本資料のうち,枠囲みの内容は 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	工認-113 改2
提出年月日	平成 30 年 10 月 1 日

V-2-10-2-2-1 防潮堤(鋼製防護壁)の耐震性についての計算書

1.	概	要····································
2.	基	本方針
2	2.1	位置
2	2.2	構造概要
2	2.3	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
2	2.4	適用基準16
3.	地	震応答解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	3.1	評価対象断面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	8.2	解析方法
3	3.3	荷重及び荷重の組合せ・・・・・・22
3	8.4	入力地震動
3	8.5	解析モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
4.	耐	震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	ł. 1	評価対象部位 · · · · · · · · · · · · · · · · · · ·
4	ł. 2	解析方法
4	i. 3	荷重及び荷重の組合せ・・・・・・ 60
4	ł. 4	許容限界62
4	ł. 5	解析モデル及び諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・65
4	ł. 6	評価方法
5.	耐	震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	5.1	構造部材の健全性に対する評価結果・・・・・ 82
5	5.2	基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・118
5	5.3	構造物の変形性に対する評価結果・・・・・119

1. 概要

本資料は、添付書類「V-2-1-9 機能維持の基本方針」に設定している構造強度及び機能維持の設計方針に基づき、鋼製防護壁が基準地震動S。に対して十分な構造強度及び支持性能並びに止水機能を有していること及び有意な漏えいを生じない構造であることを確認するものである。

鋼製防護壁に要求される機能の維持を確認するにあたっては,地震応答解析に基づく構造部材 の健全性評価,基礎地盤の支持性能評価及び構造物の変形性評価により行う。

- 2. 基本方針
- 2.1 位置

鋼製防護壁の位置図を図 2-1 に示す。

図 2-1 鋼製防護壁位置図

2.2 構造概要

鋼製防護壁は,幅約81 m,高さ約17 m,奥行き約5 mの鋼製の構造物であり,幅約50 mの取 水構造物を横断し,取水構造物の側方の地中連続壁基礎を介して十分な支持性能を有する岩盤 に設置する。

鋼製防護壁の検討対象位置平面図を図 2-2 に,構造概要図を図 2-3 に,構造図を図 2-4 に示す。

鋼製防護壁は鉛直及び水平方向に配置された鋼板で構成される鋼殻構造であり,施工性を考 慮して分割したブロックの集合体として全体を構成する。各ブロックは添接板と高力ボルトを 用いた摩擦接合により固定するため,地震時及び津波時にブロック同士の変位は生じない設計 である。継ぎ手部にはシール材を設置し,漏えいが生じないようにする。

基礎部は、図 2-5 に示すとおり、南北両側に配置した地中連続壁基礎にて構成され、津波荷 重等を受ける鋼製防護壁を支持する。地中連続壁基礎の内側には中実鉄筋コンクリートを充填 し、地中連続壁基礎と中実鉄筋コンクリートはジベル鉄筋により一体化し、両者で発生断面力 を負担する。

図 2-6 に鋼製防護壁の構造概要を示す。鋼製防護壁は、下端標高 T.P.+3.20 m から天端標 高 T.P.+20.0 m までを頂部鋼板を含めて 10 層の水平隔壁に分割した構造とし、法線、法線直 交方向の鉛直隔壁並びに外面鋼板で構成される。各層は、図 2-5 に示すブロックが複数結合さ れた構造である。また、止水性維持のため、鋼製防護壁と鉄筋コンクリート防潮壁の境界部に 止水ジョイント部を、鋼製防護壁の底面と既設取水構造物との境界部に止水機構を設置する。

鋼製防護壁と地中連続壁基礎とは鋼製防護壁アンカーによって剛結合され、上部構造からの 軸力と水平軸回りの曲げモーメントを引抜き力、押込力として基礎上部の頂版鉄筋コンクリー トに伝達することで一体構造として挙動する。鋼製防護壁の基礎直上は図 2-7 に示すとおり、 鋼殻内に必要な高さまで中詰め鉄筋コンクリートを打設して鋼殻とスタッドにより一体化し、 下部構造への確実な荷重伝達を図る。

鋼製防護壁と地中連続壁基礎との接合部の概要図を図 2-8 に,接合部構造図を図 2-9 に示す。 また,各部材の設計上の役割を表 2-1 に示す。

また,鋼製防護壁と鉄筋コンクリート防潮壁との境界部に止水性維持のために止水ジョイン ト部を設置する。鋼製防護壁の底面と取水構造物との境界部には,止水性維持のために止水機 構を設置する。

図 2-2 鋼製防護壁 検討対象位置平面図

止水ジョイント部

図 2-3 鋼製防護壁の構造概要図

図 2-4 鋼製防護壁構造図

図 2-5 鋼製防護壁全体の構造イメージ図

鉛直方向の分割イメージ図

鋼製防護壁アンカー部のイメージ図

図 2-6 鋼製防護壁の上部構造の構造概念図

図 2-7 (1)

鋼製防護壁の全体構成図

図 2-7 鋼製防護壁(地中連続壁基礎)の構成図

図 2-8 鋼製防護壁と地中連続壁基礎との<mark>接合</mark>部概要図

図 2-9(1) 鋼製防護壁と地中連続壁基礎との<mark>接合</mark>部構造図(A-A断面)

図 2-9(2) 鋼製防護壁と地中連続壁基礎との<mark>接合</mark>部構造図(B-B断面)

図 2-9(5) 鋼製防護壁と地中連続壁基礎との<mark>接合</mark>部構造図(E-E断面)

部材名	設計上の役割
中詰め鉄筋コンクリート	鋼殻内部の鉄筋コンクリートで、水平方向のせん断力と水平回転モ
(f' _{ck} =50 N/mm ²)	ーメントを頂版鉄筋コンクリートに伝達する。
アンカーボルト (SM520B 相当)	引抜き力を頂版鉄筋コンクリートに伝達する。
頂版(フーチング) 鉄筋 コンクリート (f' _{ck} =50 N/mm ²)	水平方向のせん断力と水平回転モーメントを地中連続壁基礎及び中 実鉄筋コンクリートに伝達する。
地中連続壁基礎及び	地中連続壁基礎は,基礎外面を形成し基礎の主要部材となる。
中実鉄筋コンクリート	中実鉄筋コンクリートは,地中連続壁基礎内部の鉄筋コンクリート
(f' _{ck} =40 N/mm ²)	で,地中連続壁基礎と一体となって発生断面力を負担する。
根巻き鉄筋コンクリート	アンカー頭部の防食などを目的とした鉄筋コンクリートであり,非
(f' _{ck} =24 N/mm ²)	構造部材として設計する。

表 2-1 各部材の設計上の役割

2.3 評価方針

防潮堤(鋼製防護壁)は、Sクラス施設である浸水防護施設に分類される。

鋼製防護壁の耐震評価は,設計基準対象施設の評価として,表 2-2 に示すとおり,構造部材の健全性評価及び基礎地盤の支持性能評価及び構造物の変形性評価を行う。

構造部材の健全性評価については、地震応答計算により得られた荷重を用いた応力解析に基 づく発生応力が許容限界以下であることを確認する。基礎地盤の支持性能評価については、基 礎地盤に生じる接地圧が極限支持力に基づく許容限界以下であることを確認する。

構造部材の健全性評価及び基礎地盤の支持性能評価及び構造物の変形性評価を実施することで、構造強度を有すること及び止水性を損なわないことを確認する。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで、構造強度を有することを確認する。

構造物の変形性評価については、止水ジョイント部材の変形量を算定し、<mark>有意な漏えいが生</mark> じないことを確認した許容限界以下であることを確認する。

鋼製防護壁の耐震評価フローを図 2-10 に示す。

評価方針			<u>新福久日</u>	
	可叫这日			可在欧介
	構造部材の 健全性	^{地中連続壁基礎} (中実鉄筋コンクリ ート(ジベル鉄筋含 む))	曲り軸刀, もん断刀に 対する発生応力が許容 限界以下であることを 確認	<mark>短期許容応力度</mark>
構造強度 を有する		鋼製防護壁 (スタッド含む)	曲げ軸力,せん断力に 対する発生応力が許容 限界以下であることを 確認	<mark>短期許容応力度</mark>
こと		鋼製防護壁アンカー (アンカーボルト, 頂版鉄筋コンクリー ト,中詰め鉄筋コン クリート)	発生応力が許容限界以 下であることを確認	短期許容応力度
	基 礎 地 盤 の 支持性能	基礎地盤	接地圧が許容限界以下 であることを確認	極限支持力*
	構造部材の 健全性	地中連続壁基礎 (中実鉄筋コンクリ ート(ジベル鉄筋含 む))	曲げ軸力, せん断力に 対する発生応力が許容 限界以下であることを 確認	<mark>短期許容応力度</mark>
14 - 10 14 2.		<mark>鋼製防護壁</mark> (スタッド含む)	曲げ軸力,せん断力に 対する発生応力が許容 限界以下であることを <mark>確認</mark>	<mark>短期許容応力度</mark>
山小住を 損なわな いこと		鋼製防護壁アンカー (アンカーボルト, 頂版鉄筋コンクリー ト,中詰め鉄筋コン クリート)	発生応力が許容限界以 下であることを確認	短期許容応力度
	基礎地盤の 支持性能	基礎地盤	接地圧が許容限界以下 であることを確認	極限支持力*
	構造物の変形 性	止水ジョイント部材	発生変形量が許容限界 以下であることを確認	有意な漏えいが生じないことを確認した変形量

