本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	工認-132 改7
提出年月日	平成 30 年 9 月 28 日

V-2-9-2-2 原子炉格納容器底部コンクリートマットの

耐震性についての計算書

1.	概要
2.	基本方針
2.1	↓ 位置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2	2 構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.3	3 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4	↓ 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	地震応答解析による評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	応力解析による評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.1	□ 評価対象部位及び評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2	2 荷重及び荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3	3 許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.4	4 解析モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.5	5 評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1	L 地震応答解析による評価結果・・・・・ 48
5.2	2 応力解析による評価結果・・・・・・51
日山东山	1 研究コンカリ、「排生物の毛+市投放中の宮泪にトス影響」「臣子后投始宏明広如コンカ

別紙1 鉄筋コンクリート構造物の重大事故等時の高温による影響(原子炉格納容器底部コンクリ ートマット)

別紙2 原子炉建屋における改造工事に伴う重量増加を反映した検討(原子炉格納容器底部コンク リートマット)

1. 概要

本資料は、添付書類「V-2-1-9 機能維持の基本方針」に基づき、原子炉格納容器底部(以下 「原子炉格納容器底部コンクリートマット」という。)の地震時の構造強度及び機能維持の確認に ついて説明するものであり、その評価は、地震応答解析による評価及び応力解析による評価に基 づき行う。

原子炉格納容器底部コンクリートマットは,設計基準対象施設においては「Sクラスの施設」 及び「Sクラスの施設の間接支持構造物」に,重大事故等対処施設においては「常設耐震重要重 大事故防止設備及び常設重大事故緩和設備」並びに「常設耐震重要重大事故防止設備及び常設重 大事故緩和設備の間接支持構造物」に分類される。

以下、それぞれの分類に応じた耐震評価を示す。

2. 基本方針

2.1 位置

原子炉格納容器底部コンクリートマットは,原子炉建屋の一部を構成している。原子炉格納 容器底部コンクリートマットを含む原子炉建屋の設置位置を図 2-1 に示す。

図 2-1 原子炉格納容器底部コンクリートマットを含む原子炉建屋の設置位置

2.2 構造概要

原子炉格納容器底部コンクリートマットを含む原子炉建屋基礎盤は,鉄筋コンクリート造で, 底面位置における平面規模は,南北方向68.5 m,東西方向68.25 m,厚さ5.0 mである。また, この基礎盤は,原子炉本体の基礎(以下「RPV 基礎」という。),原子炉格納容器(以下「PCV」 という。),その周囲の壁(以下「シェル壁(S/W)」という。),原子炉建屋原子炉棟(以下「原 子炉棟」という。)の外壁(以下「内部ボックス壁(I/W)」という。)及び原子炉建屋付属棟(以 下「付属棟」という。)の外壁(以下「外部ボックス壁(0/W)」という。)を支持している。

原子炉格納容器底部コンクリートマットは,原子炉格納容器底部の圧力バウンダリを構成す る厚さ5.0mの鉄筋コンクリート造の構造体であり,その上面には耐漏洩性を持たせるために 鋼製ライナが設けられている。また,この底部コンクリートマットは,原子炉棟基礎及び付属 棟基礎と一体となっている。

原子炉格納容器底部コンクリートマットを含む原子炉建屋基礎盤の概略平面図及び概略断面 図を図 2-2 及び図 2-3 に示す。

概略平面図 (EL.-4.0 m)

図 2-3 (1/2) 原子炉格納容器底部コンクリートマットを含む原子炉建屋基礎盤の 概略断面図 (A-A 断面 EW 方向)

図 2-3 (2/2) 原子炉格納容器底部コンクリートマットを含む原子炉建屋基礎盤の 概略断面図 (B-B 断面 NS 方向)

2.3 評価方針

原子炉格納容器底部コンクリートマットは,設計基準対象施設においては「Sクラスの施設」 及び「Sクラスの施設の間接支持構造物」に,重大事故等対処施設においては「常設耐震重要 重大事故防止設備及び常設重大事故緩和設備」並びに「常設耐震重要重大事故防止設備及び常 設重大事故緩和設備の間接支持構造物」に分類される。

原子炉格納容器底部コンクリートマットの設計基準対象施設としての評価においては、弾性 設計用地震動S_dによる地震力または静的地震力のいずれか大きい方の地震力に対する評価及 び基準地震動S_sによる地震力に対する評価を行うこととし、それぞれの評価は、添付書類「V -2-2-1 原子炉建屋の地震応答計算書」の結果を踏まえたものとする。原子炉格納容器底部コ ンクリートマットにおいて考慮すべき荷重は、通常荷重、運転時荷重、事故時荷重及び地震荷 重等種類が多く、性質を異にしている。また、これらの荷重はその発生確率、他の荷重発生と の同時性等が各々異なっている。

従って,以下の4つの荷重状態に分類し,これらのうち荷重状態Ⅲ及びⅣの地震時に関する 荷重の組合せについて評価を行う。

- (1) 荷重状態 I : 通常運転時の状態
- (2) 荷重状態Ⅱ : 逃がし安全弁作動時, 試験時または積雪時の状態
- (3) 荷重状態Ⅲ :荷重状態Ⅰ,荷重状態Ⅱ及び荷重状態Ⅳ以外の状態
- (4) 荷重状態IV : 格納容器の安全設計上想定される異常な状態が生じている状態

原子炉格納容器底部コンクリートマットの評価は、添付書類「V-2-1-9 機能維持の基本方 針」に基づき、地震応答解析による評価においては接地圧の評価を、応力解析による評価にお いては断面の評価を行うことで、原子炉格納容器底部コンクリートマットの地震時の構造強度 及び機能維持の確認を行う。なお、接地圧は、原子炉格納容器底部コンクリートマット並びに 原子炉棟基礎及び付属棟基礎を一体として扱い、原子炉建屋基礎盤全体として評価する。機能 維持の確認においては、支持機能を確認する。評価にあたっては、S_d地震時及びS_s地震時に 対する評価で、添付書類「V-2-2-1 原子炉建屋の地震応答計算書」による地盤物性のばらつ きを考慮する。なお、気密性の確認については、添付書類「V-2-9-2-11 サプレッション・チ ェンバ底部ライナ部の耐震性についての計算書」にて実施するが、ライナプレートの変形が原 子炉格納容器底部コンクリートマットの変形に追従する形で制限されていることから、原子炉 格納容器底部コンクリートマットの構造強度を確認することで間接的に気密性を担保する。

また,重大事故等対処施設としての評価においては,上記の荷重状態 I からⅣに以下の荷重 状態 V を加えた 5 つの荷重状態に分類し,これらのうち荷重状態Ⅲ~V における地震時の評価 に関する荷重の組合せに対する評価を行う。

(5) 荷重状態V : 発電用原子炉施設が重大事故に至るおそれがある事故,または重大事故の 状態で、重大事故等対処施設の機能が必要とされる状態

ここで、原子炉格納容器底部コンクリートマットにおける荷重状態Ⅲ~Vでは、運転時、設 計基準事故時及び重大事故等時の状態において、温度の条件が異なる。コンクリートの温度が 上昇した場合においても、コンクリートの圧縮強度の低下は認められず、剛性低下は認められ るがその影響は小さいと考えられる(別紙 1「鉄筋コンクリート構造物の重大事故等時の高温 による影響(原子炉格納容器底部コンクリートマット)」参照)こと、また、「発電用原子力設備

RO

規格 コンクリート製原子炉格納容器規格」では部材内の温度差及び拘束力により発生する熱 応力は自己拘束的な応力であり十分な塑性変形能力がある場合は終局耐力に影響しないことと されていることから,重大事故等対処施設としての評価は,設計基準対象施設と同一となる。 原子炉格納容器底部コンクリートマットの評価フローを図 2-4 に示す。

注 : []内は、本資料における章番号を示す。

注記 *:添付書類「V-2-2-1 原子炉建屋の地震応答計算書」の結果を踏まえた評価を行う。

図 2-4 原子炉格納容器底部コンクリートマットの評価フロー

2.4 適用規格·基準等

原子炉格納容器底部コンクリートマットの評価において,適用する規格・基準等を以下に示 す。

- · 原子力発電所耐震設計技術指針JEAG4601-1987((社)日本電気協会)
- ・ 原子力発電所耐震設計技術指針 重要度分類・許容応力編JEAG4601・補-1984
 ((社) 日本電気協会)
- · 原子力発電所耐震設計技術指針JEAG4601-1991追補版((社)日本電気協会)
- 建築基準法・同施行令
- ・ 発電用原子力設備規格 コンクリート製原子炉格納容器規格((社)日本機械学会,2003) (以下「CCV規格」という。)
- ・ 鉄筋コンクリート構造計算規準・同解説―許容応力度設計法-((社)日本建築学会, 1999)
- ・ 原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)(以 下「RC-N規準」という。)
- ・ 建築基礎構造設計指針((社)日本建築学会,2001)(以下「「基礎指針」」という。)

3. 地震応答解析による評価方法

地震応答解析による評価において,原子炉格納容器底部コンクリートマットの構造強度については,添付書類「V-2-2-1 原子炉建屋の地震応答計算書」に基づき,地盤物性のばらつきを考慮した最大接地圧が許容限界を超えないことを確認する。

地震応答解析による評価における原子炉格納容器底部コンクリートマットの許容限界は、添付 書類「V-2-1-9 機能維持の基本方針」に基づき、表 3-1 及び表 3-2 のとおり設定する。

なお,地震応答解析による評価においては,温度荷重,圧力荷重及び水圧荷重による影響が軽 微であることから,S_s地震時(荷重状態Ⅳ・地震時)及びS_d地震時(荷重状態Ⅲ・地震時)の 評価を実施することとする。

要求	機能設計上の	地電力	±r/÷	機能維持のための	許容限界
機能	性能目標	地辰刀	司可不	考え方	(評価基準値)
				最大接地圧が構造強	
		基準地震動 S _s 基礎地盤		度を確保するための	極限支持力度*1
				許容限界を十分下回	2480 kN/m^2
構造強度を				ることを確認	
	有すること	弾性設計用		最大接地圧が構造強	
		地震動S _d	甘动物	度を確保するための	短期許容支持力度*2
	及び		許容限界を超えない	1650 kN/m^2	
		静的地震力		ことを確認	

表 3-1 地震応答解析による評価における許容限界 (設計基準対象施設としての評価)

注記 *1 :極限支持力度は、添付書類「V-2-1-3 地盤の支持性能に係る基本方針」に基づき、「基礎指針」より設定する。

*2 : 短期許容支持力度は、「基礎指針」及び原子力発電所耐震設計技術指針JEAG46
 01-1987((社)日本電気協会)より、表 3-1に示す極限支持力度の 2/3 以下として設定する。

