本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-370-7 改2
提出年月日	平成 30 年 10 月 2 日

建物・構築物の耐震計算についての補足説明資料

補足-370-7【建物・構築物の耐震評価における組合せ係数法の適用】

平成 30 年 10 月 日本原子力発電株式会社

1.	概要1
1.	1 検討概要 · · · · · · · · · · · · · · · · · · ·
1.	2 評価対象部位及び検討方針・・・・・2
2.	検討結果19
2.	1 地盤の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.1.1 検討内容 · · · · · · · · · · · · · · · · · · ·
	2.1.2 検討結果・・・・・22
2.	2 杭の検討・・・・・28
	2.2.1 検討内容
	2.2.2 検討結果・・・・・
2.	 3 基礎の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・35
	2.3.1 検討内容 · · · · · · · · · · · · · · · · · · ·
	2.3.2 検討結果・・・・・
2.	4 上部構造物の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	2.4.1 検討内容 · · · · · · · · · · · · · · · · · · ·
	2.4.2 検討結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	まとめ

別紙 時刻歴による評価値

目次

- 1. 概要
- 1.1 検討概要

本資料は,東海第二発電所の建物・構築物の耐震評価における組合せ係数法の適用性について説明するものである。

建物・構築物の耐震評価として行う水平及び鉛直方向の荷重の組合せを考慮した評価におい て、水平及び鉛直方向のそれぞれの最大値をもとに組合せ係数法を適用した評価値(以下、組 合せ係数法による評価値」という)と水平及び鉛直方向の地震応答の時刻歴を時々刻々組合せ て算定した時刻歴の最大値をもとにした評価値(以下「時刻歴和による評価値」という。)の比 較を行うことで、組合せ係数法の適用性を確認する。

また、本資料は、以下の添付書類の補足説明をするものである。

•	添付書類	「V-2-2-5	使用済燃料乾式貯蔵建屋の耐震性についての計算書」
•	添付書類	「V−2−2−15−1	主排気筒の耐震性についての計算書」
•	添付書類	「V-2-2-15-2	主排気筒の基礎の耐震性についての計算書」
•	添付書類	「V−2−2−17	非常用ガス処理系配管支持架構の耐震性についての計算書」
•	添付書類	「V-2-2-11	緊急時対策所建屋の耐震性についての計算書」
•	添付書類	「V−2−2−19	格納容器圧力逃がし装置格納槽の耐震性についての計算書」
•	添付書類	「V-2-4-2-1	使用済燃料プールの耐震性についての計算書」
•	添付書類	「V-2-9-2-2	原子炉格納容器底部コンクリートマットの耐震性についての計
			算書」
•	添付書類	「V-2-9-3-1	原子炉建屋原子炉棟の耐震性についての計算書」
	XT.11. 井米工		戸フにみ日甘水如のご母地に、いての刊体 事。

- ・添付書類「V-2-9-3-4 原子炉建屋基礎盤の耐震性についての計算書」
- ・添付書類「V-2-11-2-14 使用済燃料乾式貯蔵建屋上屋の耐震性についての計算書」

1.2 評価対象部位及び検討方針

建物・構築物の耐震評価に考慮する荷重の組合せにおいては,以下に示す組合せ係数法を適 用し,水平及び鉛直方向の地震力が同時に不利な方向に作用するものとして評価を実施してい る。

①:1.0×水平地震力による荷重+0.4×鉛直地震力による荷重

②:0.4×水平地震力による荷重+1.0×鉛直地震力による荷重

耐震評価に組合せ係数法を用いている建物・構築物及び評価対象部位を表 1-1 に示す。評価 対象部位のうち,地盤については地震応答解析に基づいて接地圧の評価を,杭については応力 解析に基づいて杭の鉛直支持力,引抜抵抗力及び断面の評価(以下「杭の評価」という。)を, その他の部位については地震応答解析または応力解析に基づいて断面の評価を実施している。

建物・構築物	評価対象部位	評価方法	地震動
原子炉建屋	使用済燃料 プール躯体	応力解析による評価 (断面の評価)	基準地震動 S _s 弾性設計用地震動 S _d
	底部コンクリー トマット	応力解析による評価 (断面の評価)	基準地震動 S _。 弾性設計用地震動 S _d
	基礎スラブ	応力解析による評価 (断面の評価)	基準地震動 S _s 弾性設計用地震動 S _d
	地盤	地震応答解析による評価 (接地圧の評価)	基準地震動 S _s 弾性設計用地震動 S _d
主排気筒	筒身	応力解析による評価 (断面の評価)	基準地震動 S _s
	鉄塔	応力解析による評価 (断面の評価)	基準地震動S _s
	基礎	応力解析による評価 (断面の評価)	基準地震動S _s
	杭	応力解析による評価 (杭の評価)	基準地震動S _s
非常用ガス処理系配管 支持架構	上部構造物	応力解析による評価 (断面の評価)	基準地震動S _。
	基礎スラブ	応力解析による評価 (断面の評価)	基準地震動S _s
	杭	応力解析による評価 (杭の評価)	基準地震動S _s
使用済燃料乾式貯蔵建屋	基礎スラブ	応力解析による評価 (断面の評価)	基準地震動S _s
	杭	応力解析による評価 (杭の評価)	基準地震動S _s
格納容器圧力逃がし装置格 納槽	上版	応力解析による評価 (断面の評価)	基準地震動S _s
	耐震壁 (地下外壁)	応力解析による評価 (断面の評価)	基準地震動S _s
	基礎スラブ	応力解析による評価 (断面の評価)	基準地震動S _s
	地盤	地震応答解析による評価 (接地圧の評価)	基準地震動S。
緊急時対策所建屋	基礎スラブ	応力解析による評価 (断面の評価)	基準地震動S。
	杭	応力解析による評価 (杭の評価)	基準地震動S。

表 1-1 耐震評価に組合せ係数法を用いている建物・構築物及び評価対象部位

建物・構築物の耐震評価における組合せ係数法の適用性を検討するにあたっては、まず、組 合せ係数法による評価値が、時刻歴和による評価値と同等又は保守的であることを確認する。 その結果、同等または保守的と言えない場合は、時刻歴和による評価値に基づいた評価が及ぼ す各部への影響を検討する。その結果、許容限界に対して十分な余裕を有することを確認する ことにより、組合せ係数法を適用しても安全上支障がないことを確認する。検討のフローを図 1-1 に示す。

組合せ係数法を用いて評価している部位は,大きく地盤,杭,基礎,上部構造物に分類され る。以下に,分類された評価部位に対して,具体的な検討方針を示す。

地盤については、原子炉建屋及び格納容器圧力逃がし装置格納槽に対して実施する接地圧の 評価について組合せ係数法の適用性を検討する。検討は、原子炉建屋については弾性設計用地 震動S_d及び基準地震動S_sに対して、格納容器圧力逃がし装置格納槽については基準地震動S sに対して実施することとし、断層モデルに基づく地震動のうち最大接地圧が最も大きくなる もの及び応答スペクトルに基づく地震動並びに震源を特定せず策定する地震動に対して実施す る。検討においては、まず組合せ係数法による最大接地圧が、時刻歴和による最大接地圧と同 等または保守的であることを確認する。同等または保守的と言えない場合は、時刻歴和による 最大接地圧を用いた場合の接地圧の評価への影響検討を行う。

杭については,主排気筒,非常用ガス処理系配管支持架構,使用済燃料乾式貯蔵建屋及び緊 急時対策所建屋に対して実施する杭の評価について,組合せ係数法の適用性を検討する。検討 は基準地震動S。に対して実施することとし,断層モデルに基づく地震動のうち,杭の評価で 検定比が最も大きくなる地震動,及び応答スペクトルに基づく地震動,並びに震源を特定せず 策定する地震動に対して実施する。検討においては,まず組合せ係数法による杭の評価での検 定比が,時刻歴和による杭の評価での検定比と同等または保守的であることを確認する。同等 または保守的と言えない場合は,時刻歴和による杭の評価での検定比が及ぼす,杭の評価への 影響検討を行う。

基礎については、基礎への地震荷重の入力と関連が深い接地圧もしくは杭の評価での検定比 において、組合せ係数法による評価値が、時刻歴和による評価値を下回る建物・構築物に対し て検討を行う。検討は、断層モデルに基づく地震動及び応答スペクトルに基づく地震動、並び に震源を特定せず策定する地震動に対して実施する。ここで、基礎の評価に与える影響が最も 大きい地震動がこれらの地震動と異なる場合はその影響を確認する。検討においては、基礎へ の地震荷重の入力という観点で、基準地震動S。(原子炉建屋については弾性設計用地震動Sa 及び基準地震動Ss)を包絡した上で算定する組合せ係数法による断面に関する評価値が、時 刻歴和による評価値と同等または保守的であることを確認する。同等または保守的と言えない 場合は、時刻歴和による断面の評価が及ぼす、基礎の評価への影響検討を行う。

上部構造物については、上部構造の検討に荷重組合せ係数法を用いている建物・構築物(原 子炉建屋,主排気塔,非常用ガス処理系配管支持架構,格納容器圧力逃がし装置格納槽)から, 水平地震力の影響を受けやすい,アスペクト比の大きい主排気筒を代表として検討することと する。ただし,対象となる建物のうち,地上階を有する建物として,原子炉建屋の使用済燃料 プールについても検討を実施する。各建物・構築物のアスペクト比を表 1-2 に示す。なお、表 1-2 には、上部構造の検討に荷重組合せ係数法を用いていない使用済燃料乾式貯蔵建屋、緊急 時対策所建屋についても参考としてアスペクト比を記載している。検討は、原子炉建屋につい ては弾性設計用地震動S_d及び基準地震動S_s、主排気筒については基準地震動S_sに対して実 施することとする。

原子炉建屋の使用済燃料プールについては、質点系モデルによる地震応答解析から求めたプ ール部に該当する要素の最大応答せん断力、曲げモーメント、鉛直加速度に基づく鉛直震度を 応力解析モデルに地震荷重として考慮していることから、係数1.0 用いて組合せる方向(以下 「主方向」という。)の最大応答値発生時刻における係数0.4を用いて組合せる方向(以下「副 方向」という。)の応答と最大応答値の比率を算定し、組合せ係数0.4と同等又は保守的である ことを確認する。同等または保守的と言えない場合は、時刻歴和による断面の評価が及ぼす、 上部構造物の評価への影響検討を行う。

主排気筒について,鉄塔の主柱材の軸圧縮応力度と曲げ応力度の合成応力度の検定比が最も 厳しいため鉄塔の主柱材を代表として検討する。検討は,基準地震動S。全波を包絡した上で 組合せ係数法を適用して算定した評価値が,時刻歴和による評価値と同等または保守的である ことを確認する。同等または保守的と言えない場合は,時刻歴和による断面の評価が及ぼす, 上部構造物の評価への影響検討を行う。

組合せ係数法による評価値と、水平及び鉛直方向の地震応答の時刻歴和による評価値の比較 は、<mark>添付書類「V-2-2-1</mark>原子炉建屋の地震応答計算書」、添付書類「V-2-2-4 使用済燃料乾 式貯蔵建屋の地震応答計算書」、添付書類「V-2-2-14 主排気筒の地震応答計算書」、添付書類

「V-2-2-16 非常用ガス処理系配管支持架構の地震応答計算書」,添付書類「V-2-2-10 緊急 時対策所建屋の地震応答計算書」,添付書類「V-2-2-18 格納容器圧力逃がし装置格納槽の地 震応答計算書」に示す基本ケースの結果に基づく。