表 2-2 鋼製防護壁の評価項目

注記 *:妥当な安全余裕を考慮する。

図 2-10 鋼製防護壁の耐震評価フロー

2.4 適用基準

適用する規格、基準類を以下に示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・II鋼橋編)・同解説(日本道路協会,平成14年3月)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成24年3月)
- ・道路橋示方書(II鋼橋・鋼部材編)・同解説(日本道路協会,平成29年11月)
- ・道路橋示方書(V耐震設計編)・同解説(日本道路協会,平成24年3月)
- ・道路土工カルバート工指針(平成21年度版)(日本道路協会,平成22年3月)
- ・原子力発電所耐震設計技術指針JEAG4601-1987 (日本電気協会)
- ·鋼構造物設計基準(Ⅱ鋼製橋脚編,名古屋高速道路公社,平成15年10月)
- ・新しい高性能鋼材の利用技術調査研究報告書~SBHS500(W), SBHS700(W)の設計・製作ガイ
 ドライン(案)~(土木学会,平成21年11月)

- 3. 地震応答解析
- 3.1 評価対象断面

評価対象断面は,鋼製防護壁の構造上の特徴や周辺地盤状況を踏まえて選定する。評価対象 断面位置を図 3-1 に,評価対象断面を図 3-2 に示す。

耐震評価は、縦断方向1断面(①-①断面)及び南北基礎の横断方向(堤軸に対して直交す る方向)2断面(②-②断面、③-③断面)を用いて実施する。

図 3-1 鋼製防護壁 評価対象断面位置図

図 3-2 (1) 鋼製防護壁評価対象断面図 (①-①断面)

図 3-2 (3) 鋼製防護壁評価対象断面図 (3-3)断面)

3.2 解析方法

地震応答解析は、添付書類「V-2-1-6 地震応答解析の基本方針」のうち、「2.3 屋外重 要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答計算では、地震時における地盤の有効応力の変化に伴う影響を考慮できる有効応力 解析を実施する。有効応力解析に用いる地盤剛性及び液状化強度特性は、敷地の原地盤におけ る代表性及び網羅性を踏まえた上でばらつき等を考慮して設定することを基本とする。

地中土木構造物への地盤変位に対する保守的な配慮として,地盤を強制的に液状化させるこ とを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在 しない豊浦標準砂の液状化強度特性)を設定する。

上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤の非液 状化の影響を考慮する場合は,原地盤において非液状化の条件を仮定した解析を実施する。

地震応答解析には,解折コード「FLIP Ver. 7.3.0_2」を使用する。なお,解析コードの検 証及び妥当性確認の概要については,添付書類「V-5-10 計算機プログラム(解析コード) の概要・FLIP」に示す。

3.2.1 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.2 地盤

地盤剛性のばらつき及び地盤の液状化強度特性のばらつきの影響を考慮するため、表 3-1に示す解析ケース(①~⑥)を設定する。

解析ケース	 ① 原地盤に基 づく液状化 強度特性を 用いた解析 	② 地盤物性の ばらつきを 考慮(+1 σ)した解	③ 地盤物性の ばらつきを 考慮(-1 σ)した解	 ④ 地盤を強制 的に液状化 させること を仮定した 	 ⑤ 原地盤におい て非液状化の 条件を仮定し た解析ケース 	 ⑥ 地盤物性のば らつきを考慮 (+1σ)し て非液状化の
	ケース (基 本ケース)	析ケース	析ケース	解析ケース		条件を仮定し た解析ケース
地盤剛性の設定	原地盤のせ ん断波速度	原地盤のせ ん断波速 のばらつき を考慮 (+1σ)	原地盤のせ ん断波速度 のばらつき を考慮 (-1g)	敷地に存在 しない豊浦 標準砂のせ ん断波速度	原 <u>地盤</u> のせん 断波速度	原地盤のせん 断波速度のば らつきを考慮 (+1σ)
液状化強度特性 の設定	 原地盤に基 づく液状化 強度特性 (-1σ) 	 原地盤に基 づく液状化 強度特性 (-1σ) 	原地盤に基 づく液状化 強度特性 (-1σ)	敷地に存在しない豊浦標準砂の液状化強度特性	液状化パラメ ータを非適用	液状化パラメ ータを非適用

表 3-1 有効応力解析における解析ケース

地盤剛性のばらつきの影響を考慮するため,原地盤におけるせん断波速度の原位置試験 データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散に基づ く標準偏差σを用いて、せん断波速度を「回帰曲線+1σ」(以下、(+1σ)という。)

 \mathbb{R}^2

とする解析ケース(解析ケース2,⑥)及び「回帰曲線-1σ」(以下,(-1σ)という。)とする解析ケース(解析ケース3)を設定する。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、原地盤の 液状化強度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した 不偏分散に基づく標準偏差σを用いて、液状化強度特性を「-1σ」にて設定することを基 本とする(解析ケース①,②,③)。

また,構造物への地盤変位に対する保守的な配慮として,敷地に存在しない豊浦標準砂 の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケースを設定す る(解析ケース④)。さらに,構造物及び機器・配管系への加速度応答に対する保守的な 配慮として,地盤の非液状化の条件を仮定した解析ケースを設定する(解析ケース⑤, ⑥)。

上記の地盤剛性及び液状化強度特性の設定を組合せた解析ケース(①~⑥)を実施する ことにより、地盤物性のばらつきの影響を網羅的に考慮する。

有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を適切に表現できる双曲線モデル(H-Dモデル)を用いる。

3.2.2 減衰定数

固有値解析により求められる固有振動数及び初期減衰定数に基づく要素剛性比例型減衰 を考慮する。

3.2.2 地震応答解析における解析ケースの選定

耐震評価においては、全ての基準地震動S。に対し基本として実施する①の解析ケースにおいて、各照査値が最も厳しい地震動を用い②~⑥の解析ケースを実施する。

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、添付書類「V-2-1-9 機能維持の基本方針」に基づき設定する。
 - 3.3.1 耐震評価上考慮する状態

鋼製防護壁の地震応答解折において、地震以外に考慮する状態を以下に示す。

- (1) 運転時の状態 発電用原子炉が運転状態にあり、通常の条件下におかれている状態。ただし、運転時の 異常な過渡変化時の影響を受けないことから考慮しない。
- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪及び風荷重を考慮する。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.3.2 荷重

鋼製防護壁の地震応答解折において、考慮する荷重を以下に示す。

- (1) 固定荷重(G)固定荷重は,固定荷重として,躯体自重を考慮する。
- (2) 積載荷重(P) 積載荷重は,積載荷重として機器及び配管荷重を考慮する。 なお,考慮する機器・配管荷重は表 3-2 のとおりである。

表 3-2 機器・配管荷重一覧表

機器	備考	
スクリーン室クレーン	840 kN	

(3) 地震荷重(K_s)

基準地震動S。による荷重を考慮する。

(4) 積雪荷重(P_s)

積雪荷重については、「建築基準法施行令第 86 条」及び「茨城県建築基準法施工細則 第 16 条の 4」に従って設定する。積雪の厚さ1 cm あたりの荷重を 20 N/m²/cm として、積 雪量は 30 cm としていることから積雪荷重は 600 N/m² であるが、地震時短期荷重として積 雪荷重の 0.35 倍である 0.21 kN/m²を考慮する。

(5) 風荷重(P_k)
 風荷重は、風荷重として、風速 30 m/s の風圧力を考慮する。

 $\mathbb{R}2$

3.3.3 荷重の組合せ

荷重の組合せを表 3-3 に示す。

表 3-3 荷重の組合せ

外力の状態	荷重の組合せ		
地震時(S _s)	$G + P + K_S + P_s + P_k$		
G:固定荷重			

P:積載荷重

K_s:地震荷重

P s:積雪荷重

P _k : 風荷重

3.4 入力地震動

入力地震動は、添付書類「V-2-1-6 地震応答解析の基本方針」のうち「2.3 屋外重量土 木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次元波 動論により地震応答解析モデル底面位置で評価したものを用いる。入力地震動算定の概念図を 図 3-3 に示す。図 3-4 に入力地震動の加速度時刻歴波形並びに加速度応答スペクトルを示す。

