 3-3 等分布荷重による評価に用いるモデル図

b. FEM解析による評価

架構及び基礎ボルトは、FEM解析を用いて構成部材に対する発生荷重及び発生モーメントを算定する。FEM解析に用いるモデル図を図 3-4 に示す。FEM解析に使用するコードは「ABAQUS」である。なお、解析に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-5 計算機プログラム(解析コード)の概要・ABAQUS」に示す。

図 3-4 FEM解析に用いるモデル図

- (2) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等堆積による鉛直荷重の受圧面積を図 3-5 に示す。

図 3-5 降下火砕物の堆積面積図

b. 応力評価

- (a) 防護鋼板に生じる応力
 - イ. 曲げ応力

防護鋼板に生じる曲げ応力σは次式より算出される。

$$\sigma = \beta \frac{\mathbf{p} \cdot \mathbf{a}^2}{\mathbf{h}^2}$$

ここで

$$\mathbf{p} = \mathbf{F}'_{\mathbf{v}} + \frac{\mathbf{m} \cdot \mathbf{g}}{\mathbf{a} \cdot \mathbf{b}}$$

- (b) 架構に生じる応力
 - イ. 引張応力

架構に生じる引張応力σ t は次式より算出される。

$$\sigma_{t} = \frac{F_{t}}{A}$$

ロ. 圧縮応力

架構に生じる圧縮応力σ。は次式より算出される。

$$\sigma_{\rm c} = \frac{F_{\rm c}}{A}$$

ハ. せん断応力

架構に生じるせん断応力τは次式より算出される。

$$\tau = \sqrt{\left(\frac{Q_z}{A_z}\right)^2 + \left(\frac{Q_y}{A_y}\right)^2}$$

二. 曲げ応力

架構に生じる曲げ応力 σ_b は次式より算出される。

$$\sigma_{\rm b} = \frac{M_{\rm z}}{Z_{\rm z}} + \frac{M_{\rm y}}{Z_{\rm y}}$$

ホ. 組合せ応力

架構に生じる軸力,曲げモーメント及びせん断力による組合せ応力 σ_fは次式より 算出される。

$$\sigma_{\rm f} = \sqrt{\left(\frac{\mathrm{P}_{\rm f}}{\mathrm{A}} + \frac{\mathrm{M}_{\rm z}}{\mathrm{Z}_{\rm z}} + \frac{\mathrm{M}_{\rm y}}{\mathrm{Z}_{\rm y}}\right)^2 + 3 \cdot \left\{\left(\frac{\mathrm{Q}_{\rm z}}{\mathrm{A}_{\rm z}}\right)^2 + \left(\frac{\mathrm{Q}_{\rm y}}{\mathrm{A}_{\rm y}}\right)^2\right\}}$$

ここで、P_fはF_t又はF_cのいずれか大きい方とする。

(c) 基礎ボルト

イ. 引張応力

基礎ボルトに生じる引張応力σ a は次式より算出される。

$$\sigma_{a} = \frac{F_{a}}{A_{a} \cdot n}$$

ロ. せん断応力

基礎ボルトに生じるせん断応力τ a は次式より算出される。基礎ボルトは全本数で せん断力を受けるものとして計算する。

$$\tau_{a} = \frac{Q_{a}}{A_{a} \cdot n}$$

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-4 に示す。

q	С	G	V_{D}	Н	Z _G
(N/m^2)	(-)	(-)	(m/s)	(m)	(m)
1507	1.2	2.1	30	26.26	350

表 4-1 評価条件

F v' (N/m ²)	α (-)	g (m/s^2)	A_1 (m ²)	A 2 (m ²)
7565	0.15	9.80665	16.20	13.01

表 4-2 評価条件(防護鋼板)

β	p	a	b	h	m
(-)	(N/mm²)	(mm)	(mm)	(mm)	(kg)
0.45	8.027 $\times 10^{-3}$	850	1275	6	51

表 4-3 評価条件(架構)

部材	材料	A (mm²)	Z_{z} (mm ³)	Z_y (mm ³)	$\begin{array}{c} A_z \\ (mm^2) \end{array}$	A_y (mm ²)
$\Box - 200 \times 200 \times 9$	STKR400	6667	3.99 $\times 10^{5}$	3.99 $\times 10^{5}$	3061	3061
$H - 200 \times 200 \times 8 \times 12$	SS400	6353	4. 72×10^5	1.60×10^{5}	3207	1438
$[-150 \times 75 \times 6.5 \times 10]$	SS400	2371	1.15×10^{5}	2. 24×10^4	1079	839.4
$[-100 \times 50 \times 5 \times 7.5]$	SS400	1192	3. 76×10^4	7. 52 $\times 10^3$	536.4	426.4
$L-50\times50\times6$	SS400	564.4	3. 55×10^3	3. 55×10^3	210.7	210.7

表 4-4 評価条件(基礎ボルト)

ボルト サイズ	n (—)	A_{a} (mm ²)
M24	6	452.4

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1,最大応力発生箇所を図 5-1 及び図 5-2 に示す。 防護鋼板,架構及び基礎ボルトに発生する応力は,許容応力以下である。

評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)	発生箇所		
防護鋼板	SS400	曲げ	73	241	—		
		曲げ	21	241			
	SS400	圧縮	1	225	要素 No.86		
架構*1		引張*2	_	—			
		せん断	7	139			
		組合せ	25	241			
基礎ボルト*1		引張	11	173			
	SS400	せん断	1	133	節点 No.536		
		組合せ	11	173			

表 5-1 中央制御室換気系冷凍機防護対策施設評価結果

注記 *1:架構及び基礎ボルトの発生応力は,組合せ応力の最大発生箇所の応力を示す。 *2:圧縮応力が発生し引張応力は発生しない。

図 5-1 架構の最大応力発生箇所

図 5-2 基礎ボルトの最大応力発生箇所(ブレース等非表示モデル図)