上述の組合せ係数法による評価値が,水平及び鉛直方向の地震応答の時刻歴和による評価値 と同等または保守的と言えない場合に実施する影響検討を行う際には,基本ケースの結果を用 いて算出した割増係数を乗じて,材料物性(地盤物性)のばらつきを考慮する。

原子炉建屋,主排気筒,非常用ガス処理系配管支持架構,使用済燃料乾式貯蔵建屋,格納容器 圧力逃がし装置格納槽及び緊急時対策所建屋の地震応答解析モデルを図 1-1~図 1-12 に示す。

原子炉建屋	主排気筒	非常用ガス処理 系配管支持架構	使用済燃料 乾式貯蔵建屋	格納容器圧力逃 がし装置格納槽	緊急時対策所 建屋
1.1	5.0	2.7	0.71	1.7	0.90

表 1-2 各建物・構築物のアスペクト比(高さ/短辺幅)

5

- (1) 断層モデルに基づく地震動のうち,最大接地圧が最も大きくなるもの及び応答スペクトルに基づく地震動 並びに震源を特定せず策定する地震動に対して検討
- (2) 断層モデルに基づく地震動のうち、最大接地圧が最も大きくなるもの及び応答スペクトルに基づく地震動 並びに震源を特定せず策定する地震動に対して検討(基礎の応力評価に与える影響が最も大きい地震動の影響を確認する。

●使用済燃料乾式貯蔵建屋・・・①
注記 *1:基本ケースによる検討
 ●原子炉格納容器底部コンクリートマット・・・②,③

 ●原子炉建屋基礎盤・・・②,③

 ●格納容器圧力逃がし装置格納槽・・・②,③

 ●非常用ガス処理系配管支持架構・・・①

●緊急時対策所建屋・・・①

図 1-1 (1/2) 検討フロー

(3) 断層モデルに基づく地震動のうち水平方向の地震力による応答曲げモーメントが最大となるもの及び応答 スペクトルに基づく地震動並びに震源を特定せず策定する地震動に対して実施する検討

●主排気筒・・・5

●使用済燃料プール・・・⑥

注記 *1:S_s, S_d各波に対するした検討
 *2:S_s, S_d各波の地震力を包絡した検討

図 1-1 (2/2) 検討フロー

図 1-1 原子炉建屋の地震応答解析モデル(水平方向)

注2:()内は要素番号を示す。

図 1-2 原子炉建屋の地震応答解析モデル(鉛直方向)

図 1-4 主排気筒の地震応答解析モデル(鉛直方向)

図 1-5 非常用ガス処理系配管支持架構の地震応答解析モデル

図 1-6 使用済燃料乾式貯蔵建屋の地震応答解析モデル(水平方向)

図 1-7 使用済燃料乾式貯蔵建屋の地震応答解析モデル(鉛直方向)

図 1-8 格納容器圧力逃がし装置格納槽の地震応答解析モデル(水平方向)

図 1-9 格納容器圧力逃がし装置格納槽の地震応答解析モデル(鉛直方向)

図 1-11 (2/3) 格納容器圧力逃がし装置格納層の地震応答解析モデル

図 1-11 (3/3) 格納容器圧力逃がし装置格納層の地震応答解析モデル

注2 : ()内は要素番号を示す。

図 1-12(1/2) 緊急時対策所建屋の地震応答解析モデル(水平方向)

2. 検討結果

- 2.1 地盤の検討
 - 2.1.1 検討内容

原子炉建屋及び格納容器圧力逃がし装置格納槽について,組合せ係数法による最大接地 圧と,時刻歴和による最大接地圧を比較して,組合せ係数法による最大接地圧が,時刻歴 和による最大接地圧と同等又は保守的であることを確認すること,同等又は保守的と言え ない場合には時刻歴和による最大接地圧を用いた場合でも許容限界に対して十分な余裕を 有することを確認することにより,接地圧評価において組合せ係数法を適用しても安全上 支障がないことを確認する。

(1) 原子炉建屋

検討は、添付書類「V-2-9-2-2 原子炉格納容器底部コンクリートマットの耐震性についての計算書」に示す原子炉建屋の接地圧の評価に合わせて、弾性設計用地震動S_d及び基準地震動S_sに対して実施することとし、断層モデルに基づく地震動のうち最大接地圧が最も大きくなるもの(S_d-22,S_s-21)及び応答スペクトルに基づく地震動(S_d-D1,S_s-D1)並びに震源を特定せず策定する地震動(S_d-31,S_s-31)に対して実施する。

組合せ係数法による最大接地圧は,自重,水平方向の地震応答解析による最大転倒モー メント及び鉛直方向の地震応答解析による最大応答軸力に 0.4(組合せ係数)を乗じた鉛 直力から算定する。

これに対して,時刻歴和による最大接地圧は,自重,水平方向の地震応答解析による時 刻歴転倒モーメント及び鉛直方向の地震応答解析による時刻歴応答軸力から時刻毎に算定 した接地圧の最大値とする。

(2) 格納容器圧力逃がし装置格納槽

検討は、添付書類「V-2-2-19 格納容器圧力逃がし装置格納槽の耐震性についての計算 書」に示す接地圧の評価に合わせて、基準地震動S。に対して実施することとし、断層モデ ルに基づく地震動のうち接地圧が最も大きくなるもの(S_s-22)及び応答スペクトルに 基づく地震動(S_s-D1)並びに震源を特定せず策定する地震動(S_s-31)に対して 実施する。

なお,格納容器圧力逃がし装置格納槽は地盤を2次元FEMでモデル化している。2次 元FEMモデルを用いた接地圧の算出方法を図2-1に示す。接地圧は,水平・鉛直それぞ れの解析により算出した基礎直下の地盤要素に発生する鉛直応力より算出する。組合せ係 数法による最大接地圧は,水平・鉛直それぞれの解析による鉛直応力の最大値を組合せ係 数法を用いて組合せて算出する。一方,時刻歴和による最大接地圧は,水平・鉛直それぞ れの解析による時刻歴鉛直応力を時々刻々組合せて算定した接地圧の最大値とする。

図 2-1 に接地圧の算出方法を示す。図 2-2 に地盤の検討フローを示す。

(格納容器圧力逃がし装置格納槽)図 2-1 地盤FEMモデルにおける接地圧の算出方法

2.1.2 検討結果

(1) 原子炉建屋

組合せ係数法による最大接地圧(①),時刻歴和による最大接地圧(②)及び両者の比(① /②)を表 2-1~表 2-6 に示す。なお、参考として時刻歴和による最大接地圧の算定詳細 を、別紙「時刻歴和による評価値」に示す。

組合せ係数法による最大接地圧は,時刻歴和による最大接地圧と比べて小さい値(基準 地震動S_sにおいて最小で約92%,弾性設計用地震動S_dで最小で約98%)となってい る場合があるため,接地圧評価への影響検討を行う。

接地圧評価への影響検討結果を表 2-7 に示す。

時刻歴和による最大接地圧を用い評価する場合でも,許容限界に対して十分な余裕を有 する。

以上より, 接地圧評価において組合せ係数法を適用しても安全上支障がないことを確認 した。

	NS 方向	EW 方向	
①組合せ係数法による最大接地圧*2	609	644	
(kN/m^2)	692	644	
②時刻歴和による最大接地圧*2	702	6E0	
(kN/m^2)	703	690	
最大接地圧の比 (①/②)	0.98	0.99	

表 2-1 最大接地圧の比較(弾性設計用地震動 S_d-22)*1

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

	NS 方向	EW 方向
 ①組合せ係数法による最大接地E*2 (kN/m²) 	745	748
②時刻歴和による最大接地圧* ² (kN/m ²)	726	729
最大接地圧の比(①/②)	1.03	1.03

表 2-2 最大接地圧の比較(弾性設計用地震動 S_d-31)*1

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

	NS 方向	EW 方向
①組合せ係数法による最大接地圧*2	714	717
(kN/m^2)	714	(1)
②時刻歴和による最大接地圧*2	602	GOE
(kN/m^2)	092	095
最大接地圧の比(①/②)	1.03	1.03

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

	NS 方向	EW 方向
①組合せ係数法による最大接地圧*2	022	714
(kN/m^2)	932	714
②時刻歴和による最大接地圧*2	070	775
(kN/m^2)	010	115
最大接地圧の比 (①/②)	1.06	0.92

表 2-4 最大接地圧の比較(基準地震動 S₁-21)*1

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

★ 2-5		
	NS 方向	EW 方向
 ①組合せ係数法による最大接地E*2 (kN/m²) 	1034	1039
②時刻歴和による最大接地圧* ² (kN/m ²)	1019	1025
最大接地圧の比(①/②)	1.01	1.01

± 9_5 - 早十埣地口の比較(甘淮地雪動 € _ 9 1) *1

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

	NS 方向	EW 方向
①組合せ係数法による最大接地圧*2	044	051
(kN/m^2)	944	951
②時刻歴和による最大接地圧*2	808	002
(kN/m^2)	090	902
最大接地圧の比(①/②)	1.05	1.05

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

表 2-7 接地圧評価への影響検討(原子炉建屋)

	基準地震動 S _d
 ①最大接地圧の比の最小値 (組合せ係数法による最大接地圧/ 時刻歴接地圧の最大値) 	0.98
②割増係数(=1/①)	1.02
③材料物性のばらつきを考慮した 最大接地圧	764
影響検討結果*(=②×③)	780
許容限界 (kN/m ²)	1650

(a) 弾性設計用地震動S_d

注記 *:4桁目を切り上げ

(b) 基準地震動 S_s

	基準地震動 S _s	
①最大接地圧の比の最小値		
(組合せ係数法による最大接地圧/	0.92	
時刻歴接地圧の最大値)		
②割増係数(=1/①)	1.09	
③材料物性のばらつきを考慮した	1087	
最大接地圧	1001	
影響検討結果*(=②×③)	1190	
許容限界(kN/m ²)	2480	

注記 *:4桁目を切り上げ

(2) 格納容器圧力逃がし装置格納槽

組合せ係数法による最大接地圧(①),時刻歴和による最大接地圧(②)及び両者の比(① /②)を表 2-8~表 2-10 に示す。なお、参考として時刻歴和による最大接地圧の算定詳細 を、別紙「時刻歴による評価値」に示す。

組合せ係数法による最大接地圧は,時刻歴和による最大接地圧と比べて小さい値(基準 地震動S。において最小で約95%)となっている場合があるため,接地圧評価への影響検 討を行う。

接地圧評価への影響検討結果を表 2-11 に示す。

時刻歴和による最大接地圧を用いた場合でも,許容限界に対して十分な余裕を有することから,接地圧評価において組合せ係数法を適用しても安全上支障がないことを確認した。

	NS 方向	EW 方向
①組合せ係数法による最大接地圧*2	700	797
(kN/m^2)	709	121
②時刻歴和による最大接地圧*2	749	749
(kN/m^2)	740	(42
最大接地圧の比 (①/②)	0.948	0.980

表 2-8 最大接地圧の比較(S_s-22)^{*1}

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

表 2-9 最大接地圧の比較(S_s-31)*1

	NS 方向	EW 方向
①組合せ係数法による最大接地圧*2	079	014
(kN/m^2)	812	914
②時刻歴和による最大接地圧*2	000	976
(kN/m^2)	000	870
最大接地圧の比 (①/②)	1.05	1.04