入力地震動の算定には、解折コード「k-SHAKE Ver. 6.2.0」を使用する。解折コードの検証 及び妥当性確認の概要については、添付書類「V-5-25 計算機プログラム(解析コード)の概 要・k-SHAKE」に示す。

図 3-3 入力地震動算定の概念図

MAX 620 cm/s^2 (53.46 s)

図 3-4(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面, ②-②断面及び③-③断面,水平成分: S_s-D1)

MAX 470 cm/s² (25.29 s)

図 3-4 (3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,水平成分: S_s-11)

MAX 522 cm/s² (25.01 s) 1000 800 600 400 加速度 (cm/s²) 200 0 -200 -400 -600 -800 -10000 50 100 150 200 時間 (s)

図 3-4 (4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-11)

MAX 415 cm/s^2 (25.95 s)

図 3-4(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (2)-2)断面及び3-3)断面,水平成分:S_s-11)

MAX 522 cm/s² (25.01 s) 1000 800 600 400 加速度 (cm/s²) 200 0 -200 -400 -600 -800 -10000 50 100 150 200 時間 (s)

図 3-4(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (2)-2)断面及び3-3)断面,鉛直成分:S_s-11)

図 3-4(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,水平成分:S_s-12)

図 3-4 (8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-12)

図 3-4 (10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (2-2)断面及び3-3)断面,鉛直成分: S_s-12)

NT2 補② V-2-10-2-2-1 R2
MAX 632 cm/s^2 (24.12 s)

図 3-4 (11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面及び水平成分: S_s-13)

図 3-4 (12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-13)

MAX 439 cm/s² (25.32 s)

図 3-4 (13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (2-2)断面及び3-3)断面,水平成分: S_s-13)

図 3-4 (14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (2-2)断面及び3-3)断面,鉛直成分: S_s-13)

MAX 359 cm/s^2 (28.20 s)

図 3-4 (15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,水平成分: S_s-14)

MAX 403 cm/s² (28.97 s) 1000 800 600 400 加速度 (cm/s²) 200 0 فرمانا للألبا -200 -400 -600 -800 -1000 └─ 0 50 100 150 200 時間 (s)

図 3-4 (16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-14)

MAX 344 cm/s^2 (31.25 s)

図 3-4 (17) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (2-2)断面及び3-3)断面,水平成分: S_s-14)

MAX 403 cm/s² (28.97 s) 1000 800 600 400 加速度 (cm/s²) 200 0 فرمانا للألبا -200 -400 -600 -800 -10000 50 100 150 200 時間 (s)

(b) 加速度応答スペクトル

図 3-4 (18) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (2-2)断面及び3-3)断面,鉛直成分: S_s-14)

NT2 補② V-2-10-2-2-1 R2

図 3-4 (19) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,水平成分: S_s-21)

MAX 733 cm/s² (68.81 s)

図 3-4 (20) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-21)

図 3-4 (21) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (2-2)断面及び3-3)断面,水平成分:S_s-21)

図 3-4 (22) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
 (②-②断面及び③-③断面,鉛直成分:S_s-21)

図 3-4 (23) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,水平成分: S_s-22)

NT2 補② V-2-10-2-2-1 R2

図 3-4 (24) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面,鉛直成分: S_s-22)

図 3-4 (25) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (②-②断面及び③-③断面,水平成分:S_s-22)

図 3-4 (26) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (②-②断面及び③-③断面,鉛直成分:S_s-22)

NT2 補② V-2-10-2-2-1 R2

MAX 574 cm/s^2 (8.25 s)

(a) 加速度時刻歷波形

図 3-4 (27) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面, ②-②断面及び③-③断面,水平成分: S_s-31)

図 3-4 (28) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (①-①断面, ②-②断面及び③-③断面, 鉛直成分: S_s-31)

NT2 補② V-2-10-2-2-1 R2

- 3.5 解析モデル及び諸元
- 3.5.1 解析モデル鋼製防護壁の地震応答解析モデルを図 3-5 に示す。
 - (1) 解析領域

地震応答解析モデル領域は,境界条件の影響が地盤及び構造物の応力状態に影響を及ぼ さないよう,十分広い領域とする。

- (2) 境界条件 地震応答解析時の境界条件については、有限要素解析における半無限地盤を模擬するた
 - め、粘性境界を設ける。
- (3) 構造物のモデル化 構造物は、線形はり要素によりモデル化する。
- (4) 地盤のモデル化 地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

図 3-5 (1) 鋼製防護壁の2次元地震応答解析モデル(①-①断面)

図 3-5 (3) 鋼製防護壁の2次元地震応答解析モデル(③-③断面)

3.5.2 使用材料及び材料の物性値

使用材料を表 3-4 に、材料の物性値を表 3-5 に示す。

材料		諸元	
	頂版コンクリート (鉄筋コンクリート)	設計基準強度 50 N/mm ²	
コンクリート	中詰めコンクリート (鉄筋コンクリート)		
	地中連続壁基礎	設計基準強度 40 N/mm ²	
	中実コンクリート (鉄筋コンクリート)	設計基準強度 40 N/mm ²	
	鉄筋	SD345, SD390, SD490	
鋼材	鋼製防護壁	SS400, SM400, SM490, SM490Y, SM520B相当, SM570, SBHS500, SBHS700	

表 3-4 使用材料

表 3-5 材料の物性値

材料		単位体積 重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比	減衰定数 (%)
鉄筋コン 設計基準強度 50 N/mm ^{2 *1}		24. 5^{*1}	3. $3 \times 10^{4*1}$	0. 2^{*1}	F *5
クリート	設計基準強度 40 N/mm ^{2 *2}	24. 5^{*2}	3. $1 \times 10^{4*2}$	0.2^{*2}	9
鋼材	SS400*3, SM400*3 SM490*3, SM490Y*3 SM520B相当*4, SM570*3 SBHS500* ^{7*8} , SBHS700*8	77. 0^{*3*4}	2. $0 \times 10^{5*3*4}$	0.3^{*3*4}	3*6

注記 *1:道路土エカルバート工指針(平成 21 年度版)(日本道路協会,平成 22 年 3 月)
*2:コンクリート標準示方書[構造性能照査編](土木学会,2002 年制定)
*3:道路橋示方書(I共通編・II鋼橋編)・同解説(日本道路協会,平成 14 年 3 月)
*4:鋼構造物設計基準(II鋼製橋脚編,名古屋高速道路公社,平成 15 年 10 月)
*5:原子力発電所耐震設計技術指針JEAG4601-1987(日本電気協会)
*6:道路橋示方書(V耐震設計編)・同解説(日本道路協会,平成 24 年 3 月)
*7:道路橋示方書(II鋼橋・鋼部材編)・同解説(日本道路協会,平成 29 年 11 月)
*8:新しい高性能鋼材の利用技術調査研究報告書~SBHS500(W),SBHS700(W)の設計・製作 ガイドライン(案)~(土木学会,平成 21 年 11 月) 鋼製防護壁アンカー(アンカーボルト)に使用する鋼材 SM520B 相当(使用材料)と鋼 材 SM520B(JIS G 3106)(比較材料)との機械的強度の比較を表 3-6 に,化学成 分の比較を表 3-7 に示す。

機械的強度,化学成分,いずれにおいても比較材料と同等であることを確認したため, 本設備において,SM520B相当を材料として使用することに問題ないと考える。

表 3-6 SM520B 相当と SM520B の機械的強度の比較

	<mark>引張強さ</mark>	<mark>降伏点又は耐力</mark>		
<mark>使用材料</mark>	<mark>520 N/mm²以上</mark>	<mark>355 N/mm²以上</mark>		
<mark>比較材料</mark>	$520{\sim}640$ N/mm 2	315 N/mm ² 以上		
<mark>比較結果</mark>	引張強さ及び降伏点	気は同等である。		

表 3-7 SM520B 相当と SM520B の化学成分の比較

					化学成为	分(%)				
	C	Si	<mark>Mn</mark>	P	S	<mark>Cu</mark>	Ni	Cr	Mo	V
<mark>使用</mark>	<mark>0. 22</mark>	<mark>0. 55</mark>	<mark>1. 60</mark>	<mark>0. 035</mark>	<mark>0. 035</mark>					
<mark>材料</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>					
<mark>比較</mark>	<mark>0. 20</mark>	<mark>0. 55</mark>	<mark>1. 65</mark>	<mark>0. 035</mark>	<mark>0. 035</mark>					
<mark>材料</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>					
<mark>比較</mark>	C, Mnの成分規定に差異があるが、以下により、本設備の環境下での使用は問題									
<mark>結果</mark>	ないと考える。									
	C :一般的に機械的強度に影響を与える成分であり、Cの増加と共に引張強さが									
	増	加し,表	- 3-6 の言	平価結果	からも機	滅強度に	は同等で	ある。		
	Mn:一般的に機械的強度に影響を与える成分であり,添加により焼き入れ性が									
	<mark>向_</mark>	上するが	<mark>,有意</mark> た	診響を-	与えるも	のではな	xく,表	3-6の評	価結果が	らも機
	<mark>械強度は同等である。</mark>									

