東海第二発電所	工事計画審査資料
資料番号	工認-1108 改0
提出年月日	平成30年10月1日

V-5-65 計算機プログラム(解析コード)の概要・TSUNAMI-S

目次

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1. 1	使用状況一覧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 1	解析コードの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	TSUNAMI-Sの解析手法について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 1	解析コードの特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 2	解析手法
3.3	解析フローチャート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3, 4	検証 (Verification) と妥当性確認 (Validation) ····································

1. はじめに

本資料は、添付書類において使用した計算機プログラム (解析コード) TSUNAMI-Sについて説明するものである。

本解析コードを使用した添付書類を示す使用状況一覧、解析コードの概要を以降に記載する。

1.1 使用状況一覧

	使用添付書類	バージョン
V-1-1-2-2-4	入力津波による津波防護対象設備への影響評価	Ver. 7

2. 解析コードの概要

2. 解析コードの概要		
項目	TSUNAMI-S	
使用目的	津波砂移動解析	
開発機関	東電設計株式会社	
開発時期	1998年	
使用したバージョン	Ver. 7	
計算機コードの概要	TSUNAMI-S は、砂移動解析を行う解析コードで、主な特徴は下記の通りである。 ・非線形長波理論(浅水理論)に基づく後藤の方法(後藤・小川 1982)	
	により、平面二次元の津波伝播・遡上解析ができる解析コードである	
	TSUNAMIに砂の移動による海底地形変化解析機能を追加したものであ	
	る。	
	・砂の移動モデルとして藤井(1998), 高橋(1999)など複数のモデルを取	
	り扱うことが可能である。	
	TSUNAMI-Sは、取水口及びSA用海水ピット取水塔の評価に使用されて	
	いる。	
	【検証(Verification)】	
	本解析コードの検証の内容は以下の通りである。	
	・1960 年チリ地震津波による海底地形変化の再現計算を行い,堆積・	
	侵食域について解(堆積侵食分布)が文献解と概ね一致することを確	
	認している。	
+☆=T (V:f:+:)	・本解析コードの運用環境について,要件を満足していることを確認し	
検証 (Verification)	ている。	
及び 妥当性確認	【妥当性確認(Validation)】	
(Validation)	本解析コードの妥当性確認の内容は以下の通りである。	
	 ・1960 年チリ地震津波による海底地形変化の再現計算を行い、堆積・	
	侵食域について公開文献の計算結果 (藤井 1998, 高橋 1999) と比較	
	し、概ね一致することを確認している。	
	・なお、日本国内の原子力施設の設置変更認可申請における解析に使用	
	された実績がある。	
	・本工事計画における解析の使用目的に対し,使用用途及び使用方法に	
	関する適用範囲は上述の妥当性確認の対象と同様である。	

3. TSUNAMI-Sの解析手法について

3.1 解析コードの特徴

本解析コードの主な特徴を以下に示す。

- ・非線形長波理論(浅水理論)に基づく後藤の方法(後藤・小川1982)により、平面二次元の津波伝播・遡上解析ができる解析コードであるTSUNAMIに砂の移動による海底地形変化解析機能を追加したものである。
- ・砂の移動モデルとして藤井(1998), 高橋(1999)など複数のモデルを取り扱うことが可能である。

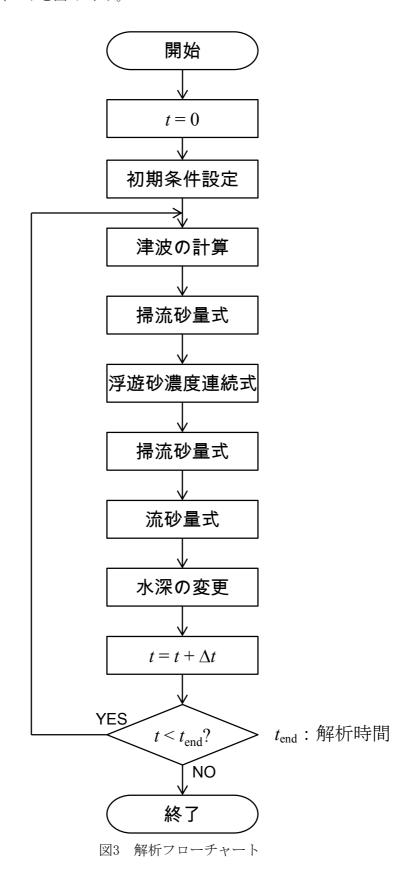
3.2 解析手法

本解析コードはTSUNAMIの機能追加版のため、ここでは追加機能の砂移動解析についてのみ記述する。

砂移動計算は流体層と砂層に分けて行う。流体層は津波伝播計算を行い、砂層は海底地形変化計算を行う。砂層の地形変化計算では、流砂量式と砂の連続式を解く。流砂量式では流体層から受け渡された底面せん断応力を用いて、流砂量を見積もっている。砂の連続式では、見積もられた流砂量から海底地形変化を求め、海底地形を更新する。