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

	NS 方向	EW 方向
 ①組合せ係数法による最大接地E*2 (kN/m²) 	824	862
②時刻歴和による最大接地圧*2 (kN/m ²)	765	800
最大接地圧の比 (①/②)	1.08	1.08

表 2-10 最大接地圧の比較(S_s-D1)*1

注記 *1:基本ケースの結果での比較

*2:4桁目を切り上げ

表 2-11	接地圧評価への影響検討	(格納容器圧力逃が)	装置格納槽)
X 4 11			

①最大接地圧の比の最小値	
(組合せ係数法による最大接地圧/	0.948
時刻歴和による最大接地圧)	
②割り増し係数 (=1/①)	1.05
③材料物性のばらつきを考慮した	060
最大接地圧	960
影響検討結果(=②×③)	1008
許容限界	2450
【極限支持力度(kN/m²)】	2430

2.2 杭の検討

2.2.1 検討内容

主排気筒,非常用ガス処理系配管支持架構,使用済燃料乾式貯蔵建屋及び緊急時対策所 建屋に対する杭の鉛直支持力,引抜抵抗力及び断面について,組合せ係数法による検定比, 時刻歴和による検定比を比較して,組合せ係数法による検定比が,時刻歴和による検定比 と同等又は保守的であることを確認する。同等または保守的と言えない場合は,時刻歴和 による検定比の杭の評価への影響検討を行う。その結果,許容限界に対して十分な余裕を 有することを確認することにより,杭の評価において組合せ係数法を適用しても安全上支 障がないことを確認する。

(1) 主排気筒

検討は、添付書類「V-2-2-15-2 主排気筒の基礎の耐震性についての計算書」に示す主 排気筒の杭の評価に合わせて、上部構造の地盤ばねの水平方向と鉛直方向の曲げモーメン ト、せん断力及び軸力より算定した鉛直支持力、引抜抵抗力及び断面について評価する。 ここで、杭の鉛直支持力、引抜抵抗力及び断面について、組合せ係数法による検定比は地 震応答の最大値に基づく。一方、時刻歴和による検定比は地震応答の時刻歴データの時々 刻々の重ね合わせに基づく。検討は、改良地盤のせん断波速度をVs=800 m/s、500 m/s と する基本ケースについて、断層モデル基づく地震動(S_s-21)及び応答スペクトルに基 づく地震動(S_s-D1)及び震源を特定せず策定する地震動(S_s-31)に対して行う。 これらの地震動は、添付書類「V-2-2-14 主排気筒の地震応答計算書」において応答値が 支配的となる地震動である。

なお、主排気筒においては、風荷重の重畳を考慮して検定比を算定する。

(2) 非常用ガス処理系配管支持架構

検討は、添付書類「V-2-2-17 非常用ガス処理系配管支持架構の耐震性についての計算 書」に示す非常用ガス処理系配管支持架構の杭の評価に合わせて、上部構造の地盤ばねの 水平方向と鉛直方向の曲げモーメント、せん断力及び軸力より算定した鉛直支持力、引抜 抵抗力及び断面について評価する。ここで、杭の鉛直支持力、引抜抵抗力及び断面につい て、組合せ係数法による検定比は地震応答の最大値に基づく。一方、時刻歴和による検定 比は地震応答の時刻歴データの時々刻々の重ね合わせに基づく。検討は、改良地盤のせん 断波速度を Vs=800 m/s、500 m/s とする基本ケースについて、断層モデル基づく地震動 (S_s-22)及び応答スペクトルに基づく地震動(S_s-D1)に対して行う。これらの 地震動は、添付書類「V-2-2-16 非常用ガス処理系配管支持架構の地震応答計算書」にお いて応答値が支配的となる地震動である。

なお,非常用ガス処理系配管支持架構においては,風荷重の重畳を考慮して検定比を算 定する。 (3) 使用済燃料乾式貯蔵建屋

検討は、添付書類「V-2-2-5 使用済燃料乾式貯蔵建屋の耐震性についての計算書」に 示す使用済燃料乾式貯蔵建屋の杭の評価に合わせて、上部構造の地盤ばねの水平方向と鉛 直方向の曲げモーメント、せん断力及び軸力の時刻歴データを用いて、最大値の荷重組合 せ係数法より算定した杭の鉛直支持力、引抜抵抗力及び断面応力との比較検討を行う。断 面応力の時刻歴データは、梁と地盤ばねによる非線形応力解析より算定し、解析には、解 析コード「TDAPIII Ver.3.07」を用いる。また、解析コードの検証及び妥当性確認等 の概要については、添付資料「V-5-45 計算機プログラム(解析コード)の概要・TDA PIII」に示す。これらの検討は、基準地震動S_sに対して実施することとし、添付書類「V -2-2-4 使用済燃料乾式貯蔵建屋の地震応答計算書」より、断層モデルに基づく地震動(S_s-22)及び応答スペクトルに基づく地震動(S_s-D1)及び震源を特定せず策定する 地震動(S_s-31)に対して評価する。

なお,添付書類「V-2-2-5 使用済燃料乾式貯蔵建屋の耐震性についての計算書」より,基礎の検討に用いるS。地震荷重は,上記の3波により決まることから,本検討ではこれら3波を対象とした。

(4) 緊急時対策所建屋

検討は、添付書類「V-2-2-11 緊急時対策所建屋の耐震性についての計算書」に示す 杭の評価に合わせて、上部構造の地盤ばねの水平方向と鉛直方向の曲げモーメント、せん 断力及び軸力の時刻歴データを用いて、組合せ係数法の最大値から算定した杭の鉛直支持 力、引抜抵抗力及び断面応力との比較検討を行う。また、これらの検討は、基準地震動S sに対する工認基本モデルの検討ケースのうち、杭支持力等及び断面応力が最も大きくな るケース (S_s-21)、応答スペクトルに基づく地震動 (S_s-D1)並びに震源を特定 せず策定する地震動 (S_s-31) に対して評価する。

杭の検討フローを図 2-4 に示す。

図 2-4 杭の検討フロー

2.2.2 検討結果

(1) 主排気筒

主排気筒の杭の評価として,鉛直支持力,引抜抵抗力,杭の曲げに対する組合せ係数法 による検定比(①),時刻歴和による検定比(②)及び両者の比(①/②)を表 2-12 及び 表 2-13 に示す。なお,参考として時刻歴和の検定比の根拠となる時刻歴和の評価値の詳細 は,別紙「時刻歴による評価値」に示す。

組合せ係数法による各検定比は,時刻歴和による検定比と比べて保守的な値となっている。

上記の通り,杭の評価において組合せ係数法を適用しても安全上支障がないことを確認 した。

	検定比		
	鉛直支持力	引抜抵抗力	曲げ
①組合せ係数法による検定比	0.65	0.27	0.54
②時刻歴和による検定比*2	0.60	0.15	0.37
両者の比 (①/②)	1.08	1.80	1.46

表 2-12 検討結果 (既存杭) *1

注記 *1:基本ケースの結果

*2:3桁目を切り上げ

表 2-13 検討結果(増設杭)*1

	鉛直支持力	引抜抵抗力	曲げ
①組合せ係数法による検定比	0.63	0.23	0.34
②時刻歴和による検定比*2	0.58	0.12	0.28
両者の比 (①/②)	1.09	1.92	1.21

注記 *1:基本ケースの結果

*2:3桁目を切り上げ

(2) 非常用ガス処理系配管支持架構

非常用ガス処理系配管支持架構の杭の評価として,鉛直支持力,引抜抵抗力,杭の曲げ に対する組合せ係数法による検定比(①),時刻歴和による検定比(②)及び両者の比(① /②)を表 2-14 に示す。なお,参考として時刻歴和の検定比の根拠となる時刻歴和の評価 値の詳細は,別紙「時刻歴による評価値」に示す。

組合せ係数法による各検定比は,時刻歴和による検定比と比べて保守的な値となっている。

上記の通り,杭の評価において組合せ係数法を適用しても安全上支障がないことを確認 した。

	検定比		
	鉛直支持力	引拔抵抗力	曲げ
①組合せ係数法による検定比	0.16	0.06	0.09
②時刻歴和による検定比*2	0.14	0.01	0.07
両者の比 (①/②)	1.14	6. 33	1.38

表 2-14 検討結果*1

注記 *1:基本ケースの結果

*2:3桁目を切り上げ

32

(3) 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋の杭の評価として,鉛直支持力,引抜抵抗力,杭の曲げに対する組合せ係数法による検定比(①),時刻歴和による検定比(②)及び両者の比(①/②) を表 2-15 に示す。なお,参考として時刻歴和の検定比の根拠となる時刻歴和の評価値の詳 細は,別紙「時刻歴による評価値」に示す。

組合せ係数法による各検定比は,時刻歴和による検定比と比べて保守的な値となっている。

上記の通り,杭の評価において組合せ係数法を適用しても安全上支障がないことを確認 した。

次110 时间相不			
	検定比		
	(公古士は力)	司告告书	曲げ
	站但又村刀	归拔抵抗刀	モーメント
①組合せ係数法による検定比	0.49	0.49	1.00
②時刻歴和による検定比*2	0.48	0.43	0.88
両者の比 (①/②)	1. 03	1. 14	1.14

表 2-15 評価結果*1

注記 *1:基本ケースの結果

*2:3桁目を切り上げ

(4) 緊急時対策所建屋

緊急時対策所建屋の杭の評価として,鉛直支持力,引抜抵抗力,杭の曲げに対する組合 せ係数法による検定比(①),時刻歴和による検定比(②)及び両者の比(①/②)を表 2-16 に示す。なお,参考として時刻歴和の検定比の根拠となる時刻歴和の評価値の詳細は, 別紙「時刻歴による評価値」に示す。

組合せ係数法による各検定比は,時刻歴和による検定比と比べて保守的な値となっている。

上記の通り,杭の評価において組合せ係数法を適用しても安全上支障がないことを確認 した。

	検定比		
	鉛直支持力	引抜抵抗力	曲げ
			モーメント
①組合せ係数法による検定比	0.63	0.27	0.33
②時刻歴和による検定比*2	0.54	0.15	0.23
両者の比 (①/②)	1. 17	1.80	1.44

表 2-16 評価結果*1

注記 *1:基本ケースの結果

*2:3桁目を切り上げ
2.3 基礎の検討

2.3.1 検討内容

「2.1 地盤の検討」において,組合せ係数法による最大接地圧が時刻歴接地圧の最大値 を下回る原子炉建屋について,基礎への地震荷重の入力という観点で,基準地震動S。又は 弾性設計用地震動Sdを包絡し組合せ係数法を適用して算出した接地圧が時刻歴接地圧の 最大値と同等または保守的であることを確認する。同等または保守的と言えない場合は, 時刻歴接地圧の最大値を用いた場合でも許容限界に対して十分な余裕を有することを確認 することにより,基礎(原子炉格納容器(コンクリート部)底部及び原子炉建屋の基礎) の応力評価において組合せ係数法を適用しても安全上支障がないことを確認する。検討は, 添付書類「V-2-9-2-2 原子炉格納容器底部コンクリートマットの耐震性についての計算 書」及び添付書類「V-2-9-3-4 原子炉建屋基礎盤の耐震性についての計算書」に示す基 礎の応力評価に合わせて,原子炉格納容器底部コンクリートマットについては弾性設計用 地震動Sd及び基準地震動S。,原子炉棟基礎及び付属棟基礎については基準地震動S。に 対して実施することとする。