3.5.3 地盤の物性値

地盤の物性値は、添付書類「V-2-1-3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

3.5.4 地下水位

地下水位は地表面として設定する。

- 4. 耐震評価
- 4.1 評価対象部位

評価対象部位は、鋼製防護壁の構造的特徴や周辺状況の特徴を踏まえて設定する。

(1) 構造部材の健全性評価

構造部材の健全性に係る評価対象部位は,鋼製防護壁,地中連続壁基礎を連結する鋼製防 護壁アンカー及び地中連続壁基礎の各鉄筋コンクリート部材について設定する。

(2) 基礎地盤の支持性能<mark>評価</mark>

基礎地盤の支持性能に係る評価対象部位は,鋼製防護壁の下部工となる地中連続壁基礎を 支持する基礎地盤とする。

(3) 構造物の変形性評価
 構造物の変形性評価に係る評価対象部位は、構造物間に設置する止水ジョイント部材のシートジョイントとする。

4.2 解析方法

(1) 鋼製防護壁

鋼製防護壁の耐震評価は、地震応答解析で示した地盤~構造物の連成系モデルを用いた2 次元有効応力解析から得られる基礎天端の変位時刻歴を入力とする3次元動的フレーム解析 を行い、地震時の水平2方向及び鉛直方向地震力に対する構造健全性を確認する。

耐震評価には,解折コード「TDAPⅢ Ver. 3.08」を使用する。解折コードの検証及び妥当 性確認の概要については,添付書類「V-5-45 計算機プログラム(解析コード)の概 要・TDAPⅢ」に示す。

(2) 地中連続壁基礎

地中連続壁基礎の耐震評価は,地震応答解析で示した地盤~構造物の連成系モデルを用いた2次元有効応力解析を行い,地震時の構造健全性及び支持性能を確認する。

- 4.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、添付書類「V-2-1-9 機能維持の基本方針」に基づき設定する。
 - (1) 耐震評価上考慮する状態鋼製防護壁の耐震評価において、地震以外に考慮する状態を以下に示す。
 - a. 運転時の状態 発電用原子炉が運転状態にあり,通常の条件下におかれている状態。ただし,運転時の 異常な過渡変化時の影響を受けないことから考慮しない。
 - b. 設計基準事故時の状態 設計基準事故時の影響を受けないことから考慮しない。
 - c. 設計用自然条件 積雪及び風荷重を考慮する。
 - ・重大事故等時の状態
 ・重大事故等時の状態の影響を受けないことから考慮しない。
 - (2) 荷重

鋼製防護壁の耐震評価において、考慮する荷重を以下に示す。

- a. 固定荷重(G) 固定荷重は, 躯体自重を考慮する。
- b. 積載荷重(P)
 積載荷重は,機器及び配管荷重を考慮する。
 なお,考慮する機器・配管荷重は表 4-1 のとおりである。

表 4-1 機器・配管荷重一覧表

機器	備考
スクリーン室クレーン	840 kN

c. 地震荷重(K_s)

基準地震動S。による荷重を考慮する。

d. 積雪荷重(P_s)

積雪荷重については、「建築基準法施行令第 86 条」及び「茨城県建築基準法施工細則 第 16 条の 4」に従って設定する。積雪の厚さ1 cm あたりの荷重を 20 N/m²/cm として、積 雪量は 30 cm としていることから積雪荷重は 600 N/m² であるが、地震時短期荷重として積 雪荷重の 0.35 倍である 0.21 kN/m²を考慮する。

e. 風荷重(P_k)
 風荷重は、風速 30 m/s の風圧力を考慮する。

(3) 荷重の組合せ荷重の組合せを表 4-2 に示す。

表 4-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時(S _s)	$G + P + K_S + P_s + P_k$
G:固定荷重	

P:積載荷重

K_s:地震荷重

P s:積雪荷重

P k: 風荷重

4.4 許容限界

許容限界は、添付書類「V-2-1-9 機能維持の基本方針」に基づき設定する。

(1) 鉄筋コンクリート(地中連続壁基礎)の許容限界
 鉄筋コンクリート(地中連続壁基礎)の構造部材は,許容応力度法による照査を行う。
 表 4-3 にコンクリート及び鉄筋の許容限界を示す。

	許容限界 (N/mm ²)		
	f' _{ck} =50 N/mm ² *3	短期許容曲げ圧縮応力度 σ _{ca}	24.0
		短期許容せん断応力度 τ _{al}	0.825^{*5}
		短期許容付着応力度τa	6. 0^{*4}
コンクリート		短期コーンせん断応力度 t coal	0.825*4
		短期コーンせん断応力度 τ _{coa2}	1.815^{*4}
	f' _{ck} =40 N/mm ^{2 *1}	短期許容曲げ圧縮応力度 o _{ca}	21.0
		短期許容せん断応力度 τ _{al}	0.825^{*5}
	SD490*2	短期許容引張応力度 σ_{sa}	435
鉄筋	SD390*1	短期許容引張応力度 σ sa	309
	$SD345^{*1}$	短期許容引張応力度 σ_{sa}	294

表 4-3 鉄筋コンクリートの許容限界

注記 *1:コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成24年3月)

*3: 道路土工カルバート工指針(平成21年度版)(日本道路協会,平成22年3月)

*4:鋼構造物設計基準(Ⅱ鋼製橋脚編,名古屋高速道路公社,平成15年10月)における コンクリートの設計基準強度27 N/mm²に対応する値を適用する。

*5:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編](土 木学会、2002年制定)」に基づき設定する。

(2) 鋼製防護壁及び鋼製防護壁アンカーの許容限界

許容限界については各規格,基準類に基づき表 4-4 のとおり設定する。表 4-4 に示す許容 限界は短期許容応力度とし,短期許容応力度は,鋼材の許容応力度に対して 1.5 倍の割増し を考慮する。

	許容限界 (N/mm ²)					
	CHAOOV	短期許容曲げ引張応力度 o sa	315*1			
	5M490Y	短期許容せん断応力度 τ _{sa}	180^{*1}			
鋼材	SM520B 相当	SM520B相当 短期許容曲げ引張応力度 σ _{sa}				
	SM570	短期許容曲げ引張応力度 σ _{sa}	382.5^{*1}			
		短期許容せん断応力度 τ _{sa}	217. 5^{*1}			
	SBHS500	短期許容曲げ引張応力度 σ _{sa}	442. 5^{*1*3}			
		短期許容せん断応力度 τ _{sa}	255^{*1*3}			
	CDUC700	短期許容曲げ引張応力度 σ _{sa}	615^{*1*3}			
	SBH2700	短期許容せん断応力度 τ _{sa}	352.5^{*1*3}			

表 4-4 鋼材の許容限界

注記 *1:道路橋示方書(I共通編・Ⅱ鋼橋編)・同解説(日本道路協会,平成14年3月)
 上記値は、板厚 40 mm 以下の値を示す。板厚が 40 mm を超える場合は、3.2.1、
 3.2.3、14.3に示される許容応力度を用いる。

*2:鋼構造物設計基準(Ⅱ鋼製橋脚編,名古屋高速道路公社,平成15年10月)を適用 する。

*3:新しい高性能鋼材の利用技術調査研究報告書~SBHS500(W), SBHS700(W)の設計・製 作ガイドライン(案)~(土木学会,平成21年11月)

(3) 基礎地盤の支持性能評価における許容限界

極限支持力は, 添付書類「V-2-1-3 地盤の支持性能に係る基本方針」に基づき, 道路橋 示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説(日本道路協会, 平成 24 年 3 月)により設定 する。極限支持力度を表 4-5 に示す。

項目	許容限界
極限支持力度q _d (kN/m ²)(北基礎)	6116
極限支持力度q _d (kN/m ²)(南基礎)	5991

表 4-5 基礎地盤の支持性能に対する許容限界

注記 *: 非排水せん断強度C_{CUU}=(0.837-0.00346・Z)×1000 (kN/m²)

基礎底面標高 北側基礎: Z = T. P. -52.7 (m) 南側基礎: Z = T. P. -46.7 (m) (4) 構造物の変形性に対する許容限界

止水ジョイント部材の変形量の許容限界は、メーカー規格、漏水試験及び変形試験により、 有意な漏えいが生じないことを確認した変形量とする。表 4-6 に止水ジョイント部材の変形 量の許容限界を示す。