表 3-2 地震応答解析による評価における許容限界

要求	機能設計上の 性能目標	地震力	部位	機能維持のための 考え方	許容限界 (誣価其準値)
小风用凸	工能口际			与た力	(三百角十百)
				最大接地圧が構造強	
	構造強度を	基準地震動	甘花林中的	度を確保するための	極限支持力度
	有すること	S _s	革硬地盈	許容限界を十分下回	2480 kN/m^2
				ることを確認	

(重大事故等対処施設としての評価)

注 :極限支持力度は,添付書類「V-2-1-3 地盤の支持性能に係る基本方針」に基づき,「基礎 指針」より設定する。

- 4. 応力解析による評価方法
- 4.1 評価対象部位及び評価方針

原子炉格納容器底部コンクリートマットの応力解析による評価対象部位は底部*とし、3次元 FEMモデルを用いた弾性応力解析により評価を行う。3次元FEMモデルを用いた弾性応力 解析に当たっては、添付書類「V-2-2-1 原子炉建屋の地震応答計算書」及び既工事計画認可 申請書 第 1 回申請 添付書類「Ⅲ-3-3-14 原子炉格納容器底部コンクリートマット強度計算 書」より荷重の組合せを行う。

荷重状態Ⅲ~Vに対しては、以下の(1)~(3)の方針に基づき断面の評価を行う。また、応力 解析による評価フローを図 4-1 に示す。

- 注記 *「CCV規格」CEV-1220(部位に関する用語)より、「底部」とは、鉄筋コンクリート製の平板で構成されている原子炉格納容器の下部をいう。
- (1) 荷重状態Ⅲに対する評価

荷重状態Ⅲに対する評価は,原子炉格納容器底部コンクリートマットについて,地震力と 地震力以外の荷重の組合せの結果,発生する応力が,「CCV規格」に基づいて設定した許容 限界を超えないことを確認する。

また,断面の評価については,地盤物性のばらつきを考慮した断面力に対して行うことと する。

(2) 荷重状態IVに対する評価

荷重状態IVに対する評価は、原子炉格納容器底部コンクリートマットについて、地震力と 地震力以外の荷重の組合せの結果、発生する応力またはひずみが、「CCV規格」に基づいて 設定した許容限界を超えないことを確認する。

また、断面の評価については、地盤物性のばらつきを考慮した断面力に対して行うことと する。

(3) 荷重状態Vに対する評価

荷重状態Vに対する評価は、原子炉格納容器底部コンクリートマットについて、地震力と 地震力以外の荷重の組合せの結果、発生する応力またはひずみが、荷重状態IVと同じものと して設定した許容限界を超えないことを確認する。

また、断面の評価については、地盤物性のばらつきを考慮した断面力に対して行うことと する。

注 : []内は、本資料における章番号を示す。

注記 *1:ばらつきについては、添付書類「V-2-2-1 原子炉建屋の地震応答計算書」に基づき設定する。 *2:温度荷重については、荷重状態Ⅲの地震荷重と組み合わせる。

図 4-1 応力解析による評価フロー

4.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは、添付書類「V-2-1-9 機能維持の基本方針」にて設定している荷 重及び荷重の組合せを用いる。

- 4.2.1 荷重
 - (1) 通常荷重(死荷重(D),活荷重(L),常時土圧荷重(E₀)) 原子炉格納容器底部コンクリートマットに作用する通常荷重として次のものを考慮する。
 - a. 死荷重 (D), 活荷重 (L)

死荷重及び活荷重は,既工事計画認可申請書 第1回申請 添付書類「Ⅲ-3-3-14 原子 炉格納容器底部コンクリートマット強度計算書」に基づき表 4-1 のとおり設定する。

部位	通常荷重 (kN)
O∕W	397800^{*1}
I⁄W	392300^{*1}
S⁄W	309900^{*1}
PCV	
RPV 基礎	
サプレッションプール水静水圧	
基礎盤上	171904^{*3}
基礎盤自重	561020*4

表 4-1 死荷重及び活荷重(D, L)

注記 *1:既工事計画認可申請書 第1回申請 添付書類「Ⅲ-3-3-14 原子 炉格納容器底部コンクリートマット強度計算書」に基づき設定。

- *2:添付書類「V-2-9-2-11 サプレッション・チェンバ底部ライナ 部の耐震性についての計算書」の最高水位より設定。
- *3: 添付書類「V-2-2-1 原子炉建屋の地震応答計算書」の地震応答 解析モデルに基づき設定。
- *4:単位体積重量 γ = 24 kN/m³ として設定。

b. 常時土圧荷重(E₀)

原子炉建屋基礎盤に作用する常時土圧荷重は,JEAG4601-1991 追補版に基づき,下式を用いて算出した常時土圧により,地下外壁を介して作用する荷重及び基礎盤 側面に直接作用する荷重である。地下外壁を介して作用する荷重は,各階床で支持され た連続梁モデルとして評価する。

表 4-2 (1/2) に常時土圧を,表 4-2 (2/2) に常時土圧荷重 (E₀) を示す。

$$p_0 = K_0 \gamma z$$

ここで,

p₀ : 深さ z(m) における単位面積当たりの静止土圧(kN/m²)

K₀ :静止土圧係数(0.5)

γ : 土の単位体積重量 (kN/m³)

FI (m)	$(1 \text{ N}/\text{m}^3)$	設計用常時土圧				
EL. (III)	y (KIV/III)	(kN/m^3)				
8.0	20.6	0.0				
-4.0	20.6	123.6				
-9.0	20.6	175.0				

表 4-2 (1/2) 常時土圧

表 4-2 (2/2) 常時土圧荷重 (E₀)

		NS 2	方向	EW 🗦	方向
		水平力	曲げモーメント	水平力	曲げモーメント
		(kN/m)	$(kN \cdot m/m)$	(kN/m)	$(kN \cdot m/m)$
	A部	_	_	1104	1273
	B部	984	761	984	761
	C部	1298	2397	1298	2397
EL. (m) EL. (m) 29.0		地下外壁 500mm) B部 口:床スラ		B 部	シェル壁 (S/W) 内部ボックス壁 (I/W) 量 〇 外部ボックス壁 (0/W) 金 〇 小部ボックス壁
		Γ	の配置	概念図]	

(2) 運転時荷重(P₁, T₁, H₁)

原子炉格納容器底部コンクリートマットにおいて,運転時の状態で作用する荷重として 次のものを考慮する。

a. 運転時圧力 (P₁)

運転時において,原子炉格納容器底部コンクリートマットの上面と下面の圧力差によって生じる荷重で,添付書類「V-2-9-1 原子炉格納容器本体の耐震性についての計算 書」より,次の値とする。

 $P_1 = -14 \text{ kPa}$

b. 運転時温度荷重(T₁)

運転時において,原子炉建屋基礎盤に生じる温度変化による荷重及び原子炉建屋基礎 盤の上面と下面との温度差によって生じる荷重で,既工事計画認可申請書 第 1 回申請 添付書類「Ⅲ-3-3-14 原子炉格納容器底部コンクリートマット強度計算書」に基づき上 面と下面の温度を表 4-3 のとおり設定する。

表 4-3 運転時温度荷重(T₁)

(単位:℃)

	記号		新 早 季		季	a 部		b 部		c 部	
			節	上面	下面	上面	下面	上面	下面		
医前叶	т	T_{1S}	夏	32.22	15.00	40.00	15.00	40.00	15.00		
連転时	11	T_{1W}	冬	32.22	15.00	10.00	15.00	10.00	15.00		

c. 逃がし安全弁作動時荷重(H₁)

逃がし安全弁作動時において,原子炉格納容器内に考慮する水力学的動荷重は,添付 書類「V-2-9-1 原子炉格納容器本体の耐震性についての計算書」より,次の値とする。

$$H_1 =$$

- (3) 事故時荷重
 - a. 設計基準事故時の荷重 (P₂, T₂)

事故発生後,長時間継続する状態における荷重で,次のものとする。事故時の圧力及 び温度設定については,東海第二発電所原子炉設置変更許可 添付書類十 3.事故解析 3.5.1 原子炉冷却材喪失における評価結果(平成25年12月26日付け「総室第99号」) により,事故時の圧力及び温度変化に基づき,保守的に事故時荷重を設定する。

(a) 事故時圧力 (P₂)

事故時において,原子炉格納容器底部コンクリートマットの上面と下面との圧力差 によって生じる荷重で,荷重の発生状況を考慮し,事故発生直後及び 30 日後を考慮 し,次のとおりとする。

(b) 事故時温度荷重(T₂)

事故時において,原子炉建屋基礎盤に生じる温度変化による荷重及び原子炉建屋基 礎盤の上面と下面との温度差によって生じる荷重で,事故発生30日後を考慮し,上面 と下面の温度を表4-4に示す。

なお、断面内の温度分布は等価な応力を与える直線分布に換算して扱う。

表 4-4 事故時温度荷重(T₂)

(単位:℃)

事故	記号				季	а	部	b	部	с	部
発生後の 経過時間			節	上面	下面	上面	下面	上面	下面		
720 時間	т	T_{25S}	夏	52.71	13.07	46.36	14.04	40.00	15.00		
(30日)	1 <u>25</u>	T_{25W}	冬	52.71	13.07	31.36	14.04	10.00	15.00		

注: a 部, b 部及び c 部の位置は,表 4-3の説明図を参照のこと。

b. 重大事故時の荷重で長期的に作用する荷重(P_{SAL}, HS_{SAL}, H_{SA})

重大事故時の状態で長期的(以下「SA(L)時」という。)に作用する荷重として次の ものを考慮する。

なお,重大事故時の圧力及び温度設定については,東海第二発電所原子炉設置変更許 可 添付書類十 3.事故解析 3.5.1 原子炉冷却材喪失における評価結果(平成 25 年 12月 26日付け「総室第 99号」)により,事故時の圧力及び温度変化に基づき,保守的 に事故時荷重を設定する。

(a) SA (L) 時圧力 (P_{SAL})

SA(L)時において,原子炉格納容器底部コンクリートマットの上面と下面の圧力差 によって生じる荷重は,添付書類「V-2-9-1 原子炉格納容器本体の耐震性について の計算書」より,次の値とする。

- ・チャギング荷重と組み合わせる場合 : P_{SAL}=310 kPa*
- ・チャギング荷重と組み合わせない場合 : P_{SAL}=465 kPa
- 注記 *: 原子炉冷却材喪失事故時荷重と組み合わせる場合には,事象に応じた内圧 を設定。

(b) SA(L)時水圧荷重(HS_{SAL})

SA(L)時において,溶融炉心冷却のための注水時におけるサプレッションプール水の静水圧で,死荷重として考慮している静水圧との差分として考慮し,添付書類「V-2-9-1 原子炉格納容器本体の耐震性についての計算書」の冠水水位により,次の値とする。