また,格納容器圧力逃がし装置格納槽について,基礎への地震荷重の入力という観点で, 基準地震動S。を包絡し組合せ係数法を適用して算出した接地圧が時刻歴接地圧の最大値 と同等または保守的であることを確認する。同等または保守的と言えない場合は,時刻歴 接地圧の最大値を用いた場合でも許容限界に対して十分な余裕を有することを確認するこ とにより,基礎の応力評価において組合せ係数法を適用しても安全上支障がないことを確 認する。検討は,添付書類「V-2-9-19 格納容器圧力逃がし装置格納槽の耐震性について の計算書」に示す基礎の応力評価に合わせて,基準地震動S。に対して実施することとす る。

基礎の検討フローを図 2-5 に示す。

図 2-5 基礎の検討フロー

2.3.2 検討結果

(1) 原子炉建屋

波ごとに組合せ係数法を適用して算出した最大接地圧(①), S_d又はS_sを包絡し組合 せ係数法を適用して算出した最大接地圧(②), 時刻歴接地圧の最大値(③), 接地圧の最 大値の比(①/③, ②/③)を表 2-17~表 2-22 に示す。なお, ②については, 基礎へ入 力する地震荷重の設定に基づき, 弾性設計用地震動S_dについては, 8 波を包絡した接地圧, 基準地震動S_sについては, 応答スペクトルに基づく地震動(S_s-D1), 断層モデルに 基づく地震動(S_s-11~S_s-22の包絡)及び震源を特定せず策定する地震動(S_s -31)のそれぞれについて算出する。

弾性設計用地震動S_dについては、組合せ係数法による最大接地圧は時刻歴接地圧の最 大値より小さい値(①/③が約98%)となっている場合もあるが、基礎への地震荷重の 入力という観点で、弾性設計用地震動S_dを包絡し組合せ係数法を適用して算出した最大 接地圧が時刻歴接地圧の最大値より大きい値(②/③が1.0以上)となっていることから、 基礎の評価において組合せ係数法を適用しても安全上支障がないことを確認した。

基準地震動S_sについては、組合せ係数法による最大接地圧は時刻歴接地圧の最大値よ り小さい値(①/③が最小で約92%)となっている場合もあるが、基礎への地震荷重の 入力という観点で、基準地震動S_sについては、応答スペクトルに基づく地震動(S_s-D 1)、断層モデルに基づく地震動(S_s-11~S_s-22の包絡)及び震源を特定せず策 定する地震動(S_s-31)のそれぞれについて組合せ係数法を適用して算出した最大接地 圧が時刻歴接地圧の最大値より大きい値(②/③が1.0以上)となっていることから、基 礎の評価において組合せ係数法を適用しても安全上支障がないことを確認した。

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _d -22	② S d 包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	692	772	703	0.98	1.10
EW	644	775	650	0.99	1.19

表 2-17 最大接地圧の比較(S_d-22)*1

*2:4桁目を切り上げ

表 2-18 最大接地圧の比較	(S	-3	1)	*1
-----------------	----	----	----	----

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _d -31	② S d包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	745	772	726	1.03	1.06
EW	748	775	729	1. 03	1.06

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S d—D 1	② S d 包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	714	772	692	1.03	1.12
EW	717	775	695	1.03	1.12

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _s -21	② S 。断層波包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	932	935	878	1.06	1.06
EW	714	845	775	0. 92	1.09

表 2-20 最大接地圧の比較(S_s-21)*1

*2:4桁目を切り上げ

$\mathcal{X} 4 4 \mathbf{I} $ 取八讶地儿 \mathcal{V} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}	2-21 最大接地圧の比較(S _s -31) *1
---	----------------------------------	------

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _s —31	② S _s —31	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入他の比 (②/③)
NS	1034	1034	1019	1.01	1.01
EW	1039	1039	1025	1. 01	1. 01

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

表 2-22	最大接地圧の比較	(S	$_{\rm s}$ —D1)	*1
--------	----------	-----	-----------------	----

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _s —D 1	② S _s —D 1	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	944	944	898	1.05	1.05
EW	951	951	902	1.05	1.05

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

(2) 格納容器圧力逃がし装置格納槽

波ごとに組合せ係数法を適用して算出した最大接地圧(①),基準地震動S_sを包絡し組 合せ係数法を適用して算出した最大接地圧(②),時刻歴接地圧の最大値(③),接地圧の 最大値の比(①/③,②/③)を表 2-23~表 2-25 に示す。

組合せ係数法による最大接地圧は時刻歴接地圧の最大値より小さい値(①/③が最小で約95%)となっている場合もあるが、基礎への地震荷重の入力という観点で、基準地震動S。を包絡し組合せ係数法を適用して算出した最大接地圧が時刻歴接地圧の最大値より大きい値(②/③が1.0以上)となっていることから、基礎の評価において組合せ係数法を適用しても安全上支障がないことを確認した。

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _s -22	② S 。包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	709	936	748	0.948	1.25
EW	727	960	742	0.980	1.29

表 2-23 最大接地圧の比較(S_s-22)*1

*2:4桁目を切り上げ

表 2-24 最大接地圧の比較(S_s-31)*1

方向	組合せ係数法における 最大接地圧 ^{*2} (N/mm ²)		 ③ 時刻歴接地圧 	接地圧の	接地圧の
	① S _s -31	② S 。包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)
NS	872	936	833	1.05	1.12
EW	914	960	876	1.04	1.10

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

表 2-25 最大接地圧の比較(S_s-D1)^{*1}

方向	組合せ係数 最大接地圧	法における ^{*2} (N/mm ²)	 ③ 時刻歴接地圧 	接地圧の	接地圧の	
	① S _s -D1	② S 。包絡	の最大値*2 (N/mm ²)	取入値の比 (①/③)	取入値の比 (②/③)	
NS	824	936	765	1.08	1.22	
EW	862	960	800	1.08	1.20	

注記 *1:基本ケースの結果

*2:4桁目を切り上げ

2.4 上部構造物の検討

2.4.1 検討内容

原子炉建屋の上部構造物の使用済燃料プール及び主排気筒の上部構造物の主柱材について,組合せ係数法を適用しても安全上支障がないことを確認する。

原子炉建屋の上部構造物の使用済燃料プールについては、質点系モデルのプール部に該 当する要素の主方向の最大応答値発生時刻における副方向の応答と最大応答値の比率を算 定し、組合せ係数0.4と同等又は保守的であることを確認する。同等または保守的と言え ない場合は、時刻歴和による断面の評価が及ぼす、上部構造物の評価への影響検討を行う。

主排気筒の上部構造物の主柱材については、組合せ係数法による応力度と時刻歴応力度 の最大値を比較して、組合せ係数法による応力度が時刻歴応力度の最大値と同等又は保守 的であることを確認する。

(1) 原子炉建屋

検討は、添付書類「V-2-4-2-1 使用済燃料プールの耐震性についての計算書」に示す 原子炉建屋の使用済燃料プールの地震時の応力解析による評価に合わせて、弾性設計用地 震動S_d及び基準地震動S_sに対して実施することとし、断層モデルに基づく地震動のうち 水平方向の地震力による応答せん断力及び応答曲げモーメントが最大となる地震動 (NS 方 向については弾性設計用地震動ではS_d-21,基準地震動ではS_s-21,EW 方向につい ては弾性設計用地震動ではS_d-22,基準地震動ではS_s-22)、鉛直方向の地震力に よる軸力が最大となる地震動(弾性設計用地震動ではS_d-21,基準地震動ではS_s-2 1)、応答スペクトルに基づく地震動(S_d-D1及びS_s-D1)、震源を特定せず策定す る地震動(S_d-31及びS_s-31)に対して実施する。

組合せ係数法で用いる主方向と副方向の組合せ係数 0.4 に対して,地震応答解析におけ る主方向の最大値発生時刻における副方向の応答値と最大応答値の比率を算定する。時刻 歴応答解析については,解析コード「DAC3N V97」を使用する。検討フローを図 2-6 に示す。

(2) 主排気塔

検討は、添付書類「V-2-2-15-1 主排気筒の耐震性についての計算書」に示す主排気筒の上部構造物の主柱材の地震時の応力解析による評価に合わせて、基準地震動S。に対して実施することとし、断層モデルに基づく地震動のうち水平方向の地震力による応答曲げモーメントが最大となる地震動(基準地震動ではS_s-21)、鉛直方向の地震力による軸力が最大となる地震動(基準地震動ではS_s-21)、応答スペクトルに基づく地震動(S_s-D1)、震源を特定せず策定する地震動(S_s-31)に対して実施する。

主排気筒の上部構造物の主柱材の応力度は水平方向の地震応答解析による主柱材の最 大応答曲げモーメントによる応力度及び鉛直方向の地震応答解析による最大応答軸力に 0.4(組合せ係数)を乗じた鉛直力から算定している。

これに対して、時刻歴応答応力度の最大値は、選定した地震波を用い、時刻毎に水平方

向の地震応答解析による時刻歴応答曲げモーメントによる応力度と鉛直方向の地震応答解 析による時刻歴応答軸応力度の和を算定し、応力度の最大値とする。時刻歴応答解析につ いては、解析コード「SNAP Ver. 7.0.0.1」を使用する。

検討フローを図 2-7 に示す。

図 2-6 (1/2) 上部構造の検討フロー(使用済燃料プール)

図 2-6 (2/2) 上部構造物の検討フロー(主排気筒)

2.4.2 検討結果

(3) 原子炉建屋

使用済燃料プールの応力解析への入力評価において、組合せ係数法による評価では、NS 方向と EW 方向のそれぞれの結果の最大値を採用するため、NS 及び EW 方向について比較を 行う。

波ごとに時刻歴応答解析により算出した主方向の最大値発生時刻における副方向の応答 値(①),副方向の最大応答値(②),S_d又はS_sを包絡して算出した副方向の最大応答値 (③),副方向の応答値の最大値の比(①/②,①/③)を表 2-26~表 2-34 に示す。

基準地震動S。については、主方向の最大値発生時刻における副方向の応答値の全地震動の最大応答値に対する比率(①/③)は0.4以下となる。

一方,弾性設計用地震動S_dに対しては、水平方向が主方向の場合の鉛直方向の比率(①/③)は最大で0.47,鉛直方向が主方向の場合の水平方向の比率(①/③)は最大で0.60となり、組合せ係数0.4に対する比を取ると鉛直方向で0.47/0.40=1.175倍、水平方向で0.60/0.40=1.5倍となる。

使用済燃料プールの評価に用いる入力という観点で、基準地震動S_dを包絡して算出した主方向の最大応答値発生時刻の副方向の応答値と最大応答値の比率が組合せ係数より大きい値(①/③が0.4以上)となっていることから、使用済燃料プールについて検定値の割増を考慮した検討を実施する。

表 2-38 にS_d地震力(動的地震力)に対する水平と鉛直の組合せ係数を1.0 と 0.4 とした場合の検定比を、表 2-39 にS_d地震力(動的地震力)に対する水平と鉛直の組合せ係数を0.4 と 1.0 とした場合の検定比をに示す。また、これら検定比に前述の組合せ係数0.4 に対する副方向の比率(水平 0.4 に対し 1.175 倍、鉛直 0.4 に対し 1.5 倍)を乗じた結果も表 2-38、表 2-39 に併せて示す。表 2-38、表 2-39 に示すように、主方向の最大地震力が発生する時刻の副方向の最大値に対する比率を考慮しても、検定比は1.0 以下となる事を確認した。なお、本評価では、検定比に倍率を乗じているため、主方向の地震力にも倍率を乗じている結果となっており、検定比が1.0 以下となれば十分余裕があると判断できる。