表 4-6 止水ジョイント部材の変形量の許容限界

評価項目	許容限界
止水ジョイント部材	9
(シートジョイント)	2 m

- 4.5 解析モデル及び諸元
 - (1) 解析モデル

鋼製防護壁の耐震評価には,解折コード「TDAPⅢ Ver. 3.08」を使用する。解折コードの 検証及び妥当性確認の概要については,添付書類「V-5-45 計算機プログラム(解析コー ド)の概要・TDAPⅢ」に示す。また,下記に鋼製防護壁の動的解析モデルについて示 す。

a. 鋼製防護壁の動的解析モデルのモデル化

水平(X方向)隔壁及び鉛直(Z方向)隔壁の交差位置並びに添接板継手位置を節点とし、それらを結合したはり要素で構成される格子モデルとする。モデル化の概念を図4-1に示す。

- i) 主桁部材(水平方向)は、外壁鋼板をフランジ、水平(X方向)隔壁をウェブとみなした I 断面とする(図 4-1 の青色表示部分)。
- ii) 横桁部材(鉛直方向)は、外壁鋼板をフランジ、鉛直(Z方向)隔壁をウェブとみなした I 断面とする(図 4-1 の赤色表示部分)。
- iii) ねじれ剛性は、外面鋼板が連続していることから、箱断面として算定したねじれ剛 性を両部材に考慮する。

図4-1 鋼製防護壁の上部構造におけるモデル化の概念図

b. 荷重条件

(a) 基礎天端の変位時刻歴

鋼製防護壁の上部構造の3次元動的フレーム解析は、入力地震動としての南北基礎天端の時刻歴応答から、南北基礎天端の相対変位が最大となるケースを抽出する。

2次元有効応力解析により算定される基礎天端中心における並進3成分(堤軸方向, 堤軸直交方向,鉛直方向)及び回転2成分(堤軸方向断面内,堤軸直交方向断面内の回 転成分)の変位時刻歴を3方向同時加振として入力する。これにより鋼製防護壁に慣性 力が作用することとなる。2次元有効応力解析からの変位時刻歴入力の概念図を図 4-2 に示す。

なお,水平成分については南北それぞれの応答時刻歴を入力し,鉛直成分については 南北それぞれの鉛直変位が大きい堤軸直交方向の応答時刻歴を入力する。

図 4-2 2次元有効応力解析による変位時刻歴の入力概念図

c. 水平回転成分の考慮

前述の2次元有効応力解析では堤軸直交方向への水平回転成分を同じ解析モデルにて堤 軸直交方向の水平震度による静的解析を行う。

これにより得られる応答値を,「a.」で得られる断面力のうち堤軸直交方向加振時の断面力に重ね合わせて水平回転成分による影響を考慮する。

水平回転成分の重ね合わせの概念を図 4-3 に示す。

図 4-3 水平回転成分の重ね合わせの概念図

(2) 使用材料及び材料の物性値

使用材料を表 4-7 に、材料の物性値を表 4-8 に示す。

	材料	諸元		
	頂版コンクリート			
	(鉄筋コンクリート)	設計其進強度 50 N/mm ²		
	中詰めコンクリート	取司坐平强反 50 M Ⅲ		
コンクリート	(鉄筋コンクリート)			
	地中連続壁基礎	設計基準強度 40 N/mm ²		
	中実コンクリート			
	(鉄筋コンクリート)	成可盔竿强反 40 W IIII		
鉄筋		SD345, SD390, SD490		
全国大士	公园 街山 7古 3年 日辛	SM490Y, SM520B 相当, SM570,		
亚門个门	剩 祝 的 遗 生	SBHS500, SBHS700		

表 4-7 使用材料

表 4-8 材料の物性値

材料		単位体積重 量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比	減衰定数 (%)
鉄筋コン	設計基準強度 50 N/mm ^{2 *1}	24. 5^{*1}	3. $3 \times 10^{4*1}$	0. 2^{*1}	F * 5
クリート 設計基準強度 40 N/mm ^{2 *2}		24. 5^{*2}	3. $1 \times 10^{4*2}$	0. 2^{*2}	5
	SM490Y* ³				
鋼材	SM520B相当*4, SM570*3	77. 0^{*3*4}	2. $0 \times 10^{5*3*4}$	0.3^{*3*4}	3^{*6}
	SBHS500 ^{*7*8} , SBHS700 ^{*8}				

注記 *1:道路土工カルバート工指針(平成21年度版)(日本道路協会,平成22年3月)

*2:コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)

*3:道路橋示方書(I共通編・II鋼橋編)・同解説(日本道路協会,平成14年3月)

*4:鋼構造物設計基準(Ⅱ鋼製橋脚編,名古屋高速道路公社,平成15年10月)

*5: JEAG4601-1987 (日本電気協会)

*6:道路橋示方書(V耐震設計編) ·同解説(日本道路協会,平成24年3月)

*7:道路橋示方書(II鋼橋・鋼部材編)・同解説(日本道路協会,平成29年11月)

*8:新しい高性能鋼材の利用技術調査研究報告書~SBHS500(W), SBHS700(W)の設計・製作

ガイドライン (案) ~ (土木学会, 平成 21 年 11 月)

鋼製防護壁アンカー(アンカーボルト)に使用する鋼材 SM520B 相当(使用材料)と鋼材 SM520B(JISG3106)(比較材料)との機械的強度の比較を表 4-9に,化学成分 の比較を表 4-10に示す。

機械的強度,化学成分,いずれにおいても比較材料と同等であることを確認したため,本 設備において,SM520B相当を材料として使用することに問題ないと考える。

表 4−9 SM520B 相当と SM520B の機械的強度の比較

	<mark>引張強さ</mark>	<mark>降伏点又は耐力</mark>			
<mark>使用材料</mark>	<mark>520 N/mm²以上</mark>	<mark>355 N/mm²以上</mark>			
<mark>比較材料</mark>	$520{\sim}640$ N/mm 2	<mark>315 N/mm²以上</mark>			
<mark>比較結果</mark>	引張強さ及び降伏点	京は同等である。			

表 4-10 SM520B 相当と SM520B の化学成分の比較

							1 - 1 - 1 - 1					
	化学成分(%)											
	C	Si	<mark>Mn</mark>	P	<mark>S</mark>	<mark>Cu</mark>	Ni	<mark>Cr</mark>	Mo	V		
<mark>使用</mark>	<mark>0. 22</mark>	<mark>0. 55</mark>	<mark>1. 60</mark>	<mark>0. 035</mark>	<mark>0. 035</mark>							
<mark>材料</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>							
<mark>比較</mark>	<mark>0. 20</mark>	<mark>0. 55</mark>	<mark>1. 65</mark>	<mark>0. 035</mark>	<mark>0. 035</mark>							
<mark>材料</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>	<mark>以下</mark>							
<mark>比較</mark>	C, Mnの成分規定に差異があるが、以下により、本設備の環境下での使用は問題											
<mark>結果</mark>	ないと	考える。										
	C :一般的に機械的強度に影響を与える成分であり、Cの増加と共に引張強さが											
	増加し,表 4-9の評価結果からも機械強度は同等である。											
	Mn:一般的に機械的強度に影響を与える成分であり,添加により焼き入れ性が											
	向_	上するが	<mark>,有意</mark> な	診響を-	与えるも	のではな	cく,表	D 4 - 9 の	評価結果	からも		
	機構	滅強度は	<mark>同等で</mark> あ	53。								
4.6 評価方法

鋼製防護壁の耐震評価は、地震応答解析に基づき算定した発生応力が「4.4 許容限界」で 設定した許容限界以下であることを確認する。表 4-11 に許容限界と照査方法を示す。

	耐震設計							
部位								
	許容限界	昭本古注						
	(割増し係数)	照宜力法						
上部構造		3次元同時加振による照査						
	鋼材:1.5	(3次元同時加振による同時刻の断面力の						
		組合せを用いた照査値による照査)						
	コンクリート:1.5	3次元同時加振による照査						
接合部	鉄筋:1.5	(3次元同時加振による同時刻の断面力の						
	鋼材:1.5	組合せを用いた照査値による照査)						
下部構造	コンクリート:1.5	2次元同時加振による照査						
	谷生存在 1 日	(2次元同時加振による同時刻の断面力の						
	<u> </u>	組合せを用いた照査値による照査)						

表 4-11 許容限界と照査方法

(1)構造部材の健全性評価

a. 地中連続壁基礎

鉄筋コンクリートの曲げ軸力照査及びせん断力照査に対して,地震応答解析に基づき算 定した発生応力が許容限界以下であることを確認する。

曲げ軸力照査における最大照査値の評価時刻での断面力図及びせん断力照査における最 大照査値の評価時刻での断面力図を図 4-4 に示す。断面力図は、断面寸法が同一で配筋も 同一な部材はグループ化し、各グループで最も厳しい照査値となる部材の断面力図を示 す。