(c) チャギング荷重 (SA 時) (H_{SA})

SA(L)時において,原子炉格納容器内に考慮するチャギング荷重は,添付書類「V -2-9-1 原子炉格納容器本体の耐震性についての計算書」より,設計基準対象施設と しての原子炉冷却材喪失事故時荷重 に対して,SA時の水位上 昇を考慮し,保守的に次の値とする。 H_{SA}=

c. 重大事故時の荷重で SA(L)時より更に長期的に作用する荷重(P_{SALL}, HS_{SALL})

重大事故時の状態でSA(L)時よりも更に長期的(以下「SA(LL)時」という。)に作 用する荷重として次のものを考慮する。

なお,重大事故時の圧力及び温度設定については,東海第二発電所原子炉設置変更許 可 添付書類十 3.事故解析 3.5.1 原子炉冷却材喪失における評価結果(平成 25 年 12月 26日付け「総室第 99 号」)により,事故時の圧力及び温度変化に基づき,保守的 に事故時荷重を設定する。 (a) SA (LL) 時圧力 (P_{SALL})

SA (LL)時において,原子炉格納容器底部コンクリートマットの上面と下面の圧力 差によって生じる荷重で,添付書類「V-2-9-1 原子炉格納容器本体の耐震性につい ての計算書」より,次の値とする。

 $P_{SALL}=200$ kPa

(b) SA (LL) 時水圧荷重 (HS_{SALL})

SA(LL)時において,溶融炉心冷却のための注水時におけるサプレッションプール 水の静水圧で,死荷重として考慮している静水圧との差分として考慮し,添付書類「V -2-9-1 原子炉格納容器本体の耐震性についての計算書」の冠水水位により,次の値 とする。

- (4) 地震荷重(K_d, K_s, E_d, E_s)
 - a. S_d地震荷重(K_d)

水平地震力は,弾性設計用地震動S_dに対する地震応答解析より算定される動的地震 力及び静的地震力より設定し,既工事計画認可申請書 第1回申請 添付書類「Ⅲ-3-3-14 原子炉格納容器底部コンクリートマット強度計算書」に基づき,各部位に分配する。

鉛直地震力は、当該部分が支える重量に係数を乗じて算定する。鉛直地震力の算定に 用いる係数は、軸力を当該部分が支える重量で除して求めた係数(以下「層軸力係数」 という。)を考慮する。層軸力係数は、弾性設計用地震動S_dに対する地震応答解析より 算定される動的な層軸力係数及び震度 0.3 を基準とし、建物・構築物の振動特性、地盤 の種類等を考慮した高さ方向に一定の鉛直震度より算定される静的な層軸力係数より設 定する。

水平方向のS_d地震荷重を表 4-5 及び表 4-6 に, 鉛直方向のS_d地震荷重を表 4-7 に示 す。

b. S_s地震荷重(K_s)

水平地震力は,基準地震動S。に対する地震応答解析より算定される動的地震力より 設定し,既工事計画認可申請書 第1回申請 添付書類「Ⅲ-3-3-14 原子炉格納容器底部 コンクリートマット強度計算書」に基づき,各部位に分配する。

鉛直地震力は、当該部分が支える重量に、基準地震動S。に対する地震応答解析より算 定される動的な層軸力係数を乗じて設定する。

なお、S_s地震荷重は、応答スペクトルに基づく地震動(S_s-D1)による地震荷重「S_s*-1」、断層モデルに基づく地震動(S_s-21,S_s-22)による地震荷重「S_s*-2」及び震源を特定せず策定する地震動(S_s-31)による地震荷重「S_s*-3」の3つの地震力を設定する。

水平方向のS_s地震荷重を表 4-8 及び表 4-9 に,鉛直方向のS_s地震荷重を表 4-10 に示す。

c. 地震時増分土圧荷重(E_d, E_s)

原子炉建屋基礎盤に作用する地震時増分土圧荷重は、地震時増分土圧により地下外壁 を介して作用する荷重および基礎盤側面に直接作用する荷重で、表 4-11 のとおり設定 する。

	せん断力 (kN)			
部) 112.	S _d	静的地震力		
0/₩(東側)	111500	127600		
0/₩(西側)	109500	125300		
I/W(東側)	70200	80300		
I/W(西側)	69650	79660		
S∕W	79280	90690		
PCV	22200	22400		
RPV 基礎	18600	19000		
基礎盤	71070	97050		

表 4-5 地震荷重 (K_d) (せん断力)

(a) NS 方向

(b) EW 方向

	せん断力 (kN)			
前2 117	S _d	静的地震力		
0/W(北側)	120300	136100		
0∕₩(南側)	115700	130800		
I/W (北側)	70180	79360		
I/W(南側)	66900	75660		
S∕W	81520	92190		
PCV	23200	23200		
RPV 基礎	19300	19600		
基礎盤	56900	85090		

*17 /++	曲げモーメント (kN・m)			
前, 1立,	S _d	静的地震力		
0/₩(東側)	2164000	2255000		
0∕₩(西側)	2589000	2711000		
I/W(東側)	3578000	3734000		
I/W(西側)	3613000	3775000		
S∕W	2732000	2848000		
PCV	416000	395000		
RPV 基礎	308000	315000		
基礎盤	2200000	1767000		

表 4-6 地震荷重 (K_d) (曲げモーメント)

(a) NS 方向

<i>(</i> -)	
(b)	EW 万向

曲げモーメント (kN・m)		
S _d	静的地震力	
3259000	3366000	
1441000	1484000	
3560000	3677000	
3742000	3878000	
2953000	3048000	
436000	411000	
317000	320000	
1992000	1616000	
	曲げモーメ S _d 3259000 1441000 3560000 3742000 2953000 436000 317000 1992000	

+17 /++	軸力(kN)		
田り、小工	S _d	静的地震力	
O∕W	127296	95472	
I/W	125536	94152	
S∕W	99168	74376	
PCV	5830	2120	
RPV 基礎	33100	13600	
基礎盤	147070	184186	

表 4-7 地震荷重(K_d)(軸力)

女r (士	せん断力 (kN)			
部3 1 <u>17</u>	S _s *-1	S _s *-2	S _s *-3	
0∕₩(東側)	167500	163700	219400	
0∕₩ (西側)	164500	160800	215500	
I/W(東側)	105500	103100	138200	
I/W(西側)	104700	102300	137100	
S∕W	119100	116400	156100	
PCV	32900	28400	38300	
RPV 基礎	26600	26100	32400	
基礎盤	217200	149200	143000	

表 4-8 地震荷重(K_s)(せん断力)

(a) NS 方向

(b) EW 方向

±n 1÷	せん断力 (kN)			
〒13 1 <u>17</u> .	S _s *-1	S _s *-2	S _s *-3	
0/W(北側)	178700	134400	230300	
0∕₩(南側)	171800	129200	221400	
I/W (北側)	104300	78410	134400	
I/W(南側)	99360	74750	128100	
S∕W	121100	91080	156100	
PCV	34000	22400	39800	
RPV 基礎	27400	19100	33300	
基礎盤	200340	144660	126600	

717 (士	曲げモーメント (kN・m)			
고가 대극	S _s *-1	S _s *-2	S _s *-3	
0∕₩(東側)	3245000	3381000	3812000	
0∕₩ (西側)	3877000	4037000	4561000	
I/W(東側)	5362000	5586000	6303000	
I/W(西側)	5415000	5643000	6362000	
S∕W	4095000	4267000	4811000	
PCV	593000	569000	813000	
RPV 基礎	432000	403000	561000	
基礎盤	3581000	2614000	5077000	

表 4-9 地震荷重(K_s)(曲げモーメント)

(a) NS 方向

(b) EW 方向

	曲げモーメント (kN・m)			
田》 1 <u>17</u>	S _s *-1	S _s *-2	S _s *-3	
0/W (北側)	4856000	3989000	5692000	
0∕₩(南側)	2151000	1771000	2511000	
I/W (北側)	5314000	4378000	6207000	
I/W(南側)	5578000	4586000	6531000	
S∕W	4405000	3623000	5150000	
PCV	615000	443000	849000	
RPV 基礎	432000	318000	570000	
基礎盤	3449000	2292000	4790000	

如 (士	軸力(kN)			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	S _s *-1	S _s *-2	S _s *-3	
O∕W	196911	242260	90698	
I/W	194189	238911	89444	
S⁄W	153401	188729	70657	
PCV	7650	10400	2950	
RPV 基礎	56100	62900	20200	
基礎盤	258750	306800	100050	

表 4-10 地震荷重(K_s)(軸力)

表 4-11 地震時增分土圧荷重

(a) S_d地震時(E_d)

	NS 方向		EW 方向	
	水平力	曲げモーメント	水平力	曲げモーメント
	(kN/m)	$(kN \cdot m/m)$	(kN/m)	$(kN \cdot m/m)$
A部	_	_	1063	1497
B部	825	522	825	522
C部	1508	4060	1508	4060

注: A部, B部及びC部の位置は,表 4-2の説明図を参照のこと。

(b) S_s地震時(E_s)

	NS 方向		EW 🖯	方向
	水平力	曲げモーメント	水平力	曲げモーメント
	(kN/m)	$(kN \cdot m/m)$	(kN/m)	$(kN \cdot m/m)$
A部		_	1772	2495
B部	1427	1037	1375	870
C 部	2634	7290	2513	6767

注: A部, B部及びC部の位置は,表 4-2の説明図を参照のこと。

(5) 積雪荷重(S)

積雪荷重(S)は、添付書類「V-2-1-9 機能維持の基本方針」に記載の地震力と積雪荷 重の組合せ及び添付書類「V-2-9-3-1 原子炉建屋原子炉棟の耐震性についての計算書」 に基づき表 4-12 のように設定する。

なお、本資料における「4.3 許容限界」以降で積雪荷重は、活荷重に含めて評価する。

表 4-12 積雪荷重 (S)

荷重及び外力について想定する状態	積雪荷重
地震時荷重(S _{地震時})	210 N/m^2

4.2.2 荷重の組合せ

荷重の組合せを表 4-13 に示す。

荷重	共争中	荷重の組合せ		
状態	仰里吋	応力状態 1 ^{*1}	応力状態 2* ²	
ш	地震時 (1)	$D+L+E_0+P_1+H_1+K_d+E_d$	$D+L+E_0+P_1+H_1+K_d+E_d+T_1$	
ш	(異常+地震)時(1)	$D+L+E_0+P_{25}+K_d+E_d$	$D+L+E_0+P_{25}+K_d+E_d+T_{25}$	
W 7	地震時 (2)	$D+L+E_0+P_1+H_1+K_s+E_s$	_	
1V	(異常+地震)時(2)	$D+L+E_0+P_{21}+K_d+E_d$	_	
	(異常+地震)時(3)	$D+L+E_0+P_{SAL}+HS_{SAL}+K_d+E_d$	_	
V	(異常+地震)時(4)	$D+L+E_0+P_{SAL}+HS_{SAL}+H_{SA}+K_d+E_d$	_	
	(異常+地震)時(5)	$D+L+E_0+P_{SALL}+HS_{SALL}+K_s+E_s$	_	