以上より,使用済燃料プールの評価において,組合せ係数法を適用しても安全上支障が ないことを確認した。

EL.	水平地震力	方向	① 時刻歴軸力 (kN)	最大応 (k	答軸力 N)	軸力の 最大値の比 (①/②)	軸力の		
(m)				② S _d -D1	③ S d包絡		取入値の比 (①/③)		
	最大	NS	563		42300	0.01	0.01		
46. 5∼	そ生時刻	EW	563	37800		0.01	0.01		
38.8	最大	NS	4050			0.11	0.10		
	ーーメント 発生時刻	EW	4050			0.11	0.10		
	最大	NS	7890			0.11	0.09		
38.8~	発生時刻	EW	7890	71700	99700	0.11	0.09		
34. 7	最大	NS	7690	(1/00	83700	0.11	0.09		
	曲いモータント 発生時刻	EW	938			0. 01	0. 01		

表 2-26 最大水平地震力発生時の軸力比の比較(S_d-D1)*

表 2-27 最大軸力発生時の水平地震力比の比較(S_d-D1)*1

EL. (m)	方向	① 時刻歴	最大応答 (k	せん断力 N)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)				
		せん断力 (kN)	② S _d -D1	③ S d包絡						
46.5~38.8	NS	11400	50200	58000	0.23	0.20				
	EW	11800	52500	59000	0.22	0.20				
38.8~34.7	NS	54800	92500	107000	0.59	0.51				
	EW	54200	95300	108000	0. 57	0. 50				

(a) せん断力比

(b) 曲げモーメント比

EL.	-to rea	① 時刻歴曲げ	最大応答曲) (×10 ³	ザモーメント kN・m)	曲げモーメ ントの	曲げモーメ ントの
(m)	门八	モーメント (×10 ³ kN·m)	② S _d -D1	③ S d 包絡	最大値の比 (③/①)	最大値の比 (③/②)
46.5~38.8	NS	25700	81600	97600	0.32	0.26
	EW	25500	84700	88100	0.30	0.29
38.8~34.7	NS	87900	125000	153000	0.70^{*2}	0. 57
	EW	81300	126000	136000	0.65	0.60^{*2}

注記 *1:基本ケースの結果

*2:最大軸力発生時の水平地震力比の最大値

EL. (m)	水平地震力	方向	地震波	① 時刻歴 軸力 (kN)	② 最大 軸力 (kN)	③ 最大軸力 (S _d 包絡) (kN)	軸力の 最大値の比 (①/②)	軸力の 最大値の比 (①/③)
	最大	NS	$S_{d} = 2.1$	3820	42300		0.09	0.09
46.5 \sim	発生時刻	EW	$S_d = 2/2$	19800	39600	42200	0.50^{*2}	0.47^{*2}
38.8	最大 曲げモーメント	NS	$S_d = 2 1$	3820	42300	42300	0.09	0.09
	出して 発生時刻	EW	$S_d = 2/2$	17000	39600		0.43	0.40
	最大	NS	$S_d = 2.1$	7210	83700		0.09	0.09
38.8~	発生時刻	EW	$S_d = 2/2$	35900	76500	92700	0.47	0.43
34. 7	最大	NS	$S_{d} = 2.1$	7210	83700	03700	0.09	0.09
	発生時刻	EW	$S_d = 2/2$	35900	76500		0. 47	0.43

表 2-28 最大水平地震力発生時の軸力比の比較(S」断層波)*1

*2:最大水平地震力発生時の軸力比の最大値

表 2-29 最大軸力発生時の水平地震力比の比較(S」断層波)*

EL. (m)	方向	地震波	① 時刻歴 せん断力 (kN)	② 最大 せん断力 (kN)	③ 最大 せん断力 (S _d 包絡) (kN)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)
46.5~38.8	NS	$S_{d} = 2.1$	16100	54900	58000	0.29	0.28
	EW	$S_{d} = 2.2$	2760	49800	59000	0.06	0.05
38.8~34.7	NS	$S_{d} = 2.1$	18500	93300	107000	0.20	0.17
	EW	$S_{d} = 22$	16400	79400	108000	0.21	0.15

(a) せん断力比

(b) 曲げモーメント比

EL. (m)	方向	地震波	① 時刻歴 曲げモーメ ント (×10 ³ kN・ m)	② 最大 曲げモーメ ント (×10 ³ kN・ m)	③ 最大曲げモ ーメント (S _d 包絡) (×10 ³ kN・ m)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)
16 50.29 9	NS	$S_d = 2 1$	40100	94600	97600	0.42	0.41
40. 2~38. 8	EW	$S_d = 2/2$	4450	88100	88100	0.05	0.05
38.8~34.7	NS	$S_{d} = 2.1$	55700	148000	153000	0. 38	0.36
	EW	$S_d = 2/2$	19600	129000	136000	0.15	0.14

EL.	水平地震力	方向	① 時刻歴軸力· (kN)	最大応 (k	答軸力 N)	軸力の 最大値の比 (①/②)	軸力の 最大値のと		
(m)				② S _d -31	③ S d包絡				
	最大	NS	1630		42300	0.10	0.04		
46. 5∼	発生時刻	EW	1630	16900		0.10	0.04		
38.8	最大	NS	1630			0.10	0.04		
	曲りモーメント 発生時刻	EW	1630			0.10	0.04		
	最大	NS	1480			0.04	0.02		
38.8~	発生時刻	EW	1480	22400	92700	0.04	0.02		
34. 7	最大	NS	1480	55400	83700	0.04	0.02		
	※生時刻	EW	1480			0.04	0.02		

表 2-30 最大水平地震力発生時の軸力比の比較(S_d-31)*

表 2-31	最大軸力発生時の水平地震力比の比較	(S_d)	-31)	*
--------	-------------------	---------	------	---

	(a) せん断力比										
EL. (m)	方向	① 時刻歴	最大応答 (k	せん断力 N)	せん断力の	せん断力の 最大値の比 (①/③)					
		せん断力 (kN)	② S _d -31	③ S d包絡	(①/②)						
16 50,28 8	NS	22100	58000	58000	0.38	0.38					
46. 5 \sim 38. 8	EW	22400	59000	59000	0.38	0.38					
38.8~34.7	NS	41500	107000	107000	0.39	0.39					
	EW	41900	108000	108000	0. 39	0. 39					

(b) 曲げモーメント比

EL.	士占	① 時刻歴曲げ	最大応答曲に (×10 ³	ザモーメント kN・m)	曲げモーメ ントの	曲げモーメ ントの
(m)		モーメント (×10 ³ kN·m)	② S _d -31	③ S d包絡	最大値の比 (③/①)	最大値の比 (③/②)
46.5~38.8	NS	30900	85400	97600	0.36	0.32
	EW	31200	85600	88100	0.36	0.35
38.8~34.7	NS	50400	138000	153000	0.37	0.33
	EW	50000	136000	136000	0.37	0.37

EL.	水平地震力	方向	① 時刻歴軸力 (kN)	最大応 (k	答軸力 N)	軸力の 最大値の比	軸力の 島士値の比		
(m)				② S _d -D1	③ S _s 包絡	取入值の比 (①/②)	取入値の比 (①/③)		
	最大	NS	7340		79500	0.11	0.09		
46. 5∼	発生時刻	EW	5160	68200		0.08	0.07		
38.8	最大	NS	13400			0.20	0.17		
	発生時刻	EW	13400			0.20	0.17		
	最大	NS	7080			0.06	0.04		
38.8~	せん町刀 発生時刻	EW	16300	122000	159000	0.13	0.10		
34.7	最大	NS	25500	120000	198000	0.20	0.16		
	曲り モータント 発生時刻	EW	14800			0.12	0.09		

表 2-32 最大水平地震力発生時の軸力比の比較(S_s-D1)*

表 2-33 最大軸力発生時の水平地震力比の比較(S_s-D1)*

(a) せん断力比									
EL. (m)	方向	① 時刻歴	最大応答 (k	ぜん断力 N)	せん断力の	せん断力の 最大値の比 (①/③)			
		せん断力 (kN)	② S _s -D1	③ S 。包絡	取入値の比 (①/②)				
46.5~38.8	NS	4090	82100	98900	0.05	0.04			
	EW	3830	83000	98900	0.05	0.04			
38.8~34.7	NS	45300	152000	183000	0. 30	0. 25			
	EW	44500	156000	179000	0. 29	0.25			

(b) 曲げモーメント比

EL. (m)	七百	① 時刻歴曲げ	最大応答曲は (×10 ³	fモーメント kN・m)	曲げモーメ ントの	曲げモーメ ントの
	刀凹	モーメント (×10 ³ kN・m)	② S _s -D1	③ S _s 包絡	最大値の比 (③/①)	最大値の比 (③/②)
46.5~38.8	NS	6110	125000	168000	0.05	0.04
	EW	5120	123000	157000	0.04	0.03
38.8~34.7	NS	44500	199000	260000	0.22	0.17
	EW	39800	195000	239000	0.20	0.17

EL. (m)	水平地震力	方向	地震波	① 時刻歴 軸力 (kN)	② 最大 軸力 (kN)	③ 最大軸力 (S _s 包絡) (kN)	軸力の 最大値の比 (①/②)	軸力の 最大値の比 (①/③)
	最大	NS	$S_{s} = 2.1$	12300	79500		0.15	0.15
せん町 46.5~ 発生時	発生時刻	EW	$S_{s} = 2.2$	3980	73700	70500	0.05	0.05
38.8	最大	NS	$S_{s} = 2.1$	3520	79500	79500	0.04	0.04
	発生時刻	EW	$S_{s} = 2.2$	3980	73700		0.05	0.05
	最大	NS	$S_{s} = 2.1$	40100	158000		0.25	0.25
38.8~	発生時刻	EW	$S_{s} = 2.2$	8180	142000	159000	0.06	0.05
34. 7	最大	NS	$S_{s} = 2.1$	7980	158000	158000	0.05	0.05
	発生時刻	EW	$S_{s} = 2.2$	8180	142000		0.06	0.05

表 2-34 最大水平地震力発生時の軸力比の比較(S。断層波)*

表 2-35 最大軸力発生時の水平地震力比の比較(Sa断層波)*

EL. (m)	方向	地震波	① 時刻歴 せん断力 (kN)	② 最大 せん断力 (kN)	③ 最大 せん断力 (S _s 包絡) (kN)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)				
46.5~38.8	NS	$S_{s} = 2.1$	15200	95400	98900	0.16	0.15				
	EW	$S_{s} = 2.2$	7520	87400	98900	0.09	0.08				
38.8~34.7	NS	$S_{s} = 2.1$	16600	167000	183000	0.10	0. 09				
	EW	$S_{s} = 2.2$	20000	140000	179000	0.14	0.11				

(a) せん断力比

(b) 曲げモーメント比

EL. (m)	方向	地震波	① 時刻歴 曲げモーメ ント (×10 ³ kN・ m)	② 最大 曲げモーメ ント (×10 ³ kN・ m)	③ 最大曲げモ ーメント (S _s 包絡) (×10 ³ kN・ m)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)
16 50 28 8	NS	$S_{s} = 2.1$	42600	168000	168000	0.25	0.25
40. 5 \sim 38. 8	EW	$S_{s} = 2.2$	31800	155000	157000	0.21	0.20
38.8~34.7	NS	$S_{s} = 2.1$	61600	260000	260000	0. 24	0.24
	EW	$S_{s} = 2.2$	31000	228000	239000	0. 14	0.13