掃流砂と浮遊砂を考慮した主なモデルとして、藤井(1998)、高橋(1999)のモデルがある。

	藤井(1998) モデル	高橋 (1999) モデル
流砂量連続式 $\frac{\partial Z}{\partial t} + \alpha \left(\frac{\partial Q}{\partial x}\right) + \frac{E - S}{\sigma(1 - \lambda)} = 0$		$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q}{\partial x} + \frac{E - S}{\sigma} \right) = 0$
浮遊砂濃度連続式	$\frac{\partial C}{\partial t} + \frac{\partial (UC)}{\partial x} - \frac{E - S}{D} = 0$	$\frac{\partial (C_s D)}{\partial t} + \frac{\partial (MC_s)}{\partial x} - \frac{E - S}{\sigma} = 0$
流砂量式	$Q = 80\tau_*^{1.5} \sqrt{sgd^3}$	$Q = 21\tau_*^{1.5} \sqrt{sgd^3}$
巻き上げ量の算定式	$E = \frac{(1-\alpha)Qw^2\sigma(1-\lambda)}{Uk_z \left[1 - \exp\left(\frac{-wD}{k_z}\right)\right]}$	$E = 0.012\tau_*^2 \sqrt{sgd} \cdot \sigma$
沈降量の算定式	$S = wC_b$	$S = wC_s \cdot \sigma$
摩擦速度の計算式	log-wake則を鉛直方向に 積分した式より算出	マニング則より算出 $u_* = \sqrt{g n^2 U U / D^{1/3}}$


ここで,

Z:水深変化量, t:時間, x:平面座標, Q:単位幅, 単位時間当たりの掃流砂量,

 τ_* : シールズ数, σ : 砂の密度, λ : 空隙率, s: $\sigma/\rho-1$, d: 砂の粒径(中央粒径),

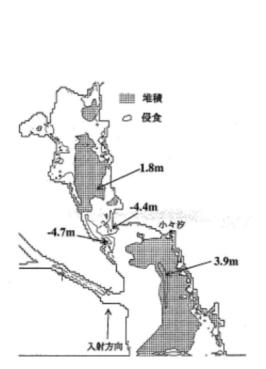
g: 重力加速度, $\rho:$ 海水の密度, U: 流速, D: 全水深

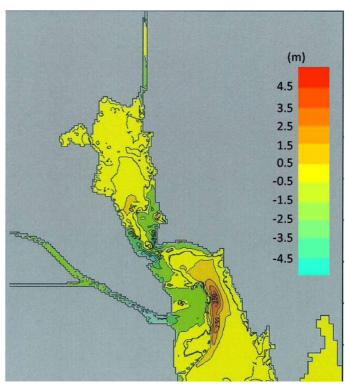
3.3 解析フローチャート 解析フローチャートを図3に示す。

3.4 検証 (Verification) と妥当性確認 (Validation)

a. 検証 (Verification)

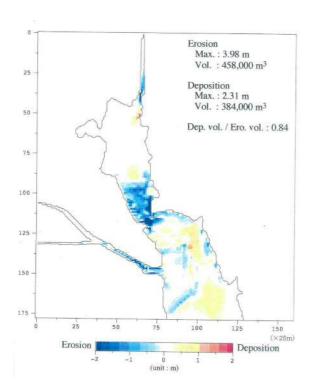
(a) 検証方法

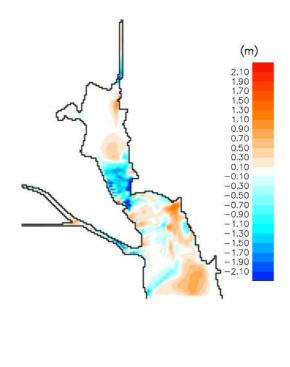

1960年チリ地震津波による海底地形変化の再現計算を行い, 堆積・侵食域について公開文献の計算結果(藤井1998, 高橋1999) と比較し, 結果が一致することを検証する。


(b) 検証条件

モデル化範囲は気仙沼湾における1960年チリ地震津波の津波遡上範囲を含む範囲とする。

(c) 検証結果


本解析コード(図4(2), (4))の計算結果は、公開文献の計算結果(図4(1), (3))と概ね 一致しており、本計算機コードが海底地形変化を正しく評価していることが検証できる。



(1) 藤井(1998)による計算結果

(2) 本解析コードによる計算結果 (藤井1998モデル)

(3) 高橋(1999)による計算結果 (4) 本解析コードによる計算結果(高橋1999モデル) 図4 気仙沼湾における堆積侵食分布の比較(1960年チリ地震津波)

b. 妥当性確認 (Validation)

取水口及びSA用海水ピット取水塔の評価にTSUNAMI-Sを使用することは、次の通り検証されており、妥当である。

・ 検証の内容の通り、堆積侵食分布について検証していることから、解析の目的に照らして今回の解析に適用することは妥当である。