表 4-13 荷重の組合せ

注記 *1:応力状態1は、「CCV規格」CVE-3210(用語の定義)より、各荷重状態において温度荷重 により生じる応力を除いた応力が生じている状態をいう。

*2:応力状態2は,「CCV規格」CVE-3210(用語の定義)より,各荷重状態において応力が生じている状態をいう。

レ ・ノロ内主

- L :活荷重(地震時の積雪荷重 S_{地震時}を含む)
- E₀ :常時土圧荷重

E_d, E_s : 地震時增分土圧荷重

K_d, K_s : 地震荷重

- T₁:運転時温度荷重
- T₂₅:事故時温度荷重(30日後)
- P1 : 運転時圧力
- P₂₁:事故時圧力(直後)
- P₂₅:事故時圧力(30日後)
- P_{SAL} : SA (L) 時圧力
- P_{SALL} : SA (LL) 時圧力
- H₁:逃がし安全弁作動時荷重
- H_{SA} : チャギング荷重 (SA 時)
- HS_{SAL} : SA (L) 時水圧荷重
- HS_{SALL} : SA (LL) 時水圧荷重

4.3 許容限界

応力解析による評価における原子炉格納容器底部コンクリートマットの許容限界は、添付書類「V-2-1-9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき、表 4-14 及び表 4-15 のとおり設定する。

また,コンクリート及び鉄筋の許容応力度を表 4-16 及び表 4-17 に,コンクリート及び鉄筋 の許容ひずみを表 4-18 に示す。

(設計基準対象施設としての評価)					
要求 機能	機能設計上の 性能目標	荷重状態	部位	機能維持のための 考え方	許容限界 (評価基準値)
	構造強度を 有すること	荷重状態IV	底部	部材に生じる応力及 びひずみが構造強度 を確保するための許 容限界を超えないこ とを確認	「CCV規格」 に基づく荷重状 態Ⅳの許容値
		荷重状態Ⅲ	底部	部材に生じる応力が 構造強度を確保する ための許容限界を超 えないことを確認	「CCV規格」 に基づく荷重状 態Ⅲの許容値
支持 機能 *	機器・配管系 などの設備を 支持する機能 を損なわない こと	荷重状態IV	底部	部材に生じる応力及 びひずみが支持機能 を維持するための許 容限界を超えないこ とを確認	「CCV規格」 に基づく荷重状 態Ⅳの許容値

表 4-14 応力解析による評価における許容限界

注記 *:「支持機能」の確認には、「内包する設備に対する波及的影響の確認」が含まれる。

表 4-15 応力解析による評価における許容限界

要求 機能	機能設計上の 性能目標	荷重状態	部位	機能維持のための 考え方	許容限界 (評価基準値)
	構造強度を 有すること	荷重状態V	底部	部材に生じる応力 及びひずみが構造 強度を確保するた めの許容限界を超 えないことを確認	荷重状態V の許容値 ^{*2}
		荷重状態IV (異常+地震)時	底部	部材に生じる応力 及びひずみが構造 強度を確保するた めの許容限界を超 えないことを確認	「CCV規格」 に基づく荷重状 態Ⅳの許容値
		荷重状態Ⅲ (異常+地震)時	底部	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	「CCV規格」 に基づく荷重状 態Ⅲの許容値
支持 機能 *1	機器・配管系などの設備を	荷重状態V	底部	部材に生じる応力 及びひずみが支持 機能を維持するた めの許容限界を超 えないことを確認	荷重状態 V の許容値 ^{*2}
	文 守 す る 機 能 を 損 な わ な い こ と	荷重状態 W (異常+地震)時	底部	部材に生じる応力 及びひずみが支持 機能を維持するた めの許容限界を超 えないことを確認	「CCV規格」 に基づく荷重状 態Ⅳの許容値

(重大事故等対処施設としての評価)

注記 *1:「支持機能」の確認には、「内包する設備に対する波及的影響の確認」が含まれる。 *2:荷重状態Vの許容値として、荷重状態IVの許容値と同じ許容値を適用する。

荷重 状態	設計基準強度	応力状態1		応力状態 2	
	F _c (N/mm ²)	圧縮	せん断	圧縮	せん断
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
Ш	22.1	14.7	1.06	16.5	1.06
IV	22.1	_	1.06	_	—
V	22.1	_	1.06	_	_

表 4-16 コンクリートの許容応力度

表 4-17 鉄筋の許容応力度

荷重 状態	引張及び圧縮	面外せん断補強
	(N/mm^2)	(N/mm^2)
	SD345*	SD345*
Ш	345	345

注記 *: 既工事計画の鉄筋の種類は SD35 であるが,現在の規格 (SD345) に読み替えた許容応力度を示す。

表 4-18 コンクリート及び鉄筋の許容ひずみ

荷重	コンクリート	鉄筋
状態	(圧縮ひずみ)	(圧縮ひずみ及び引張ひずみ)
IV	0.003	0.005
V	0.003	0.005

- 4.4 解析モデル及び諸元
 - 4.4.1 モデル化の基本方針
 - (1) 基本方針

応力解析は、3 次元FEMモデルを用いた弾性応力解析を実施する。解析には、解析コード「MSC NASTRAN ver. 2016.1.1」を用いる。また、解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-1 計算機プログラム(解析コード)の概要・MSC NASTRAN」に示す。

基礎盤については, EL. -9.0 m~EL. -4.0 mをモデル化する。上部構造については, EL. -4.0 m~EL. 14.0 mをモデル化し, 剛性を考慮する。解析モデルを図 4-2 に示す。

(2) 使用要素

解析モデルに使用するFEM要素は、基礎盤についてはシェル要素とする。また、基礎 盤より立ち上がっている耐震壁については、はり要素として剛性を考慮する。解析モデル の節点数は1948、要素数は2180である。

(3) 境界条件

3 次元FEMモデルの基礎盤底面に,添付書類「V-2-2-1 原子炉建屋の地震応答計算 書」に示す地盤ばねを離散化して,水平方向及び鉛直方向のばねを設ける。3 次元FEM モデルの水平方向のばねについては,地震応答解析モデルのスウェイばねを,鉛直方向の ばねについては,地震応答解析モデルのロッキングばねを基に設定を行う。

なお,基礎底面の地盤ばねについては,引張力が発生したときに浮き上がりを考慮する。

4.4.2 解析諸元

使用材料の物性値を表 4-19 に示す。

図 4-2 解析モデル

表 4-19 使用材料の物性値

部位	コンクリートの 設計基準強度	ヤング係数	ポアソン比
	Fc (N/mm^2)	$E (N/mm^2)$	ν
基礎盤	22. 1	2. 21×10^4	0.2

4.5 評価方法

4.5.1 応力解析方法

原子炉格納容器底部コンクリートマットについて、荷重状態ⅢからVに対して3次元F EMモデルを用いた弾性応力解析を実施する。

(1) 荷重ケース

各荷重状態で考慮するS_d地震時,(異常+S_d地震)時,S_s地震時及び(異常+S_s地震)時の応力は,次の荷重ケースによる応力を組み合わせて求める。

DL	: 死荷重+活荷重
Eo	:常時土圧荷重
$E_{\rm dNS}$:NS 方向 S d 地震時增分土圧荷重
E_{dEW}	: EW 方向 S d 地震時增分土圧荷重
$E_{\rm sNS}$:NS方向 S。地震時増分土圧
E_{sEW}	: EW 方向 S 。地震時増分土圧
${K_{d1SN}}^{*}$:S→N方向 S _d 地震荷重(動的地震力)
$K_{\text{d1WE}} \ast$: W→E 方向 S d 地震荷重 (動的地震力)
K_{d1DU} *	: 鉛直方向 S _d 地震荷重(動的地震力)
${\rm K}_{\rm d2SN}$ *	:S→N方向 S _d 地震荷重(静的地震力)
K_{d2WE} *	: W→E 方向 S d 地震荷重(静的地震力)
K_{d2DU} *	:鉛直方向 S _d 地震荷重(静的地震力)
${\rm K_{sSN}}^{*}$:S→N方向 S。地震荷重
${K_{\text{sWE}}}^{*}$: W→E 方向 S _s 地震荷重
${\rm K_{sDU}}^{*}$: 鉛直方向 S _s 地震荷重
T_1	: 運転時温度荷重
T_{25}	:事故時温度荷重(30日後)
P_1	: 運転時圧力
P_{21}	:事故時圧力(直後)
P_{25}	:事故時圧力(30日後)
P_{SAL}	:SA(L)時圧力
P_{SALL}	:SA(LL)時圧力
H_1	: 逃がし安全弁作動時荷重
H_{SA}	: チャギング荷重(SA 時)
$\mathrm{HS}_{\mathrm{SAL}}$:SA(L)時水圧荷重
$\mathrm{HS}_{\mathrm{SALL}}$:SA(LL)時水圧荷重

注記 *:計算上の座標軸を基準として,EW方向はW→E方向の加力, NS方向はS→N方向の加力,鉛直方向は上向きの加力を記載している。
(2) 荷重の組合せケース

荷重の組合せケースを表 4-20 に示す。

水平地震力と鉛直地震力の組合せは、「原子力発電所耐震設計技術規程 J E A C 4 6 0 1-2008((社)日本電気協会, 2008)」を参考に、組合せ係数法(組合せ係数は 1.0 と 0.4) を用いるものとする。