EL.	水平地震力	士白	① 時刻歴軸力· (kN)	最大応 (k	答軸力 N)	軸力の	軸力の 最大値のと			
(m)		미		② S _s - 3 1	③ S _s 包絡	取入值の比 (①/②)				
	最大 せん断力 46.5~ 発生時刻	NS	5110		79500	0.17	0.06			
46. 5∼		EW	6210	30000		0.21	0.08			
38.8	最大	NS	5110			0.17	0.06			
	曲けモーメント 発生時刻	EW	5110			0.17	0.06			
	最大	NS	4860			0.08	0.03			
38.8~	発生時刻	EW	5200	50500	159000	0.09	0.03			
34.7	最大	NS	5640	59500	198000	0.09	0.04			
	産生時刻	EW	5640			0.09	0.04			

表 2-36 最大水平地震力発生時の軸力比の比較(S_d-31)*

表 2-37 最大軸力発生時の水平地震力比の比較(S_d-31)*

EL. (m)	方向	① 時刻歴	最大応答 (k	ぜん断力 N)	せん断力の 最大値の比 (①/②)	せん断力の 最大値の比 (①/③)			
		せん断力 (kN)	② S _s -31	③ S 。包絡					
46.5~38.8	NS	37500	98900	98900	0.38	0.38			
	EW	37800	98900	98900	0.38	0.38			
38.8~34.7	NS	71800	183000	183000	0.39	0.39			
	EW	72000	179000	179000	0.40	0.40			

(a) せん断力比

(b) 曲げモーメント比

EL. (m)	方向	① 時刻歴曲げ	最大応答曲に (×10 ³	ザモーメント kN・m)	曲げモーメ ントの	曲げモーメ ントの
		モーメント (×10 ³ kN・m)	② S _s -31	③ S _s 包絡	最大値の比 (③/①)	最大値の比 (③/②)
46.5~38.8	NS	50500	144000	168000	0.35	0.30
	EW	50800	157000	157000	0.32	0.32
38.8~34.7	NS	83100	233000	260000	0.36	0.32
	EW	82400	239000	239000	0.34	0.34

		評価項目	要素	解析	許容値	検定比	検定比
		コンクリート (N/mm ²)	业 2219	^ň ロ木 1. 38	14. 7	0.094	0. 111
	北側壁	(N/mm ²)	2272	258	345	0.748	0.879
	東側壁	コンクリート (N/mm ²)	1582	1.30	14. 7	0.089	0. 105
軸力		鉄筋 (N/mm ²)	1537	234	345	0.679	0.798
	古加陸	コンクリート (N/mm ²)	3055	3. 58	14. 7	0.244	0.287
田 田 げ モーメント +	南側壁	鉄筋 (N/mm²)	3037	233	345	0.676	0. 795
面内せん断力	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	コンクリート (N/mm ²)	1035	1. 38	14. 7	0.094	0. 111
	四側壁	鉄筋 (N/mm²)	1037	233	345	0.676	0. 795
	底版	コンクリート (N/mm ²)	4054	5.03	14.7	0.343	0.404
		鉄筋 (N/mm²)	4057	148	345	0. 429	0.505
	北側壁	面内せん断応力度 (N/mm ²)	2272	0. 384	1.31	0.294	0.346
五中子)长十	東側壁	面内せん断応力度 (N/mm ²)	1590	0.724	1.34	0.541	0.636
面内せん例刀	南側壁	面内せん断応力度 (N/mm ²)	3037	1. 41	3.07	0.460	0.541
	西側壁	面内せん断応力度 (N/mm ²)	1087	0.816	1.50	0.544	0.640
	北側壁	面外せん断応力度 (N/mm ²)	2228	0. 477	0.990	0. 482	0.567
面外せん断力	東側壁	面外せん断応力度 (N/mm ²)	1546	0. 295	0. 985	0.300	0.353
	南側壁	面外せん断応力度 (N/mm ²)	7801	0.849	1.52	0.559	0.657
	西側壁	面外せん断応力度 (N/mm ²)	1033	0. 323	0.995	0.325	0.382
	底版	面外せん 断応力度 (N/mm ²)	4054	1.40	3.01	0.466	0.548

表 2-38 断面評価結果(S_d地震時/動的地震力/水平×1.0+鉛直×0.4)

				1			
		評価項目	要素	解析	許容値	検定比	検定比
			11/10	結果			×1.5
	北加陸	コンクリート (N/mm ²)	2219	1.44	14.7	0. 098	0.147
	七則堂	鉄筋 (N/mm²)	2272	199	345	0.577	0.866
	東側壁	コンクリート (N/mm ²)	1582	1.25	14.7	0.086	0.129
軸力		鉄筋 (N/mm²)	1528	225	345	0.653	0.980
十	南側辟	コンクリート (N/mm ²)	3055	4.05	14.7	0.276	0.414
田() モーメント +	肖側壁	鉄筋 (N/mm²)	3037	208	345	0.603	0.905
面内せん断力	而個辟	コンクリート (N/mm ²)	1070	1.27	14.7	0.087	0.131
	四側壁	鉄筋 (N/mm²)	1028	222	345	0.644	0.966
	底版	コンクリート (N/mm ²)	4054	5.56	14. 7	0.379	0. 569
		鉄筋 (N/mm²)	4054	166	345	0.482	0.723
	北側壁	面内せん断応力度 (N/mm ²)	2268	0. 494	1.52	0.325	0.488
西内北之断力	東側壁	面内せん断応力度 (N/mm ²)	1586	0.861	1.69	0.510	0.765
田トリビル阿フ	南側壁	面内せん断応力度 (N/mm ²)	3037	0.634	3.10	0.205	0.308
	西側壁	面内せん断応力度 (N/mm ²)	1086	0.851	1.64	0. 519	0.779
	北側壁	面外せん断応力度 (N/mm ²)	2228	0. 495	0. 982	0. 505	0.758
	東側壁	面外せん断応力度 (N/mm ²)	1546	0. 318	0.963	0.331	0. 497
面外せん断力	南側壁	面外せん断応力度 (N/mm ²)	7803	0.675	1.20	0.563	0.845
	西側壁	面外せん断応力度 (N/mm ²)	1046	0. 311	0.950	0.328	0.492
	底版	面外せん 断応力度 (N/mm ²)	4053	1.64	3.01	0.545	0.818

表 2-39 断面評価結果(S_d地震時/動的地震力/水平×0.4+鉛直×1.0)

(4) 主排気塔

主排気筒の上部構造物の主柱材の評価において,組合せ係数法による応力度は,0°方向 と45°方向の結果の最大値を採用するが,主排気筒の鉄塔の形状から,45°方向の時刻歴 応力度が大きくなることから,45°方向の結果に対して組合せ係数法による応力度と比較 を行う。

波ごとに組合せ係数法を適用して算出した検定比(①), S 。を包絡し組合せ係数法を適 用して算出した検定比(②),時刻歴検定比の最大値(③),検定比の最大値の比(①/③, ②/③)を表 2-40~表 2-42 に示す。なお、参考として時刻歴検定比の詳細を、「別紙 時 刻歴による評価値」に示す。

基準地震動S。については、組合せ係数法による応力度の最大値は時刻歴応力度の最大 値より小さい値(①/③が最小で約73%)となっている場合もあるが、主排気筒の上部 構造物の主柱材の評価に用いる入力という観点で、基準地震動S。を包絡し組合せ係数法 を適用して算出した最大検定比が時刻歴の最大値より大きい値(②/③が1.0以上)とな っていることから、上部構造物の評価において組合せ係数法を適用しても安全上支障がな いことを確認した。

EL.	組合せ係数 検定比* ¹ ①	女法における ² (N/mm ²) ②	③ 時刻歴 検定比*1*2*3	検定比の最 大値の比 (① / ③)	検定比の 最大値の比 (2)/3)
112 205	$S_{s} - D 1^{*1}$	S s 包絡	(N/mm^2)	0.04	1.27
05 422	0.43	0.69	0.40	0.94	1.07
95.452	0.40	0.09	0. 49	0.98	1.41
70.444 E0.610	0.07	0.92	0.75	0.90	1.20
92.018	0.63	0.88	0.70	0.90	1.20
26.257	0.51	0.64	0.56	0.92	1.15

表 2-40 最大応力度比の比較(S_s-D1)

*2: $\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$ 3桁目目を切り上げ

*3:斜め方向

表 2-41 最大軸応力度の比較(S_s-21)

EL.	組合せ係数 検定比*1 ① S _s -21*1	な法における ² (N/mm ²) ② S _s 包絡	③ 時刻歴 検定比*1*2*3 (N/mm ²)	検定比の最 大値の比 (① /③)	検定比の 最大値の比 (②/③)
112.205	0. 43	0.63	0.48	0.90	1.32
95. 432	0.47	0.69	0.55	0.86	1.26
75.444	0.67	0.92	0.78	0.86	1.18
52.618	0. 54	0. 88	0.74	0. 73	1. 19
26.257	0.45	0.64	0.60	0.75	1.07

注記 *1:基本ケースの結果

*2: $\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$ 3桁目目を切り上げ *3:斜め方向

組合せ係数法における 3 検定比の最 検定比の 検定比*2 (N/mm²) 時刻歴 大値の比 最大値の比 EL. 検定比*1*2*3 (1)2 (1)/3) (2/3)S $_{\rm s}$ – 3 1 *1 S_s 包絡 (N/mm^2) 0.38 112.205 0.63 0.34 1.12 1.86 95.432 0.50 0.69 0.40 1.25 1.73 75.444 0.67 0.92 0.55 1.22 1.68 1.76 52.618 0.57 0.88 0.50 1.14 26.257 0.47 0.42 0.64 1.12 1.53

表 2-42 最大軸応力度の比較(S_s-31)

注記 *1:基本ケースの結果

*2: $\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}}$ 3桁目目を切り上げ *3: 斜め方向 3. まとめ

建物・構築物の耐震評価において,組合せ係数法の適用性を確認する目的で,水平及び鉛直方 向の荷重の組合せに組合せ係数法を適用した場合と水平及び鉛直方向の地震応答を時々刻々重ね 合わせた場合の評価結果の比較を行い,以下の結果が得られた。

(1) 地盤の検討結果

地盤(接地圧)の検討において,原子炉建屋及び格納容器圧力逃がし装置格納槽を対象とし て検討を行った。

原子炉建屋については,組合せ係数法による最大接地圧は,時刻歴接地圧の最大値と比べて 小さい値(最小で約92%)となっている場合もあるが,仮に時刻歴接地圧の最大値を用いた 場合でも,許容限界に対して十分な余裕を有することから,接地圧評価において組合せ係数法 を適用しても安全上支障がないことを確認した。

格納容器逃がし圧力装置格納槽については,組合せ係数法による最大接地圧は,時刻歴接地 圧の最大値と比べて小さい値(最小で約95%)となっている場合もあるが,仮に時刻歴接地 圧の最大値を用いた場合でも,許容限界に対して十分な余裕を有することから,接地圧評価に おいて組合せ係数法を適用しても安全上支障がないことを確認した。

(2) 杭の検討結果

杭の検討について,主排気筒,非常用ガス処理系配管支持架構,使用済燃料乾式貯蔵建屋及 び緊急時対策所建屋に対して実施する杭支持力等及び断面の評価について,組合せ係数法の 適用性の検討を行った。