また,地中連続壁基礎と中実鉄筋コンクリートはジベル鉄筋で一体化するものとし,

「トンネル標準示方書[共通編]・同解説/[開削工法編]・同解説」(土木学会,2006 制 定)に基づき,ジベル鉄筋の配置及びせん断力の照査を実施する。

配置するジベル鉄筋は, 接合面に作用するせん断力に対し, 必要な強度となる本数及び 設置間隔を設計する。

図 4-4(1) 地中連続壁基礎の曲げ軸力照査における最大照査値の評価時刻での断面力

(①-①断面 北基礎 中央)

 $(S_s - D_1, t = 26.95 s)$

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 4-4(2) 地中連続壁基礎のせん断力照査における最大照査値の評価時刻での断面力

(①-①断面 南基礎 上部)

 $(S_s - D_1, t = 26.99 s)$

(解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 4-4 (3) 地中連続壁基礎の曲げ軸力照査における最大照査値の評価時刻での断面力

(②-②断面 北基礎 下部)

 $(S_s - 31, t = 8.91 s)$

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 4-4(4) 地中連続壁基礎のせん断力照査における最大照査値の評価時刻での断面力 (3-3)断面 南基礎 上部)

(3-5)所面 用基礎 上部) ($S_s - D 3 1$, t = 8.82 s)

(解析ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

b. 鋼製防護壁

<mark>(a)</mark> 鋼製防護壁

堤軸方向,堤軸直交方向それぞれの2次元動的有効応力解析から得られる基礎天端の 変位時刻歴を3次元動的フレームモデルに同時入力する動的解析を実施して応力照査を 行う。

鉛直変位については,それぞれの方向の変位時刻歴のうち,最大変位が大きくなる弱 軸方向の結果を用いる。

(b) 中詰め鉄筋コンクリートと鋼殻との接合部

鋼製防護壁の上部構造は、外壁と水平及び鉛直隔壁部材のみで荷重を受け持つ設計と するが、頂版鉄筋コンクリートとの接合部においては、後述の通り、水平回転モーメン ト(水平トルク)及び水平力によるせん断力に対しては、設計上アンカーボルトの抵抗 力を期待せず、鉄筋コンクリートのみで負担可能とする。したがって、鋼製防護壁の上 部構造に作用する荷重を中詰め鉄筋コンクリートから頂版鉄筋コンクリートへ確実に伝 達するために、上部構造の中詰め鉄筋コンクリートと鋼殻を一体化する。

中詰め鉄筋コンクリートと鋼殻はスタッドで一体化するものとし、「道路橋示方書 (I共通編・II鋼橋編)・同解説」(日本道路協会、平成14年3月)に基づき、スタ ッドの配置及びせん断力の照査を実施する。

配置するスタッドは,接合面に作用するせん断力に対し,必要な強度となる本数及び 設置間隔を設計する。

せん断力は,鉛直方向と水平方向の曲げモーメント及び水平回転モーメント(水平ト ルク)を換算したせん断力と水平力によるせん断力を考慮する。

- c. 鋼製防護壁(接合部)
- (a) 設計思想

アンカーボルトは本来,引抜き力及びせん断力に抵抗できる部材であることから,「鋼構造物設計基準(名古屋高速道路公社)」の「7.2 アンカー部の設計方法」においては,アンカーボルトに水平方向のせん断力も許容限界以下で受けもたせる設計方法となっている。

しかし,鋼製防護壁においては,保守的な配慮として,接合部の水平回転モーメント (水平トルク)及び水平力によるせん断力に対しては設計上アンカーボルトの抵抗力を 期待せず,接合部の水平回転モーメント及び水平力によるせん断力に対しては,設計上 鉄筋コンクリートのみの耐力でも弾性範囲内で負担可能とする。

(b) 接合部の設計方針

鋼製防護壁は浸水防護施設であることから,地震時に対しても,構造部材の弾性範囲 内で設計を行う。

鋼製防護壁本体の自重及び地震や津波による設計荷重を確実に基礎へ伝達させる。 引抜き力に対しては,「鋼構造物設計基準(名古屋高速道路公社)」を適用し,設計 上アンカーボルトのみで負担可能とする。

水平回転モーメント及び水平力によるせん断力に対しては、「道路橋示方書(日本道 路協会)」、「コンクリート標準示方書[構造性能照査編](土木学会)」に基づき設 計上中詰め鉄筋コンクリート及び頂版鉄筋コンクリートのみで負担可能とする。 接合部の荷重分担の概念図を図 4-5 に示す。

図 4-5 接合部の荷重分担の概念図

(c) 接合部の評価

接合部のアンカーボルトに対しては、2軸複鉄筋断面の鉄筋コンクリート断面として 評価する。鋼製防護壁の上部構造と基礎との接合部は、鉛直軸力と面内及び面外曲げモ ーメントに対して抵抗するものとし、せん断力と水平回転モーメントについては、中詰 め鉄筋コンクリート及び頂版鉄筋コンクリートで負担する。

アンカーボルトの設計荷重は,鋼製防護壁の上部構造は3次元動的フレーム解析に基 づき算定されるアンカーボルト1本当たりの付着力と押込力とし,アンカーボルトの引 張応力,付着応力及びコーンせん断応力が許容限界以下であることを確認する。

イ. アンカーボルトの評価

アンカーボルトの評価は、短期許容応力度と母材の断面積をもとに算定する。

ロ.アンカーボルトの定着長の評価アンカーボルトの定着長の評価は、付着強度に基づき定める。

ハ. 定着部コーンせん断応力に対する評価

定着部のコンクリートのコーンせん断応力に対する評価における設計荷重は,鋼製防護壁の上部構造における3次元動的フレーム解析に基づき算定されるアンカーボルト1本当たりの軸力とする。定着部のコーンせん断応力の照査を行い,補強鉄筋が必要な場合には適切な補強鉄筋量を算定する。

コーンせん断面の有効水平投影面積には,アンカーボルト同士が近接する場合を考 慮の上,定着部鉄筋コンクリートの応力が許容限界以下であることを確認する。 (2) 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては,基礎地盤に生じる接地圧が極限支持力に基づく許容 限界以下であることを確認する。

接地圧が許容限界に対して最も厳しくなる解析ケースにおいて,基礎地盤に生じる最大接 地圧分布を図 4-6 に示す。

図 4-6(1) ①-①断面北基礎地盤の最大接地圧分布図(S_s-D1) (解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 4-6(2) ①-①断面南基礎地盤の最大接地圧分布図(S_s-D1) (解析ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 4-6(4) ③-③断面南基礎地盤の接地圧分布図(S_s-31)
 (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
 地盤を強制的に液状化させることを仮定した解析ケース)

(3) 構造物の変形性評価

地震応答解析で求められる止水ジョイント部材の変形量が許容限界以下であることを確認 する。

- 5. 耐震評価結果
- 5.1 構造部材の健全性に対する評価結果
 - (1) 地中連続壁基礎に対する評価結果
 - a. 地中連続壁基礎の曲げ軸力に対する評価結果

コンクリートの曲げ軸力に対する照査結果を表 5-1 に,鉄筋の曲げ軸力に対する照査結 果を表 5-2 に,せん断力に対する照査結果を表 5-3 に示す。照査値は,断面寸法が同一で 配筋も同一な部材はグループ化し,各グループで最も厳しい照査値となる部材の照査値を 示す。また,概略配筋図を図 5-1 に示す。

地中連続壁基礎の構造部材の発生応力が許容限界以下であることを確認した。

解析 ケース	地震動	評価位置		断面性状			発生断	面力	圧縮	短期許容 応力度 σ _{ca} (N/mm ²)	
			部材幅 b(mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げ モーメント (kN・m)	軸力 (kN)	$\sigma_{\rm c}$ (N/mm ²)		照査値 σ _c /σ _{ca}
1	S _s – 3 1	北-上部	15500	15500	13116	D51@150 (7段)	2363674	166377	4.9	21	0.24
4	S _s – D 1	南-中央	15500	15500	12180	D51@150 (17段)	2414071	232358	4.3	21	0.21
4	S _s – D 1	北-中央	15500	15500	13392	D51@150 (5段)	2270981	19386	5.0	21	0.24
4	S _s – D 1	南−下部	15500	15500	13578	D51@150 (4段)	1826236	265644	4.2	21	0.20

表 5-1(1) コンクリートの曲げ軸力照査における各評価位置での最大照査値(①-①断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

北基礎

同一部材 (グループ) 🚫 :上部・・・北基礎,南基礎 👿 :中央・・・北基礎

解析 ケース	地震動	評価位置	断面性状				発生断面力		圧縮	短期許容	
			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げ モーメント (kN・m)	軸力 (kN)	応力度 σ_{c} (N/mm ²)	σ_{ca} (N/mm ²)	照査値 σ _c /σ _{ca}
3	S _s – 3 1	南−上部	15500	15500	13116	D51@150 (7段)	1912195	175254	4.0	21	0.20
3	S _s – 3 1	南-中央	15500	15500	12180	D51@150 (17段)	2961745	218370	5.3	21	0.26
1)	S _s – 3 1	北-中央	15500	15500	13392	D51@150 (5段)	2394817	327514	5.4	21	0.26
1)	S _s – 3 1	北−下部	15500	15500	13578	D51@150 (4段)	2534777	354745	5.9	21	0.29