荷重	荷重時	ケース	荷重の組合せ
状態	名 称	No.	
Ш	地震時(1)	1-1	$DL + E_0 + P_1 + H_1 + 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS} + [T_1]$
		1-2	$DL + E_0 + P_1 + H_1 + 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW} + [T_1]$
		1-3	$DL + E_0 + P_1 + H_1 - 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS} + [T_1]$
		1-4	$DL + E_0 + P_1 + H_1 - 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW} + [T_1]$
		1-5	$DL + E_0 + P_1 + H_1 + 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS} + [T_1]$
		1-6	$DL + E_0 + P_1 + H_1 + 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW} + [T_1]$
		1-7	$DL + E_0 + P_1 + H_1 - 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS} + [T_1]$
		1-8	$DL + E_0 + P_1 + H_1 - 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW} + [T_1]$
		1-9	$DL + E_0 + P_1 + H_1 + 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS} + [T_1]$
		1-10	$DL + E_0 + P_1 + H_1 + 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW} + [T_1]$
		1-11	$DL + E_0 + P_1 + H_1 - 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS} + [T_1]$
		1-12	$DL + E_0 + P_1 + H_1 - 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW} + [T_1]$
		1-13	$DL + E_0 + P_1 + H_1 + 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS} + [T_1]$
		1-14	$DL + E_0 + P_1 + H_1 + 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW} + [T_1]$
		1-15	$DL + E_0 + P_1 + H_1 - 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS} + [T_1]$
		1-16	$DL + E_0 + P_1 + H_1 - 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW} + [T_1]$
		1-17	$DL + E_0 + P_1 + H_1 + 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS} + [T_1]$
		1-18	$DL + E_0 + P_1 + H_1 + 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW} + [T_1]$
		1-19	$DL + E_0 + P_1 + H_1 - 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS} + [T_1]$
		1-20	$DL + E_0 + P_1 + H_1 - 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW} + [T_1]$
		1-21	$DL + E_0 + P_1 + H_1 + 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS} + [T_1]$
		1-22	$DL + E_0 + P_1 + H_1 + 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW} + [T_1]$
		1-23	$DL + E_0 + P_1 + H_1 - 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS} + [T_1]$
		1-24	$DL + E_0 + P_1 + H_1 - 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW} + [T_1]$

表 4-20 (1/7) 荷重の組合せケース

注記 *:[]は応力状態2に対する荷重を表す。

荷重	荷重時	ケース	
状態	名称	No.	荷重の組合せ
Ш	Ⅲ (異常+地震)時		$DL + E_0 + P_{25} + 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS} + [T_{25}]$
	(1)	2-2	$DL + E_0 + P_{25} + 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW} + [T_{25}]$
		2-3	$DL + E_0 + P_{25} - 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS} + [T_{25}]$
		2-4	$DL + E_0 + P_{25} - 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW} + [T_{25}]$
		2-5	$DL + E_0 + P_{25} + 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS} + [T_{25}]$
		2-6	$DL + E_0 + P_{25} + 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW} + [T_{25}]$
		2-7	$DL + E_0 + P_{25} - 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS} + [T_{25}]$
		2-8	$DL + E_0 + P_{25} - 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW} + [T_{25}]$
		2-9	$DL + E_0 + P_{25} + 0.4 K_{d1SN} + 1.0 K_{d1DU} + 0.4 E_{dNS} + [T_{25}]$
		2-10	$DL + E_0 + P_{25} + 0.4 K_{d1WE} + 1.0 K_{d1DU} + 0.4 E_{dEW} + [T_{25}]$
		2-11	$DL + E_0 + P_{25} - 0.4 K_{d1SN} + 1.0 K_{d1DU} + 0.4 E_{dNS} + [T_{25}]$
		2-12	$DL + E_0 + P_{25} - 0.4 K_{d1WE} + 1.0 K_{d1DU} + 0.4 E_{dEW} + [T_{25}]$
		2-13	$DL + E_0 + P_{25} + 0.4 K_{d1SN} - 1.0 K_{d1DU} + 0.4 E_{dNS} + [T_{25}]$
		2-14	$DL + E_0 + P_{25} + 0.4 K_{d1WE} - 1.0 K_{d1DU} + 0.4 E_{dEW} + [T_{25}]$
		2-15	$DL + E_0 + P_{25} - 0.4 K_{d1SN} - 1.0 K_{d1DU} + 0.4 E_{dNS} + [T_{25}]$
		2-16	$DL + E_0 + P_{25} - 0.4 K_{d1WE} - 1.0 K_{d1DU} + 0.4 E_{dEW} + [T_{25}]$
		2-17	$DL + E_0 + P_{25} + 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS} + [T_{25}]$
		2-18	$DL + E_0 + P_{25} + 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW} + [T_{25}]$
		2-19	$DL + E_0 + P_{25} - 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS} + [T_{25}]$
		2-20	$DL + E_0 + P_{25} - 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW} + [T_{25}]$
		2-21	$DL + E_0 + P_{25} + 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS} + [T_{25}]$
		2-22	$DL + E_0 + P_{25} + 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW} + [T_{25}]$
		2-23	$DL + E_0 + P_{25} - 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS} + [T_{25}]$
		2-24	$DL + E_0 + P_{25} - 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW} + [T_{25}]$

表 4-20 (2/7) 荷重の組合せケース

注記 *:[]は応力状態2に対する荷重を表す。

荷重	荷重時	ケース	荷重の組合せ
状態	名 称	No.	
IV	地震時(2)	3-1	$DL + E_0 + P_1 + H_1 + 1.0K_{sSN} + 0.4K_{sDU} + 1.0E_{sNS}$
		3-2	$DL + E_0 + P_1 + H_1 + 1.0K_{sWE} + 0.4K_{sDU} + 1.0E_{sEW}$
		3-3	$DL + E_0 + P_1 + H_1 - 1.0K_{sSN} + 0.4K_{sDU} + 1.0E_{sNS}$
		3-4	$DL + E_0 + P_1 + H_1 - 1.0K_{sWE} + 0.4K_{sDU} + 1.0E_{sEW}$
		3-5	$DL + E_0 + P_1 + H_1 + 1.0K_{sSN} - 0.4K_{sDU} + 1.0E_{sNS}$
		3-6	$DL + E_0 + P_1 + H_1 + 1.0K_{sWE} - 0.4K_{sDU} + 1.0E_{sEW}$
		3-7	$DL + E_0 + P_1 + H_1 - 1.0K_{sSN} - 0.4K_{sDU} + 1.0E_{sNS}$
		3-8	$DL + E_0 + P_1 + H_1 - 1.0K_{sWE} - 0.4K_{sDU} + 1.0E_{sEW}$
		3-9	$DL + E_0 + P_1 + H_1 + 0.4K_{sSN} + 1.0K_{sDU} + 0.4E_{sNS}$
		3-10	$DL + E_0 + P_1 + H_1 + 0.4K_{sWE} + 1.0K_{sDU} + 0.4E_{sEW}$
		3-11	$DL + E_0 + P_1 + H_1 - 0.4K_{sSN} + 1.0K_{sDU} + 0.4E_{sNS}$
		3-12	$DL + E_0 + P_1 + H_1 - 0.4K_{sWE} + 1.0K_{sDU} + 0.4E_{sEW}$
		3-13	$DL + E_0 + P_1 + H_1 + 0.4K_{sSN} - 1.0K_{sDU} + 0.4E_{sNS}$
		3-14	$DL + E_0 + P_1 + H_1 + 0.4K_{sWE} - 1.0K_{sDU} + 0.4E_{sEW}$
		3-15	$DL + E_0 + P_1 + H_1 - 0.4K_{sSN} - 1.0K_{sDU} + 0.4E_{sNS}$
		3-16	$DL + E_0 + P_1 + H_1 - 0.4K_{sWE} - 1.0K_{sDU} + 0.4E_{sEW}$

表 4-20 (3/7) 荷重の組合せケース

·			
荷重	荷重時	ケース	荷重の組合せ
	2	No.	
11	(2)	4-1	$DL + E_0 + P_{21} + 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$
		4-2	$DL + E_0 + P_{21} + 1. OK_{d1WE} + 0. 4K_{d1DU} + 1. OE_{dEW}$
		4-3	$DL + E_0 + P_{21} - 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$
		4-4	$DL + E_0 + P_{21} - 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW}$
		4-5	$DL + E_0 + P_{21} + 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$
		4-6	$DL + E_0 + P_{21} + 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$
		4-7	$DL + E_0 + P_{21} - 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$
		4-8	$DL + E_0 + P_{21} - 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$
		4-9	$DL + E_0 + P_{21} + 0.4 K_{d1SN} + 1.0 K_{d1DU} + 0.4 E_{dNS}$
		4-10	$DL + E_0 + P_{21} + 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$
		4-11	$DL + E_0 + P_{21} - 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS}$
		4-12	$DL + E_0 + P_{21} - 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$
		4-13	$DL + E_0 + P_{21} + 0.4 K_{d1SN} - 1.0 K_{d1DU} + 0.4 E_{dNS}$
		4-14	$DL + E_0 + P_{21} + 0.4 K_{d1WE} - 1.0 K_{d1DU} + 0.4 E_{dEW}$
		4-15	$DL + E_0 + P_{21} - 0.4 K_{d1SN} - 1.0 K_{d1DU} + 0.4 E_{dNS}$
		4-16	$DL + E_0 + P_{21} - 0.4 K_{d1WE} - 1.0 K_{d1DU} + 0.4 E_{dEW}$
		4-17	$DL + E_0 + P_{21} + 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS}$
		4-18	$DL + E_0 + P_{21} + 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW}$
		4-19	$DL + E_0 + P_{21} - 1.0K_{d2SN} + 1.0K_{d2DU} + 1.0E_{dNS}$
		4-20	$DL + E_0 + P_{21} - 1.0K_{d2WE} + 1.0K_{d2DU} + 1.0E_{dEW}$
		4-21	$DL + E_0 + P_{21} + 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS}$
		4-22	$DL + E_0 + P_{21} + 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW}$
		4-23	$DL + E_0 + P_{21} - 1.0K_{d2SN} - 1.0K_{d2DU} + 1.0E_{dNS}$
		4-24	$DL + E_0 + P_{21} - 1.0K_{d2WE} - 1.0K_{d2DU} + 1.0E_{dEW}$

荷重	荷重時	ケース	荷重の組合せ	
状態	名 称	No.		
V	(異常+地震)時	5-1	$DL + E_0 + P_{SAL} + HS_{SAL} + 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$	
	(3)	5-2	$DL + E_0 + P_{SAL} + HS_{SAL} + 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW}$	
		5-3	$DL + E_0 + P_{SAL} + HS_{SAL} - 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$	
		5-4	$DL + E_0 + P_{SAL} + HS_{SAL} - 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW}$	
		5-5	$DL + E_0 + P_{SAL} + HS_{SAL} + 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$	
		5-6	$DL + E_0 + P_{SAL} + HS_{SAL} + 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$	
		5-7	$DL + E_0 + P_{SAL} + HS_{SAL} - 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$	
		5-8	$DL + E_0 + P_{SAL} + HS_{SAL} - 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$	
		5-9	$DL + E_0 + P_{SAL} + HS_{SAL} + 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS}$	
		5-10	$DL + E_0 + P_{SAL} + HS_{SAL} + 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$	
		5-11	$DL + E_0 + P_{SAL} + HS_{SAL} - 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS}$	
		5-12	$DL + E_0 + P_{SAL} + HS_{SAL} - 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$	
		5-13	$DL + E_0 + P_{SAL} + HS_{SAL} + 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS}$	
		5-14	$DL + E_0 + P_{SAL} + HS_{SAL} + 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW}$	
		5-15	$DL + E_0 + P_{SAL} + HS_{SAL} - 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS}$	
		5-16	$DL + E_0 + P_{SAL} + HS_{SAL} - 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW}$	