主排気筒については,鉛直支持力,引抜抵抗力,杭頭断面の曲げに対する組合せ係数法によ る検定比は,時刻歴和の検定比と比べて保守的な値となっているため,杭の評価において組合 せ係数法を適用しても安全上支障がないことを確認した。

非常用ガス処理系配管支持架構については,鉛直支持力,引抜抵抗力,杭の軸曲げに対する 組合せ係数法による検定比は,時刻歴和の検定比と比べて保守的な値となっているため,杭の 評価において組合せ係数法を適用しても安全上支障がないことを確認した。

使用済燃料乾式貯蔵建屋については,鉛直支持力,引抜抵抗力,杭の軸曲げに対する組合せ 係数法による検定比は,時刻歴和の検定比と比べて保守的な値となっているため,杭の評価に おいて組合せ係数法を適用しても安全上支障がないことを確認した。

緊急時対策所建屋については,鉛直支持力,引抜抵抗力,杭の軸曲げ,に対する組合せ係数 法による検定比は,時刻歴和の検定比と比べて保守的な値となっているため,杭の評価におい て組合せ係数法を適用しても安全上支障がないことを確認した。

(3) 基礎の検討結果

基礎については、原子炉建屋及び格納容器圧力逃がし装置格納槽に対して検討を行った。

原子炉建屋については、弾性設計用地震動Saについては、組合せ係数法による最大接地圧 は時刻歴接地圧の最大値より小さい値(最小で約98%)となっている場合もあるが、基礎へ の地震荷重の入力という観点で、弾性設計用地震動Saを包絡し組合せ係数法を適用して算出 した最大接地圧が時刻歴接地圧の最大値より大きい値となっていることから、基礎の評価に おいて組合せ係数法を適用しても安全上支障がないことを確認した。 また、基準地震動S。については、組合せ係数法による最大接地圧は時刻歴接地圧の最大値 より小さい値(最小で約92%)となっている場合もあるが、基礎への地震荷重の入力という 観点で、基準地震動S。については、応答スペクトルに基づく地震動、断層モデルに基づく地 震動及び震源を特定せず策定する地震動のそれぞれについて組合せ係数法を適用して算出し た最大接地圧が時刻歴接地圧の最大値より大きい値となっていることから、基礎の評価にお いて組合せ係数法を適用しても安全上支障がないことを確認した。

格納容器圧力逃がし装置格納槽については、各地震動における組合せ係数法による最大接 地圧は時刻歴接地圧の最大値より小さい値(最小で約95%)となっている場合もあるが、基 礎への地震荷重の入力という観点で、基準地震動S。を包絡し組合せ係数法を適用して算出し た最大接地圧が時刻歴接地圧の最大値より保守的となっていることから、基礎の評価におい て組合せ係数法を適用しても安全上支障がないことを確認した。

(4) 上部構造物の検討結果

水平地震力の影響を受けやすい,アスペクト比の大きい主排気筒及び上部構造物に対して 組合せ係数法を適用している建物である原子炉建屋の使用済燃料プールに対して検討を行っ た。

使用済燃料プールの評価において、基準地震動S。について各地震における主方向の最大値 発生時刻における副方向の応答値と最大応答値の比率が組合せ係数0.4以下となることから、 組合せ係数法を適用しても安全上支障がないことを確認した。また、弾性設計用地震動S_dに ついて各地震における主方向の最大値発生時刻における副方向の応答値と最大応答値の比率 は組合せ係数 0.4 より大きいものの、仮に副方向の応答値と最大応答値の比率を用いた場合 でも、許容限界に対して十分な余裕を有することから、使用済燃料プールの評価において組合 せ係数法を適用しても安全上支障がないことを確認した。

主排気筒の上部構造物の主柱材の評価において,各地震動における組合せ係数法による検 定比の最大値は時刻歴検定比の最大値より小さい値(最小で約73%)となっている場合もあ るが,主排気筒の上部構造物の主柱材の評価に用いる入力という観点で,基準地震動S。を包 絡し組合せ係数法を適用して算出した最大検定比が時刻歴の最大値より保守的となっている ことから,上部構造物の評価において組合せ係数法を適用しても安全上支障がないことを確 認した。 別紙 時刻歴による評価値

別	紙	時刻歴による評価値1
1.	時	刻歴接地圧の算定結果1
1	.1	原子炉建屋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	時	刻歴の杭における算定結果17
2	.1	主排気筒・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	. 2	非常用ガス処理系配管支持架構・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	. 3	使用済燃料乾式貯蔵建屋・・・・・・35
2	.4	緊急時対策所建屋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	主	排気筒の時刻歴検定比の算定結果46

- 1. 時刻歴接地圧の算定結果
- 1.1 原子炉建屋

原子炉建屋について,弾性設計用地震動S_d及び基準地震動S_sに対する時刻歴接地圧の算定 に用いる時刻歴転倒モーメント及び自重+時刻歴応答軸力を図 1-1~図 1-6 に示す。ここで, 応答スペクトに基づく地震動S_d-D1及びS_s-D1並びに震源を特定せず策定する地震動 S_d-31及びS_s-31では自重±時刻歴応答軸力とする。また,時刻歴接地圧の算定結果を 図 1-7~図 1-12 に示す。

(a) 時刻歴転倒モーメント (NS 方向)

(b)時刻歴転倒モーメント(EW方向)

(c) 自重+時刻歴応答軸力

(d) 自重一時刻歴応答軸力

図 1-1 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_d-D1)

図 1-2 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_d-22)

図 1-3 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_d-31)

(a) 時刻歴転倒モーメント (NS 方向)

(b)時刻歴転倒モーメント(EW方向)

(c) 自重+時刻歴応答軸力

図 1-4 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_s-D1)

図 1-5 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_s-21)

図 1-6 時刻歴転倒モーメント及び自重+時刻歴応答軸力(原子炉建屋 S_s-31)

(a) 自重+NS 方向+鉛直方向

(b) 自重+NS 方向一鉛直方向

(c) 自重+EW 方向+鉛直方向

(d) 自重+EW 方向-鉛直方向

図 1-7 時刻歴接地圧の算定結果(原子炉建屋 S_d-D1)

(a) 自重+NS 方向+鉛直方向

(b) 自重+NS 方向一鉛直方向

(c) 自重+EW 方向+鉛直方向

(d) 自重+EW 方向一鉛直方向

図 1-9 時刻歴接地圧の算定結果(原子炉建屋 S_d-31)

(a) 自重+NS 方向+鉛直方向

(b) 自重+NS 方向一鉛直方向

(c) 自重+EW 方向+鉛直方向

(d) 自重+EW 方向-鉛直方向

図 1-10 時刻歴接地圧の算定結果(原子炉建屋 S_s-D1)

(a) 自重+NS 方向+鉛直方向

(b) 自重+EW 方向+鉛直方向

図 1-11 時刻歴接地圧の算定結果(原子炉建屋 S_s-21)

(a) 自重+NS 方向+鉛直方向

(b) 自重+NS 方向一鉛直方向

(c) 自重+EW 方向+鉛直方向

(d) 自重+EW 方向-鉛直方向

図 1-12 時刻歴接地圧の算定結果(原子炉建屋 S_s-31)

1.2 格納容器圧力逃がし装置格納槽

格納容器圧力逃がし装置格納槽について,基準地震動S_s-21及びS_s-31並びにS_s-D1に対する時刻歴接地圧の算定結果を図1-13~図1-15に示す。

なお,格納容器圧力逃がし装置格納槽は地盤を2次元FEMでモデル化していることから, 基礎スラブ直下の地盤要素に生じる鉛直応力を用いて接地圧を算出している。

(a) 自重+NS 方向+鉛直方向

(b) 自重+EW 方向+鉛直方向

【参考】--:組合せ係数法による最大接地圧

図 1-13 時刻歴接地圧(格納容器圧力逃がし装置格納槽 S_s-31)

(b) 自重+EW 方向+鉛直方向

【参考】--:組合せ係数法による最大接地圧

図 1-14 時刻歴接地圧(格納容器圧力逃がし装置格納槽 S_s-31)

(a) 自重+NS 方向+鉛直方向

(b) 自重+EW 方向+鉛直方向

【参考】--:組合せ係数法による最大接地圧

図 1-15 時刻歴接地圧(格納容器圧力逃がし装置格納槽 S_s-D1)

- 2. 時刻歴の杭における算定結果
- 2.1 主排気筒

既存杭及び増設杭の検討ケースを表 2-1 に,各ケースの評価結果の一覧を表 2-2 に,杭の評価位置を図 2-1~図 2-2 に示す。

主排気筒の杭について,基準地震動S。に対する検討結果の厳しいケースにおける時刻歴の 杭の軸力,せん断力,曲げモーメント及び軸力を考慮した曲げモーメントの検定比(M/Mu)を 図 2-3~図 2-10 に示す。

既存杭の0°方向では4及び10の杭,90°方向では5及び19の杭,45°方向では4及び15の杭を検討する。

図 2-1 評価する杭位置(既存杭)

増設杭の 0° 方向では 21 及び 24 の杭, 90° 方向では 22 及び 27 の杭, 45° 方向 では 21 及び 26 の杭を検討する。

図 2-2 評価する杭位置(増設杭)

4 -7	地電部		남포므			
/	地辰勤	地	震		風	机留方
101		٥°	(r(ew))	٥°	(X(EW))	4
102		0	[/([///]	0		10
103	Sc-21 NS	۵۵°	(V(NG))	۵۵°	(V(NS))	5
104	03 21 10					19
105		45°	_	45°	_	4
106		70		-10		15
201		٥°	[X(FW)]	٥°	[X(FW)]	4
202						10
203	Ss−21 EW	۹۵°	[Y(NS)]	۹۵°	(V(NS))	5
204						19
205		45°	_	45°	_	4
206		10		10		15
301		0°	[X(FW)]	0°	[X(FW)]	4
302				•		10
303	Ss-31 FW	90°	[Y(NS)]	90°	[Y(NS)]	5
304	00 01 211					19
305		45°	_	45°	_	4
306						15
401		0°	[X(FW)]	0°	[X(FW)]	4
402				•		10
403	Ss-D1	90°	[Y(NS)]	90°	[Y(NS)]	5
404						19
405		45° —		45°	_	4
406		U		τu		15

表 2-1 (1/2) 検討ケース(既存杭)

4 -7	地電部		持来旦			
//	地辰到	地	震	風		机留方
111		٥°	(r(ew))	٥°	(V(EW))	21
112		0	(V(EMA))	0		24
113	S-21 NS	٥٥°	(V(NC))	٥٥°	(V(NC))	22
114	05 21 110	30		30		27
115		45°		45°	_	21
116		40		40		26
211		٥°	[X(EW)]	٥°	[X(FW)]	21
212		0		0		24
213	Ss−21 EW	۹۵°	(V(NS))	۹۵°	[V(NS)]	22
214		50				27
215		45°	_	45°	_	21
216		40		40		26
311		٥°	[X(EW)]	٥°	(X(EW))	21
312						24
313	Ss-31 FW	۹0°	(V(NS))	۹۵°	(V(NS))	22
314						27
315		45°	_	45°	_	21
316		- V		40		26
411		٥°	[X(FW)]	٥°	[X(FW)]	21
412						24
413	Ss-D1	۹۵°	(V(NS))	۹۵°	(V(NS))	22
414	03 01					27
415		45°		45°	_	21
416		70		70		26

表 2-1 (2/2) 検討ケース(増設杭)