表 5-1(2) コンクリートの曲げ軸力照査における各評価位置での最大照査値 (2)-2)断面, 3)-3)断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

③:地盤物性のばらつきを考慮(-1 g)した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

解析 ケース	地震動	評価位置		断面性状		鉄筋仕様 (引張鉄筋)	発生断	面力	発生	短期許容	
			部材幅 b(mm)	部材高 h (mm)	有効高 d (mm)		曲げモーメント (kN・m)	軸力 (kN)	σ_{s} (N/mm ²)	σ_{sa} (N/mm ²)	畑笡値 σ _s ∕σ _{sa}
4	S _s – D 1	北-上部	15500	15500	13116	D51@150 (7段)	2451095	20963	168.0	435	0.39
1	S _s – D 1	南-中央	15500	15500	12180	D51@150 (17段)	2242734	171871	70.0	435	0.17
4	S _s – D 1	北-中央	15500	15500	13392	D51@150 (5段)	2270981	19386	176.0	435	0.41
4	S _s – D 1	南−下部	15500	15500	13578	D51@150 (4段)	1620177	201929	63.0	435	0.15

表 5-2 (1) 鉄筋の曲げ軸力照査における各評価位置での最大照査値(①-①断面)

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

同一部材(グループ) 🚫 :上部・・・北基礎,南基礎 :中央・・・南基礎 👿 :中央・・・北基礎 :下部・・・北基礎,南基礎

	地震動	評価位置		断面性状		鉄筋仕様 (引張鉄筋)	発生断	面力	発生	短期許容	
解析 ケース			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)		曲げモーメント (kN・m)	軸力 (kN)	応力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ _s /σ _{sa}
1)	S _s – D 1	南−上部	15500	15500	13116	D51@150 (7段)	1899196	158335	79.0	435	0.19
1)	S _s – D 1	南-中央	15500	15500	12180	D51@150 (17段)	2886147	182219	95.0	435	0.22
5	S _s – D 1	北-中央	15500	15500	13392	D51@150 (5段)	2251291	253370	88.0	435	0.21
5	S _s – D 1	北-下部	15500	15500	13578	D51@150 (4段)	2262196	258040	97.0	435	0.23

表 5-2 (2) 鉄筋の曲げ軸力照査における各評価位置での最大照査値

(2-2)断面, 3-3)断面)

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

②:鉄筋の配置間隔評価位置は下図に示す。

1	司一部材	(グループ)	
	:上 <mark>部</mark> ・	×	・北基礎,	南基礎
	:中央・	•	・南基礎	
	:中央・	•	・ 北基礎	
	:下部・	•	・北基礎,	南基礎

	地震動	評価位置		ĕ	断面性状					
解析 ケース			部材幅 b(mm)	部材高 h(mm)	連続壁基礎 有効高 d (mm)	中実コン クリート 有効高 d (mm)	鉄筋仕様 (せん断補強筋)	発生 せん断力 V (kN)	短期許容 せん断力 V _a (kN)	照查値 V/V a
4	S _s -D1 H-, V+	南−上部	15500	15500	14280	10270	14-D38 @300	203333	226924	0.90
4	S _s -D1 H-, V+	南-中央	15500	15500	14280	9520	34-D38 @300	267372	410783	0.66
1	S s -D 1 H+, V+	北-中央	15500	15500	14280	10420	24-D38 @300	135520	335426	0.41
4	S _s -D1 H+, V-	北-下部	15500	15500	14280	10495	24-D38 @300	154559	337247	0.46

表 5-3(1) 鉄筋コンクリートのせん断力照査における各評価位置での最大照査値(①-①断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

1	司一部材	(グループ)	
	:上 <mark>部</mark> ・	×	・北基礎,	南基礎
	:中央・	•	・南基礎	
	:中央・	•	・ 北基礎	
annn a	:下部・	٠	·北基礎,	南基礎

表 5-3(2) 鉄筋コンクリートのせん断力照査における各評価位置での最大照査値

		評価位置		ž	断面性状			登生		
解析 地震動	地震動		部材幅 b(mm)	部材高 h (mm)	連続壁基礎 有効高 d (mm)	中実コン クリート 有効高 d (mm)	鉄筋仕様 (せん断補強筋)	ルエ せん断力 V (kN)	短期許容 せん断力 V _a (kN)	照査値 V/V _a
3	S _s -31	南−上部	15500	15500	14280	10270	14-D38 @300	144845	226924	0.64
4	S _s -31	南-中央	15500	15500	14280	9520	34-D38 @300	165949	410783	0.41
4	S _s – D 1	北-中央	15500	15500	14280	10420	24-D38 @300	128987	335426	0.39
4	S _s -D1	北-下部	15500	15500	14280	10495	24-D38 @300	143805	337247	0. 43

(2-2)断面, 3-3)断面)

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース @:鉄筋の配置間隔

評価位置は下図に示す。

図 5-1 (1) 南基礎上部概略配筋図

図 5-1 (2) 南基礎中央概略配筋図

図 5-1 (3) 南基礎下部概略配筋図

図 5-1 (4) 北基礎上部概略配筋図

図 5-1 (5) 北基礎中央概略配筋図

図 5-1 (6) 北基礎下部概略配筋図

b. 地中連続壁基礎と中実鉄筋コンクリートの一体化に対する評価結果
 ジベル鉄筋の配置及びせん断力の照査結果を表 5-4 に示す。ジベル鉄筋の仕様及び配置
 図を図 5-2 に示す。

ジベル鉄筋の発生せん断力が許容限界以下であることを確認した。

		ジベル銵	的配置	怒仕 井 / 断力	短期許容								
評価部位		そ月十百	鉛直方向	光生でん例/J	せん断力	照査値*							
		水平方向		(KIN/III)	(kN/m)								
	上部	D29@300	D29@150	63228	150095	0.43							
南基礎	中央	D29@150	D29@150	78878	306271	0.26							
	下部	D29@300	D29@150	57101	168981	0.34							
	上部	D29@300	D29@150	56879	128279	0.45							
北基礎	中央	D29@150	D29@150	30239	87902	0.35							
	下部	D29@300	D29@150	30143	72235	0. 42							

表 5-4 ジベル鉄筋の配置及びせん断力の照査結果

注記 *:3次元同時加振による同時刻の断面力の組合せを用いた照査値

図 5-2(1) ジベル鉄筋の仕様及び配置図(南基礎上部・北基礎上部)

図 5-2 (2) ジベル鉄筋の仕様及び配置図(南基礎中央)

図 5-2(3) ジベル鉄筋の仕様及び配置図(北基礎中央)

図 5-2(4) ジベル鉄筋の仕様及び配置図(南基礎下部・北基礎下部)

- (2) 鋼製防護壁に対する評価結果
 - a. 鋼製防護壁の評価結果
 鋼製防護壁の構造図を図 5-3 に、板厚構成図を図 5-4 に示す。

NT2 補② V-2-10-2-2-1 R2

図 5-3(2) 鋼製防護壁構造図(その2)

図 5-4(1) 板厚構成図(その1)

図 5-4(2) 板厚構成図(その2)

図 5-4 (3) 板厚構成図 (その3)

図 5-4(4) 板厚構成図(その4)

図 5-4 (5) 板厚構成図 (その5)

図 5-4 (8) 板厚構成図 (その8)

図 5-4(9) 板厚構成図(その9)

図 5-4 (10) 板厚構成図 (その10)

b. 外壁及び隔壁からなる主部材の評価結果

外壁及び隔壁からなる主部材の<mark>照査</mark>結果を表 5-5 に示す。また,最大照査値発生箇所を 図 5-5 に示す。

外壁及び隔壁からなる主部材の発生応力が許容限界以下であることを確認した。

解析 ケース	地震動	応力成分	材質	発生値	<mark>許容限界</mark>	照查值*2
4	S _s – D 1	直応力度 σ (N/mm ²)	SBHS700	530	615	0.87
		せん断応力度 τ (N/mm ²)	SBHS700	270	352.5	0.77
		合成応力度 k*1 (-)	SBHS500	1.16	1.2	0.97

表 5-5 外壁及び隔壁からなる主部材の<mark>照査</mark>結果

注記 *1: 合成応力度 k= $(\sigma / \sigma_a)^2 + (\tau / \tau_a)^2$

*2: 3次元同時加振による同時刻の断面力の組合せを用いた照査値で、水平2方向及び鉛直方向地震力を考慮し、 かつ、解放基盤表面における基準地震動とし、鋼製防護壁の弱軸断面方向と強軸断面方向の水平2方向に同位 相の基準地震動を入力することで、水平2方向の位相差の不確実性を全て網羅した最大限の保守性を考慮した 設計における最大照査値である。