表 4-20 (5/7) 荷重の組合せケース

荷重	荷重時	ケース	荷重の組合せ	
状態	名 称	No.		
V	(異常+地震)時	6-1	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$	
	(4)	6-2	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW}$	
		6-3	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1SN} + 0.4K_{d1DU} + 1.0E_{dNS}$	
		6-4	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1WE} + 0.4K_{d1DU} + 1.0E_{dEW}$	
		6-5	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$	
		6-6	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$	
		6-7	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1SN} - 0.4K_{d1DU} + 1.0E_{dNS}$	
		6-8	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 1.0K_{d1WE} - 0.4K_{d1DU} + 1.0E_{dEW}$	
		6-9	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS}$	
		6-10	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$	
		6-11	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1SN} + 1.0K_{d1DU} + 0.4E_{dNS}$	
		6-12	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1WE} + 1.0K_{d1DU} + 0.4E_{dEW}$	
		6-13	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS}$	
		6-14	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} + 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW}$	
		6-15	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1SN} - 1.0K_{d1DU} + 0.4E_{dNS}$	
			6-16	$DL + E_0 + P_{SAL} + HS_{SAL} + H_{SA} - 0.4K_{d1WE} - 1.0K_{d1DU} + 0.4E_{dEW}$

表 4-20 (6/7) 荷重の組合せケース

荷重	荷重時	ケース	荷重の組合せ
状態	名 称	No.	
V	(異常+地震)時	7-1	$DL + E_0 + P_{SALL} + HS_{SALL} + 1.0K_{sSN} + 0.4K_{sDU} + 1.0E_{sNS}$
	(5)	7-2	$DL + E_0 + P_{SALL} + HS_{SALL} + 1.0K_{sWE} + 0.4K_{sDU} + 1.0E_{sEW}$
		7-3	$DL + E_0 + P_{SALL} + HS_{SALL} - 1.0K_{sSN} + 0.4K_{sDU} + 1.0E_{sNS}$
		7-4	$DL + E_0 + P_{SALL} + HS_{SALL} - 1.0K_{sWE} + 0.4K_{sDU} + 1.0E_{sEW}$
		7-5	$DL + E_0 + P_{SALL} + HS_{SALL} + 1.0K_{sSN} - 0.4K_{sDU} + 1.0E_{sNS}$
		7-6	$DL + E_0 + P_{SALL} + HS_{SALL} + 1.0K_{sWE} - 0.4K_{sDU} + 1.0E_{sEW}$
		7-7	$DL + E_0 + P_{SALL} + HS_{SALL} - 1.0K_{sSN} - 0.4K_{sDU} + 1.0E_{sNS}$
		7-8	$DL + E_0 + P_{SALL} + HS_{SALL} - 1.0K_{sWE} - 0.4K_{sDU} + 1.0E_{sEW}$
		7-9	$DL + E_0 + P_{SALL} + HS_{SALL} + 0.4K_{sSN} + 1.0K_{sDU} + 0.4E_{sNS}$
		7-10	$DL + E_0 + P_{SALL} + HS_{SALL} + 0.4K_{sWE} + 1.0K_{sDU} + 0.4E_{sEW}$
		7-11	$DL + E_0 + P_{SALL} + HS_{SALL} - 0.4K_{sSN} + 1.0K_{sDU} + 0.4E_{sNS}$
		7-12	$DL + E_0 + P_{SALL} + HS_{SALL} - 0.4K_{sWE} + 1.0K_{sDU} + 0.4E_{sEW}$
		7-13	$DL + E_0 + P_{SALL} + HS_{SALL} + 0.4K_{sSN} - 1.0K_{sDU} + 0.4E_{sNS}$
		7-14	$DL + E_0 + P_{SALL} + HS_{SALL} + 0.4K_{sWE} - 1.0K_{sDU} + 0.4E_{sEW}$
		7-15	$DL + E_0 + P_{SALL} + HS_{SALL} - 0.4K_{sSN} - 1.0K_{sDU} + 0.4E_{sNS}$
		7-16	$DL + E_0 + P_{SALL} + HS_{SALL} - 0.4K_{sWE} - 1.0K_{sDU} + 0.4E_{sEW}$

表 4-20 (7/7) 荷重の組合せケース

- (3) 荷重の入力方法
 - a. 通常荷重,運転時荷重及び事故時荷重 解析モデルの各節点における支配面積に応じた節点力として入力する。
 - b. 地震荷重

上部構造物である RPV 基礎, PCV 及び各耐震壁からの地震時反力を考慮する。

水平地震力は、上部構造物からのせん断力及び曲げモーメントとし、せん断力は水平 力に置換し、解析モデルの各節点における支配面積に応じた節点力として入力し、曲げ モーメントは鉛直力に置換し、モデル上の各節点における支配面積に応じた節点力とし て入力する。

鉛直地震力は,上部構造物からの軸力とし,鉛直力に置換し,モデル上の各節点にお ける支配面積に応じた節点力として入力する。

また,基礎盤内に作用する荷重については,地震時の上部構造物からの入力荷重と基礎盤底面に発生する荷重の差をFEMモデルの各要素の面積に応じて分配し,節点力として入力する。

- 4.5.2 断面の評価方法
 - (1) 荷重状態Ⅲ

原子炉格納容器底部コンクリートマットの底部について、軸力及び曲げモーメントによる鉄筋の引張応力度及びコンクリートの圧縮応力度並びに面外せん断力を算定し、「CC V規格」に基づき設定した各許容値を超えないことを確認する。

a. 軸力及び曲げモーメントに対する断面の評価方法

各断面は,軸力及び曲げモーメントを受ける鉄筋コンクリート造長方形仮想柱として 算定する。

荷重状態Ⅲにおいて、軸力及び曲げモーメントによる鉄筋の引張応力度及びコンクリートの圧縮応力度を算定する際は、「CCV規格」のCVE-3521.1に基づき、表 4-16 及び表 4-17 に示す許容応力度を超えないことを確認する。

b. 面外せん断力に対する断面の評価方法

断面の評価は、「CCV規格」のCVE-3522 に基づき、評価対象部位に生じる面外せん 断力が、CVE-3522-1 又はCVE-3522-2 より算定した許容面外せん断力を超えないことを 確認する。

 Q_A = b·j·f_s····· (CVE-3522-1)
 ここで、
 Q_A : 許容面外せん断力 (N)
 b : 断面の幅 (mm)
 j : 断面の応力中心間距離で、断面の有効せいの 7/8 倍の値 (mm)
 f_s : コンクリートの短期許容せん断応力度で、表 4-16 に示す荷重状態Ⅲの 値 (N/mm²)

 p_w:
 面外せん断力に対する補強筋の鉄筋比であり、次の計算式により計算した値(0.002以上とする)

 $p_w = a_w / (b \cdot x)$

- aw: 面外せん断力に対する補強筋の断面積(mm²)
- x : 面外せん断力に対する補強筋の間隔(mm)
- wf_t: 面外せん断力に対する補強筋の許容引張応力度であり,表 4-17 に示す 荷重状態Ⅲの値(N/mm²)
- α : 割増し係数であり、次の計算式により計算した値(2を超える場合は2, 1未満の場合は1とする)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$

M : 曲げモーメント (N・mm)
Q : せん断力 (N)
d : 断面の有効せい (mm)

(2) 荷重状態IV及びV

原子炉格納容器底部コンクリートマットの底部について、軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ並びに面外せん断力を算定し、「CCV規格」に基づき設定した各許容値を超えないことを確認する。

a. 軸力及び曲げモーメントに対する断面の評価方法

各断面は,軸力及び曲げモーメントを受ける鉄筋コンクリート造長方形仮想柱として 算定する。

荷重状態IV及びVにおいて、軸力及び曲げモーメントによる鉄筋及びコンクリートの ひずみを算定する際は、「CCV規格」のCVE-3521.2に基づき、表 4-18に示す許容ひず みを超えないことを確認する。ここで、鉄筋のひずみ算定において、発生応力度が鉄筋 の降伏応力度を超える場合は、エネルギー定則に基づきひずみを算定する。

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみを算定する際のコンク リート及び鉄筋の応力度-ひずみ関係図を図 4-3 に示す。

図 4-3 コンクリート及び鉄筋の応力度-ひずみ関係図

b. 面外せん断力に対する断面の評価方法

断面の評価は、「CCV規格」のCVE-3522 に基づき、評価対象部位に生じる面外せん 断力が、CVE-3522-1 又はCVE-3522-2 より計算した許容面外せん力を超えないことを確 認する。

 Q_A = b·j·f_s.....(CVE-3522-1)
 ここで、
 Q_A : 許容面外せん断力 (N)
 b : 断面の幅 (mm)
 j : 断面の応力中心間距離で、断面の有効せいの 7/8 倍の値 (mm)
 f_s : コンクリートの短期許容せん断応力度で、表 4-16 に示す荷重状態Ⅲの 値 (N/mm²)

p_w: 面外せん断力に対する補強筋の鉄筋比であり、次の計算式により計算した値(0.002以上とする)

 $p_w = a_w / (b \cdot x)$

- aw: 面外せん断力に対する補強筋の断面積(mm²)
- x : 面外せん断力に対する補強筋の間隔(mm)
- wf_t: 面外せん断力に対する補強筋の許容引張応力度であり、表 4-17 に示す 荷重状態Ⅲの値(N/mm²)
- α : 割増し係数であり、次の計算式により計算した値(2を超える場合は2, 1未満の場合は1とする)

$$\alpha = \frac{4}{M/(Q \cdot d) + 1}$$
M : 曲げモーメント (N・mm)
Q : せん断力 (N)
d : 断面の有効せい (mm)

3 次元FEMモデルを用いた応力の算定において、FEM要素に応力集中等が見られる 場合については、「RC-N規準」に基づき、応力の再配分等を考慮してある一定の領域の 応力を平均化したうえで断面の評価を行う。

5. 評価結果

- 5.1 地震応答解析による評価結果 地震時の最大接地圧が,地盤の許容限界を超えないことを確認する。
 - (1) S 。地震時の確認結果

地盤物性のばらつきを考慮した地震時の最大接地圧が 1087 kN/m² ($S_s - 31$, EW 方向) 以下であることから、地盤の極限支持力度 (2480 kN/m²) を超えないことを確認した。

S 。地震時の最大接地圧を表 5-1~表 5-3 に示す。

(2) S_d地震時の確認結果

地盤物性のばらつきを考慮した地震時の最大接地圧が 764 kN/m² (S_d-31, EW 方向) 以下であることから,地盤の短期許容支持力度(1650 kN/m²)を超えないことを確認した。 S_d地震時の最大接地圧を表 5-4~表 5-6 に示す。