④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

図 5-5 最大照查值発生箇所

c. 中詰め鉄筋コンクリートと鋼殻の接合部の評価結果

中詰め鉄筋コンクリートと鋼殻とは、鋼殻側にずれ止めのためのスタッドを配置し一体 化する。南北基礎の各断面力成分が最大値をとる時刻の発生断面力の足し合わせを設計断 面力として必要スタッド量を算定した。評価結果を表 5-6 に、スタッドの仕様及び配置図 を図 5-6 に示す。スタッドは、外面鋼板の内面及び鉛直隔壁の両面に配置する。

	1 410 17					
	面外	面内	水平回転	面外回転	面内回転	心声
部位	せん断力	せん断力	モーメント	モーメント	モーメント	北安 フタッド星*
	(kN)	(kN)	$(kN \cdot m)$	$(kN \cdot m)$	$(kN \cdot m)$	ハグツ下里
南北面	61446	4014	1769140	340495	59824	168 mm 格子
東西面	53348	37483	819714	204043	1691080	143 mm 格子

表 5-6 中詰め鉄筋コンクリートと鋼殻の一体化のためのスタッドの評価結果

注記 *: 3次元同時加振による同時刻の断面力の組合せを用いた評価結果

図 5-6 スタッドの仕様及び配置図

- (3) 鋼製防護壁(接合部)の評価結果
 - a. アンカーボルトの評価結果 アンカーボルトの<mark>照査</mark>結果を表 5-7 に,構造図を図 5-7 に示す。 アンカーボルトの発生応力が許容限界以下であることを確認した。

	4	KUI /	· / //		
				アンカーボルト	
解析			引張応	5力度(N/mm²)	
ケージ	地震動 ス	基礎	発生応力	短期許容応力度	照查值*
	S _ D 1	南基礎	288	315.0	0.92
(4)	3 _s -D1	北基礎	294	315.0	0. 94

表 5-7 アンカーボルトの照査結果

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース *: 3次元同時加振による同時刻の断面力の組合せを用いた照査値

b. アンカーボルトの定着長の評価結果

アンカーボルトの定着長の<mark>照査</mark>結果を表 5-8 に示す。 アンカーボルトの定着長が必要定着長以上であることを確認した。

表 5-8 アンカーボルトの定着長の照査結果

定着長 (cm)	必要定着長 (cm)	照查值*
270.0	236.9	0.88

注記 *: 3次元同時加振による同時刻の断面力の組合せを用いた照査値

c. アンカーボルトのコーンせん断応力の評価結果 アンカーボルトのコーンせん断応力に対する<mark>照査</mark>結果を表 5-9 に示す。 アンカーボルトのコーンせん断応力が許容限界以下であることを確認した。

	• •					
	定着部の	コンクリート	鉄筋補強		配置	
	コーンせん断	強度で決まる	による	必要	鉄筋量	
基礎	に対する	コーン	コーンせん断	鉄筋量	4-D25@	照查值*
	許容応力度	せん断強度	強度の増加	(mm^2/m^2)	300	
	(N/mm^2)	(N/mm^2)	(N/mm^2)		(mm^2/m^2)	
南基礎	1. 421	0.825	1.009	3362	6756	0. 50
北基礎	1.578	0.825	1.166	3886	6756	0.58

表 5-9 アンカーボルトのコーンせん断応力の<mark>照査</mark>結果

注記 *: 3次元同時加振による同時刻の断面力の組合せを用いた照査値

d. 頂版及び中詰め鉄筋コンクリートの水平せん断力の評価結果
頂版及び中詰め鉄筋コンクリートの水平せん断力に対する照査
福振及び中詰め鉄筋コンクリートの水平せん断力が許容限界以下であることを確認した。

-									
		<mark>発生</mark>	必要	配置	配置				
基礎	部位	<mark>せん断力</mark>	鉄筋量	鉄筋	鉄筋量	照查值*2			
		(kN)	(mm^2)		(mm^2)				
南基礎	<mark>頂版鉄筋コンクリート</mark>	83813	6975 ^{* 1}	24-D32	14349	0.49			
	<mark>中詰め鉄筋コンクリート</mark>	83813	4905*1	15-D35	19061	0.26			
北基礎	<mark>頂版鉄筋コンクリート</mark>	55390	6975* ¹	24-D32	14349	0.49			
	<mark>中詰め鉄筋コンクリート</mark>	55390	4905*1	15-D35	19061	0.26			

表 5-10 頂版及び中詰め鉄筋コンクリートの水平せん断力に対する照査結果

注記 *1:最小鉄筋量

*2:3次元同時加振による同時刻の断面力の組合せを用いた照査値

3次元解析の結果を踏まえて安全余裕を高める目的で鉄筋量を増加する。

e. 頂版及び中詰め鉄筋コンクリートの水平回転モーメントに対する評価結果

頂版及び中詰め鉄筋コンクリートの水平回転モーメントに対する<mark>照査</mark>結果を表 5-11 に 示す。

頂版及び中詰め鉄筋コンクリートの水平回転モーメントよる発生応力が許容限界以下で あることを確認した。

表 5-11	頂版及び中詰め鉄筋コンク	リートの水平	回転モーメン	トに対する照査結果

		設計		水平	区鉄筋			鉛直	重鉄筋	
基	☆₽/ ↓	水平回転	#1 9 2	発生	短期		王田	発生	短期	
礎	司加亚	モーメント	<u></u> 一	応力	許容応力度	照查值*	凹直	応力	許容応力度	照查值*
		$(kN \cdot m)$	팘肋	(N/mm^2)	(N/mm^2)		欽肋	(N/mm^2)	(N/mm^2)	
南	頂版 鉄筋 コンク リート	1769140	8-D35	259	435	0.60	7-D51	70	435	0.16
基礎	中詰め 鉄筋 コンク リート	1769140	5-D38	291	435	0.67	5-D51	164	435	0.38
** *	頂版 鉄筋 コンク リート	1617310	8-D35	237	435	0.55	7-D51	64	435	0.15
碰碰	中詰め 鉄筋 コンク リート	1617310	5-D38	266	435	0.62	5-D51	150	435	0.35

注記 *: 3次元同時加振による同時刻の断面力の組合せを用いた照査値

f. 頂版鉄筋コンクリート及び中詰め鉄筋コンクリートの概略配筋図 頂版鉄筋コンクリート及び中詰め鉄筋コンクリートの概略配筋図を図 5-8 に示す。

NT2 補② V-2-10-2-2-1 R2

図 5-8(2) 中詰め鉄筋コンクリートの概略配筋図

g. 鋼製防護壁(接合部)の設計の妥当性について 鋼製防護壁(接合部)におけるアンカーボルト,頂版及び中詰め鉄筋コンクリートの設 計について、3次元解析にて妥当性を確認した。 5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能照査結果を表 5-12 に示す。

鋼製防護壁の基礎地盤に生じる最大接地圧が極限支持力度以下であることを確認した。

表 5-12(1) ①-①断面南基礎地盤の支持性能評価結果

解析ケース	生きました	最大接地圧	極限支持力度	
	地展期	(kN/m^2)	(kN/m^2)	
① S _s -D1		2704	5991	

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

表 5-12(2) ①-①断面北基礎地盤の支持性能評価結果

	解析ケース	地電動	最大接地圧	極限支持力度	
			(kN/m^2)	(kN/m^2)	
	4	$S_s - D_1$	3861	6116	

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

表 5-12(3) ③-③断面南基礎地盤の支持性能評価結果

解析ケース	生きま	最大接地圧	極限支持力度	
	地展到	(kN/m^2)	(kN/m^2)	
4	$S_{s} - 31$	2544	5991	

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース

表 5-12(4) ②-②断面北基礎地盤の支持性能評価結果

韶七ケーフ	生きま	最大接地圧	極限支持力度	
脾竹クース	地展到	(kN/m^2)	(kN/m^2)	
\bigcirc	$S_s - D_1$	3847	6116	

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

5.3 構造物の変形性に対する評価結果

地震時における止水ジョイント部の異種構造物間の相対変位量に対する照査結果を表 5-13 に示す。

地震時における止水ジョイント部の異種構造物間の相対変位量に対する照査を行った結果, 止水ジョイント部の相対変位量が許容限界以下であることを確認した。

	位置番号	δx	δy	δz	最大発生変位量[m]	許容限界
		(m)	(m)	(m)	$\sqrt{(\delta_x^2 + \delta_y^2 + \delta_z^2)}$	(m)
	南側	0.710	1.001	0.103	1.232	2.000
	北側	0.690	1.312	0.109	1.486	2.000

表 5-13 異種構造物間の地震時相対変位量