业重新	最大接地圧(kN/m²)			
地辰期	NS 方向	EW 方向		
S _s – D 1	944	951		
S _s - 1 1	634	669		
S _s -12	672	688		
S _s -13	675	694		
S _s -14	628	628		
S _s -21	932	714		
S _s -22	930	845		
S _s - 3 1	1034	1039		

表 5-1 S。地震時の最大接地圧(基本ケース)

表 5-2 S。地震時の最大接地圧(地盤物性+σ考慮モデル)

世雪乱	最大接地圧(kN/m²)		
地辰期	NS 方向	EW 方向	
$S_s - D_1$	987	993	
S _s -21	964	744	
S _s -22	1000	906	
S _s -31	1059	1065	

表 5-3 S 。地	也震時の最大接地圧	(地盤物性-	σ 考慮モデル)
------------	-----------	--------	----------

地電動	最大接地圧(kN/m²)			
地展到	NS 方向	EW 方向		
S _s -D1	910	915		
S _s - 2 1	879	685		
S _s -22	867	788		
S _s -31	1083	1087		

业重新	最大接地圧(kN/m ²)			
地辰期	NS 方向	EW 方向		
$S_d - D_1$	714	717		
$S_{d} - 1 1$	525	544		
$S_{d} - 1 2$	553	560		
S _d -13	553	563		
$S_{d} - 14$	523	527		
$S_{d} - 21$	682	573		
$S_{d} - 22$	692	644		
S _d -31	745	748		

表 5-4 S d 地震時の最大接地圧(基本ケース)

表 5-5 S_d地震時の最大接地圧(地盤物性+σ考慮モデル)

业雪乱	最大接地圧(kN/m²)			
地辰勤	NS 方向	EW 方向		
$S_d - D_1$	734	737		
$S_{d} - 21$	705	586		
$S_{d} - 22$	724	669		
S _d -31	761	764		

地電動	最大接地圧(kN/m²)				
地辰勤	NS 方向	EW 方向			
$S_d - D_1$	690	693			
$S_{d} - 21$	665	561			
S _d -22	666	623			
S _d -31	728	731			

5.2 応力解析による評価結果

「4.5.2 断面の評価方法」に基づいた断面の評価結果を以下に示す。また、3次元FEMモデルの要素図及び配筋領域図を図 5-1 及び図 5-2 に、原子炉格納容器底部コンクリートマットの配筋一覧を表 5-7 に示す。

(1) 荷重状態Ⅲ

断面の評価結果を記載する要素は,軸力及び曲げモーメントによる鉄筋の引張応力度及び コンクリートの圧縮応力度並びに面外せん断力に対する評価において,発生値に対する許容 値の割合が最小となる要素とする。

選定した要素の位置を図 5-3 及び図 5-4 に,評価結果を表 5-8 及び表 5-9 に示す。 荷重状態Ⅲにおいて,軸力及び曲げモーメントによる鉄筋の引張応力度及びコンクリートの圧縮応力度並びに面外せん断力を算定し,各許容値を超えないことを確認した。

(2) 荷重状態IV及びV

断面の評価結果を記載する要素は、軸力及び曲げモーメントによる鉄筋及びコンクリート のひずみ並びに面外せん断力に対する評価において、発生値に対する許容値の割合が最小と なる要素とする。

選定した要素の位置を図 5-5~図 5-9 に,評価結果を表 5-10~表 5-14 に示す。 荷重状態Ⅳ及びVにおいて,軸力及び曲げモーメントによる鉄筋及びコンクリートのひず み並びに面外せん断力を算定し,各許容値を超えないことを確認した。

図 5-1 要素図

表 5-7 配筋一覧

	(a) 格子配筋									
領域	方向	上端筋	下端筋	せん断補強筋						
А	EW	3-D38@128	3-D38@128	_						
	NS	3-D38@128	3-D38@128	_						

(b) **r** - θ 方向配筋

領域	方向	上端筋	下端筋	せん断補強筋
D	半径	17-D38/45° (3 段)	17-D38/45° (3 段)	_
Б	円周	3-D38@200	3-D38@200	_
C	半径	34-D38/45° (3 段)	34-D38/45° (3 段)	D22@400
U	円周	3-D38@200	3-D38@200	D22@400
D	半径	34-D38/45° (3 段)	34-D38/45° (3 段)	D22@400
D	円周	3-D38@180	3-D38@180	D22@400
F	半径	34-D38/45° (3 段)	34-D38/45° (3 段)	_
L	円周	3-D38@175	3-D38@175	_
F	半径	68-D38/45° (3 段)	68-D38/45° (3 段)	D22@400
Г	円周	3-D38@200	3-D38@200	D22@400
C	半径	68-D38/45° (4 段)	68-D38/45° (4 段)	_
U	円周	4-D38@200	4-D38@200	_

図 5-3 結果を記載する要素の位置 荷重状態Ⅲ・地震時(1)

図 5-4 結果を記載する要素の位置 荷重状態Ⅲ・(異常+地震)時(1)

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮応力度 (N/mm ²)	半径	21	1-22	3. 59	16.5
+ 曲げモーメント	鉄筋引張応力度 (N/mm ²)	円周	21	1-22	137	345
面外せん断力	面外せん断応力度 (N/mm ²)	半径	40	1-22	0. 754	1.06

表 5-8 評価結果 荷重状態Ⅲ·地震時(1)

表 5-9 評価結果 荷重状態Ⅲ・(異常+地震)時(1)

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮応力度 (N/mm ²)	半径	60	2-22	4.71	16.5
ー 曲げモーメント	鉄筋引張応力度 (N/mm ²)	円周	21	2-22	200	345
面外せん断力	面外せん断応力度 (N/mm ²)	半径	40	2-22	0. 721	1.06

図 5-5 結果を記載する要素の位置 荷重状態IV・地震時(2)

図 5-6 結果を記載する要素の位置 荷重状態IV・(異常+地震)時(2)

図 5-7 結果を記載する要素の位置 荷重状態V・(異常+地震)時(3)

図 5-8 結果を記載する要素の位置 荷重状態V・(異常+地震)時(4)

図 5-9 結果を記載する要素の位置 荷重状態V・(異常+地震)時(5)

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	3-6	0.333	3.00
+ 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	40	3-4	0.642	5.00
面外せん断力	面外せん断応力度 (N/mm ²)	半径	21	3-6	1.04*	1.06

表 5-10 評価結果 荷重状態IV・地震時 (2)

注記 *:応力の再配分等を考慮して、応力の平均化を行った結果

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	4-6	0.288	3.00
ー 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	半径	26	4-5	0. 589	5.00
面外せん断力	面外せん断応力度 (N/mm ²)	半径	40	4-6	0.672	1.06

表 5-11 評価結果 荷重状態IV · (異常+地震) 時(2)

表 5-12 評価結果 荷重状態V · (異常+地震) 時 (3)

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	5-6	0.375	3.00
+ 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	5-6	0.895	5.00
面外せん断力	面外せん断応力度 (N/mm ²)	半径	131	5-5	0. 781	1.06

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	6-6	0. 341	3.00
+ 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	6-6	0.840	5.00
面外せん断力	面外せん断応力度 (N/mm ²)	半径	211	6-5	0. 723	1.06

表 5-13 評価結果 荷重状態V·(異常+地震)時(4)

表 5-14 評価結果 荷重状態V·(異常+地震)時(5)

評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
軸力	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	7-6	0. 426	3.00
ー 曲げモーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	7-6	0.814	5.00
面外せん断力	面外せん断応力度 (N/mm ²)	半径	30	7-6	1.03*	1.06

注記 *:応力の再配分等を考慮して、応力の平均化を行った結果

別紙1 鉄筋コンクリート構造物の重大事故等時の高温による影響

(原子炉格納容器底部コンクリートマット)

1.	概要	別紙 1-1
2.	コンクリート及び鉄筋の温度の影響に関する調査	別紙 1-1
2	.1 鉄筋コンクリートの高温時の特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 1-1
2	.2 既往の文献による高温時のコンクリートの特性・・・・・・・・・・・・・・・・・・・・	別紙 1-2
3.	施設を構成する部材の構造特性・・・・・	別紙 1-4
4.	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 1-4

1. 概要

原子炉格納施設は、炉心が損傷するような重大事故等時において、設計圧力、設計温度を超え ることが想定される。原子炉格納施設のうち原子炉格納容器内の温度は、重大事故等時には高温 状態が一定期間継続すると推定される。

よって,原子炉格納容器底部コンクリートマットについて,既往の文献・規格等に基づき,高 温時の健全性を確認する。

2. コンクリート及び鉄筋の温度の影響に関する調査

2.1 鉄筋コンクリートの高温時の特性

鉄筋コンクリートは、コンクリートと鉄筋で構成され、「構造材料の耐火性ガイドブック((社) 日本建築学会、2009)」によると、一般に、コンクリート・鉄筋は、温度の上昇と共に強度・剛 性は劣化し、ひずみが大きくなる傾向にあるとされている。

コンクリートについては、セメント水和物及びその吸着水、水和物で構成される細孔内に存 在する毛管水、毛管より大きな空隙に存在する自由水から成る多孔体である。一般的にコンク リートの温度が 70 ℃程度では、コンクリートの基本特性に大きな影響を及ぼすような自由水 の逸散は生じず、100 ℃以下では圧縮強度の低下は小さいとされる。また、コンクリートの温 度が大気圧において 100 ℃を超すと自由水が脱水し始め、その温度作用時間が長期間になると 結晶水も脱水し始める。コンクリート温度が 190 ℃付近では結晶水が解放され始め、さらに高 温になると脱水現象が著しくなるため、コンクリートの特性に影響が出始めるとされる。

鉄筋については、「構造材料の耐火性ガイドブック((社)日本建築学会,2009)」によると、 強度及び剛性は、概ね200 ℃から300 ℃までは常温時の特性を保持するとされている。 2.2 既往の文献による高温時のコンクリートの特性

原子炉格納容器底部コンクリートマットは、内表面が構成ライナで覆われていること、重大 事故等時には、冷却水による水蒸気で満たされていることから、高温によるコンクリートから の水分逸散のないシール状態にある。それを踏まえ、シール状態で高温加熱を受けたコンクリ ートの文献収集を行った。高温を受けたコンクリートの圧縮強度に関する文献を表 2-1 に示 す。

文献 No.1 及び No.2 では、加熱温度 175 ℃のコンクリートへの影響について検討されている。文献 No.1 では、シール状態において強度は熱水反応により一様な変化は示さないとされており、加熱期間 91 日までは、概ね加熱前と強度は同等と考えられる。アンシール状態では加熱期間 28 日までの低下率は 10 %以内に収まるとされている。文献 No.2 では、シール状態においては、加熱期間 91 日まで強度の低下は認められない。

また,文献 No. 3~No. 7 は,加熱温度 110 ℃のコンクリートへの影響について検討されている。No. 4 は加熱期間 50 日について検討されており,強度低下は認められないとされている。 また,No. 3 は加熱期間 3.5 年間,No. 5~No. 7 は加熱期間 2 年間について検討され,いずれも強度の低下傾向は認められないとされている。

それぞれの加熱温度における剛性に着目すると、加熱温度 175 ℃において、アンシールの条件下では、加熱期間 1 日でも急激に低下する場合があるとされており、水分の逸散と高い相関があると考えられる。一方、シール状態では大きな低下はなく、加熱温度 110 ℃では加熱後ごく初期に剛性の変化は収束するとされている。

以上より,175 ℃程度までの高温環境によるコンクリート強度への影響は小さい。また,コンクリートの剛性については,高温環境による水分逸散の影響が大きく,シール状態においても剛性の低下の傾向は認められるが,加熱後ごく初期に収束するため影響はない。

No.	文献名 (出典)	女王	試験条件		
		1	温度	加熱期間	水分
1	高温(175℃)を受けたコンクリートの強度性状 (セメント・コンクリート No. 449, July 1984)	川口 徹,高橋久雄	175℃	1~91 日	シール アンシール
2	高温履歴を受けるコンクリートの物性に関する実験的研究 (日本建築学会構造系論文集 第457 号,1994 年 3 月)	長尾覚博,中根 淳	40∼175, 300, 600°C	1~91 ⊟ (~175℃) 7 ⊟ (300, 600℃)	シール アンシール
3	熱影響場におけるコンクリートの劣化に関する研究 (第 48 回セメント技術大会講演集, 1994)	長尾覚博,鈴木智巳, 田渕正昭	①65,90,110℃の一定加熱 ②20~110℃のサイクル熱	1日~3.5年間	シール アンシール
4	長期高温加熱がコンクリートの力学特性に及ぼす影響の検討 (日本建築学会大会学術講演梗概集(北陸),2010年9月)	木場将雄,山本知弘, 久野通也,島本 龍, 一瀬賢一,佐藤 立	①20℃の一定加熱 ②110℃のサイクル加熱	①50 日 ②1~50 サイクル (1 サイクル : 1 日) (注)110℃の期間 : 9h	シール アンシール
5	 長期間加熱を受けたコンクリートの物性変化に関する実験的研究 (その1 実験計画と結果概要) (日本建築学会大会学術講演梗概集(中国), 1999年9月) 	薗田 敏,長尾覚博, 北野剛人,守屋正裕, 池内俊之,大池 武	 ①20, 110, 180, 325℃の一 定加熱 ②~110℃, ~180℃ ~325℃のサイクル加熱 	①1 日~24 か月	
6	長期間加熱を受けたコンクリートの物性変化に関する実験的研究 (その2 普通コンクリートの力学特性試験結果)) (日本建築学会大会学術講演梗概集(中国), 1999年9月)	池内俊之,長尾覚博, 北野剛人,守屋正裕, 薗田 敏,大池 武		 ②1~180 サイクル (1 サイクル: 72 時間 (注) 高温保持時間: 2 	シール アンシール
7	長期間加熱を受けたコンクリートの物性変化に関する実験的研究 (その3 耐熱コンクリートの力学特性試験結果) (日本建築学会大会学術講演梗概集(中国),1999年9月)	大池 武,池内俊之, 北野剛人,長尾覚博, 薗田 敏,守屋正裕	020 Cvy y 1 7 70 /µm	時間	

表 2-1 高温を受けたコンクリートの圧縮強度に関する文献一覧

別紙 1-3

3. 施設を構成する部材の構造特性

「発電用原子炉設備規格 コンクリート製原子炉格納容器規格((社)日本機械学会,2003)」 では、部材内の温度差及び拘束により発生する熱応力は、自己拘束的な応力であることから、十 分な塑性変形能力がある場合、終局耐力に影響しないこととされている。

また,原子炉格納容器底部コンクリートマットについて,コンクリート内表面が高温となって も,十分な厚さのコンクリートがあり,その底面の地中温度は不易層の温度(15℃)であるため, 全体が高温になることはない。原子炉格納容器底部コンクリートマットの内表面が高温となると, その下端には水平方向に引張が発生するが,地盤による拘束もあるため,その応力レベルは部材 剛性に影響を与えるものではない。

更に,基礎地盤の支持性能について,重大事故等時の状態と設計基準状態とで,材料特性の相 違は小さく,地震応答解析による接地圧への影響は大きくないと考えられ,かつ設計基準の状態 における基準地震動S。に対する最大接地圧は,許容限界に対して十分な余裕を有していること から,構造特性についても設計基準状態との相違は小さい。

4. まとめ

鉄筋コンクリート構造物の高温時の健全性について,既往の文献・規格基準に基づき評価を行い,原子炉格納容器の重大事故等時における高温状態に対しても,鉄筋コンクリート構造物の強 度及び剛性への影響は小さいことを確認した。 別紙2 原子炉建屋における改造工事に伴う重量増加を反映した検討

(原子炉格納容器底部コンクリートマット)

1.	概要	別紙 2-1
2.	検討方針	別紙 2-1
3.	検討結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 2-3
4.	まとめ・・・・・・	別紙 2-7

1. 概要

原子炉建屋の設備の補強や追加等の改造工事に伴う重量増加を考慮した応答増幅の影響につい ての検討を行う。

添付書類「V-2-2-1 原子炉建屋の地震応答計算書 別紙 原子炉建屋における改造工事に伴う 重量増加を反映した地震応答解析」に示した地震応答解析結果の応答比率を用いて,原子炉格納 容器底部コンクリートマットの応力解析による評価結果への影響を検討する。

2. 検討方針

原子炉格納容器底部コンクリートマットを対象として,設備の補強や追加等の改造工事に伴う 重量が増加を考慮した応答比率と応力評価結果より影響検討を行う。

原子炉格納容器底部コンクリートマットは,原子炉格納容器の周囲の壁(以下「シェル壁(S/ W)」という。),原子炉建屋原子炉棟(以下「原子炉棟」という。)の外壁(以下「内部ボックス壁 (I/W)」という。)及び原子炉建屋付属棟(以下,「付属棟」という。)の外壁(以下「外部ボッ クス壁(0/W)」という。)からの基礎への地震時せん断力及び軸力を地震荷重として考慮するこ とから,原子炉建屋基礎盤上層(要素番号(10),EL.-4.0 m~EL.2.0 m)の最大応答せん断力及 び軸力の各方向の応答比率の最大値を割増係数として設定し,応力評価結果の発生値に乗じて各 許容値を超えないことを確認する。

表 2-1 に要素番号(10)の最大応答せん断力及び軸力の各方向の応答比率及び割増係数を示す。

	NS 方向	EW 方向	UD 方向
要素番号(10)	1.02^{*1}	1.02^{*1}	1.02^{*1}
割増係数	1.02^{*2}		

表 2-1 重量増加を考慮した割増係数:原子炉格納容器底部コンクリートマット

注記 *1: 添付書類「V-2-2-1 原子炉建屋の地震応答計算書 別紙 原子炉建屋に おける改造工事に伴う重量増加を反映した地震応答解析」に示す要素番 号(10)の最大応答せん断力及び軸力の応答比率

*2:各方向の応答比率の最大値

NS 方向及び EW 方向

UD 方向
3. 検討結果

各荷重状態における評価結果を表 3-1~表 3-7 に示す。 重量増加を考慮した割増係数を乗じた結果においても、各許容値を超えないことを確認した。

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1×2	許容値		
軸力 +	コンクリート圧縮応力度 (N/mm ²)	半径	21	1-22	3. 59	1.02	3.67	16.5		
曲げ モーメント	鉄筋引張応力度 (N/mm ²)	円周	21	1-22	137	1.02	140	345		
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	40	1-22	0.754	1.02	0. 770	1.06		

表 3-1 重量増加を考慮した評価結果:荷重状態Ⅲ・地震時(1)

表 3-2 重量増加を考慮した評価結果:荷重状態Ⅲ・(異常+地震)時(1)

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1×2	許容値
軸力 +	コンクリート圧縮応力度 (N/mm ²)	半径	60	2-22	4.71	1.02	4.81	16.5
曲げ モーメント	鉄筋引張応力度 (N/mm ²)	円周	21	2-22	200	1.02	204	345
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	40	2-22	0.721	1.02	0.736	1.06

表 3-3 重量増加を考慮した評価結果:荷重状態Ⅳ・地震時(2)

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1×2	許容値
軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	3-6	0.333	1.02	0.340	3.00
曲げ モーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	40	3-4	0.642	1.02	0.655	5.00
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	21	3-6	1. 04*1	1.02	1. 06*2	1.06

注記 *1:応力の再配分等を考慮して、応力の平均化を行った結果

*2: 有効数字3 桁表示としているが,有効数字4 桁では1.058 となる。

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1)×2)	許容値		
軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	4-6	0.288	1.02	0. 294	3.00		
曲げ モーメント	鉄筋引張ひずみ (×10 ⁻³)	半径	26	4-5	0. 589	1.02	0. 601	5.00		
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	40	4-6	0.672	1.02	0. 686	1.06		

表 3-4 重量増加を考慮した評価結果:荷重状態Ⅳ・(異常+地震)時(2)

表 3-5 重量増加を考慮した評価結果:荷重状態V・(異常+地震)時(3)

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	①×②	許容値
軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	5-6	0.375	1.02	0. 383	3.00
曲げ モーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	5-6	0.895	1.02	0.913	5.00
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	131	5-5	0. 781	1.02	0. 797	1.06

表 3-6 重量増加を考慮した評価結果:荷重状態V・(異常+地震)時(4)

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1×2	許容値
軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	6-6	0.341	1.02	0.348	3.00
曲げ モーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	6-6	0.840	1.02	0.857	5.00
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	211	6-5	0. 723	1.02	0. 738	2.12

	評価項目	方向	要素番号	組合せ ケース	発生値 ①	割増 係数 ②	1×2	許容値
軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	半径	40	7-6	0. 426	1.02	0. 435	3.00
曲げ モーメント	鉄筋引張ひずみ (×10 ⁻³)	円周	21	7-6	0.814	1.02	0.831	5.00
面外 せん断力	面外せん断応力度 (N/mm ²)	半径	30	7-6	1.03*	1.02	1.05	2.12

表 3-7 重量増加を考慮した評価結果:荷重状態V・(異常+地震)時(5)

注記 *:応力の再配分等を考慮して、応力の平均化を行った結果

4. まとめ

原子炉建屋における改造工事に伴う重量増加を反映した地震応答解析に基づき影響検討を行 い,重量増加を考慮した場合においても安全上問題とならないことを確認した。