		•	~	(1) =/	9813 08					
ᄴᆂᆂᆂ	加力方向		ᇥᇴᇢ		検知	定比				
地辰勤	н	也震		風.		曲げ	せん断	鉛直支持方向	引抜き方向	
	٥°	(V(EW))	٥°	(V(EW))	4	0.34	0.37	0.56	-	
	0	(X(EW))	0	(X(EW))	10	0.32	0.37	0.54	0.05	
S-21 NS	٥٥°	(V(NC))	٥٥°	(V(NC))	5	0.34	0.37	0.56	-	
35-21 113	90	[[(103)]	90	[T(N3)]	19	0.32	0.37	0.54	0.05	
	45°	_	45°	_	4	0.35	0.37	0.60	-	
	45°		40	_	15	0.31	0.37	0.57	0.15	
	٥°	(V(EW))	٥°	(V(EW))	4	0.23	0.27	0.53	-	
	0	(X(LW))	0	(A(LWV))	10	0.23	0.27	0.47	-	
So-21 EW	٥٥°	(V(NS))	٥٥°	(V(NC))	5	0.23	0.27	0.53	-	
35 21 LW	30	[[(N3)]	30	LI (NO)]	19	0.23	0.27	0.47	-	
	15°	_	45°	_	4	0.23	0.27	0.55	-	
	40		40	_	15	0.23	0.27	0.49	-	
	٥°	[Y(FW)]	٥°	(Y(FW))	4	0.37	0.40	0.44	-	
	0		0		10	0.33	0.40	0.36	_	
Sc-31 EW	۹۵°	۹۵°	[V(NS)]	۹۵°	[Y(NS)]	5	0.37	0.40	0.44	-
03 01 LW	50		50		19	0.33	0.40	0.36	-	
	45°	_	45°	_	4	0.37	0.40	0.49	-	
	40		40		15	0.32	0.40	0.39	-	
	٥°	[Y(FW)]	٥°	(X(EW))	4	0.30	0.35	0.46	-	
	0		0		10	0.29	0.35	0.42	-	
Se-D1	٥٥°	(V(NS))	٥٥°	(V(NC))	5	0.30	0.35	0.46	-	
35 D1	30	[1(N3)]	30	[[(N3)]	19	0.29	0.35	0.42	-	
	45°	_	45°	_	4	0.30	0.35	0.49	-	
	70		70		15	0.29	0.35	0.43	-	
					(1)MAX	0.37	0.40	0.60	0.15	
					 ② 設計値 	0.54	0.43	0.65	0.27	
					2/1	1.46	1.08	1.08	1.80	
	地震動 Ss-21 NS Ss-21 EW Ss-31 EW Ss-D1	地震動 blacker blacker blacke	地震動 加力: 地震 加力: シーン (X(EW)) (Y(NS)) 45° (Y(NS)) 45° (X(EW)) (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (X(EW)) 45° (X(EW)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS)) 45° (Y(NS))	$MDJ5h$ UE $MDJ5h$ UE 0° $[X(EW)]$ 0° SS-21 NS 90° $[Y(NS)]$ 90° 45° - 45° $SS-21$ EW 90° $[Y(NS)]$ 90° 45° - 45° - $SS-21$ EW 90° $[Y(NS)]$ 90° 45° - 45° - $SS-31$ EW 90° $[Y(NS)]$ 90° $SS-31$ EW 90° $[Y(NS)]$ 90° $SS-D1$ 90° $[Y(NS)]$ 90° $SS-D1$ 90° $[Y(NS)]$ 90° 45° - 45° -	$\frac{h}{h} \frac{h}{h} \frac{h}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{\mu_{R}}{\mu_{R}} \xrightarrow{\mu_{R}} (F) = (F$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

衣 2-2 (1/2) 呒仔忛 伴侧宿禾 -	表 2-2	2 (1/2)	既存杭	評価結果
--------------------------	-------	---------	-----	------

表	2-2	(2,

/2) 増設杭 評価結果

増設杭				X										
L 7	山西乱		加力	方向		부교묘		検知	定比					
<i>7</i> -7	地宸凱	地	震		風	机留亏	曲げ	せん断	鉛直支持方向	引抜き方向				
111		٥°			21	0.26	0.28	0.56	-					
112		0	(V(EW))	0	(A(EWV))	24	0.25	0.28	0.54	0.08				
113	S-21 NS	٥٥°	(V(NS))	٥٥°	(V(NC))	22	0.26	0.28	0.56	-				
114	03 21 10	50	(1(10)))	50	(T(NO/)	27	0.25	0.28	0.54	0.08				
115		15°	_	45°	_	21	0.26	0.28	0.58	-				
116		40		40		26	0.25	0.28	0.55	0.12				
211		٥°	(X(EW))	٥°	[X(EW)]	21	0.18	0.20	0.53	-				
212		0		0		24	0.18	0.20	0.47	-				
213	So-21 EW	٥٥°	(V(NC))	٥٥°	[Y(NS)]	22	0.18	0.20	0.53	-				
214	35 21 LW	30	(I(N3/J	90		27	0.18	0.20	0.47	-				
215		15°	_	_	_	_	_	45°	_	21	0.18	0.20	0.54	-
216		40		40		26	0.18	0.20	0.48	-				
311		٥°	[X(EW)]	[X(EW)]	(X(EW))	٥°	[X(EW)]	21	0.28	0.30	0.45	-		
312		•		•	[/([///]	24	0.26	0.30	0.36	-				
313	Se-31 FW	۹۵°	(V(NS))	۹۵°	[Y(NS)]	22	0.28	0.30	0.45	-				
314	03 01 20	50		50		27	0.26	0.30	0.36	-				
315		15°	_	45°	_	21	0.28	0.30	0.47	-				
316		40		40		26	0.26	0.30	0.38	-				
411		٥°	[X(FW)]	٥°	[X(FW)]	21	0.24	0.26	0.46	-				
412		0		0		24	0.23	0.26	0.42	-				
413	Sc-D1	۹۵°	(V(NS))	۹۵°	(V(NS))	22	0.24	0.26	0.46	-				
414	03 D1	50	(1(10)))	50		27	0.23	0.26	0.42	-				
415		45°		45°	_	21	0.24	0.26	0.47	-				
416		45		40		26	0.23	0.26	0.42	-				
						(1)MAX	0.28	0.30	0.58	0.12				
						2 設計値	0.34	0.32	0.63	0.23				
						2/1	1.21	1.07	1.09	1.92				

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-3 時刻歴の算定結果 S_s-21,既存杭
 (杭番号 4, 45° NS 方向)(ケース 105)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-4 時刻歴の算定結果 S_s-21,既存杭 (杭番号 15,45°NS 方向)(ケース 106)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-5 時刻歴の算定結果 S_s-31,既存杭
 (杭番号 4, 45° EW 方向)(ケース 305)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-6 時刻歴の算定結果 S_s-31,既存杭 (杭番号 15,45°EW 方向)(ケース 306)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-7 時刻歴の算定結果 S_s-21,増設杭 (杭番号 21,45°NS 方向)(ケース 115)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-8 時刻歴の算定結果 S_s-21,増設杭 (杭番号 26,45°NS 方向)(ケース 116)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-9 時刻歴の算定結果 S_s-31,増設杭 (杭番号 21,45°EW 方向)(ケース 315)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

図 2-10 時刻歴の算定結果 S_s-31, 増設杭 (杭番号 26, 45°EW 方向) (ケース 316)

2.2 非常用ガス処理系配管支持架構

杭の検討ケースを表 2-3 に、各ケースの評価結果の一覧を表 2-4 に示す。 非常用ガス処理系配管支持架構の杭について、基準地震動 S。に対する検討結果の厳しいケ ースにおける時刻歴の杭の軸力、せん断力、曲げモーメント及び軸力を考慮した曲げモーメン トの検定比(M/Mu)を図 2-11~図 2-14 に示す。

ケース No.	地震動	地震動 水平方向	風荷重	鉛直ばね の位相	杭位置
101					Rp
102		V (NO)	V (NO)	1E.	-Rp
103		Y (NS)	Y (NS)	\ \\	Rp
104	S _s -22			迎	-Rp
105					Rp
106		X (EW)	X (EW)		-Rp
107				治	Rp
108				迎	-Rp
201					Rp
202			Y (NS)		-Rp
203		I (NS)		济	Rp
204				迎	-Rp
205	S _s -D1				Rp
206		V (EW)	V (EW)		-Rp
207		X (EW)	X(EW)	送	Rp
208				世	-Rp

表 2-3 荷重組合せケース

図 2-11 評価する杭位置

4 4		方向		鉛直		検定比				
グース	地震動	山山市	F	ばね	杭位置	鉛直	引抜き	曲げ	せん断	
NO.		1 地震	迎	の位相		支持	抵抗	応力	応力	
101					Rp	0.132	_	0.048	0.056	
102		V (NC)	V (NC)		-Rp	0.109	_	0.048	0.056	
103		Y (NS)	r (NS)	送	Rp	0.115	_	0.049	0.056	
104	S 0.0			世	-Rp	0.119	0.009	0.048	0.056	
105	$S_s - Z Z$				Rp	0.115	0.007	0.044	0.052	
106		V (EW)	V (EW)		-Rp	0.113	_	0.044	0.052	
107		X(EW)	X(EW)	x(Ew) 逆	Rp	0.114	_	0.044	0.052	
108					-Rp	0.131	_	0.044	0.052	
201		Y (NS)	Y (NS)		Rp	0.105	_	0.054	0.063	
202					-Rp	0.107	_	0.054	0.063	
203				、光	Rp	0.102	_	0.054	0.063	
204				世	-Rp	0.111	_	0.054	0.063	
205	$S_s - DI$				Rp	0.130	_	0.060	0.069	
206		V (DW)	V (DW)		-Rp	0.113	_	0.059	0.069	
207		X(EW)	X(EW)	、光	Rp	0.126	_	0.059	0.069	
208				迎	-Rp	0.118	0.005	0.059	0.069	
					最大値	0.132	0.009	0.060	0.069	
				②(参考)設計値	0.151	0.057	0.083	0.096	
				2)	/①	1.14	6.33	1.38	1.39	
				注:■は最大値を示す。						

表 2-4 評価結果

図 2-12 時刻歴の算定結果 S_s-22(ケース 101)

(a) 軸力 時刻歴

(b) せん断力 時刻歴

(c) 曲げモーメント 時刻歴

注: 抗の鉛直支持力及び引抜き抵抗力の許容限界は、埋込み杭の許容値の場合を示す。

図 2-14 時刻歴の算定結果 S_s-D1(ケース 205)

2.3 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋の杭について,検討ケースを表 2-5 に,各検討ケースの評価結果の 一覧を表 2-6 に,軸力を評価する杭位置を図 2-15 に示す。

また,基準地震動S。に対する検討結果の厳しいケースにおける時刻歴の杭の鉛直支持力, 引抜き抵抗力,せん断力,曲げモーメント及び軸力を考慮した曲げモーメントの検定比(M/ Mu)を図 2-16~図 2-17 に示す。

ケース	地震動	水平方向	鉛直方向	備考
101	S D 1	NS	UD	
102	$S_s - DI$	EW	UD	
201	S 9 9	NS	UD	
202	$S_{s} - 22$	EW	UD	
301	C 9 1	NS	UD	
302	$5_{s} - 5_{1}$	EW	UD	

表 2-5 検討ケース

4. 7	业重新	+	検定比					
クース 地震動	地展期	万円	曲げ	せん断	鉛直支持力	引抜き抵抗力		
101	S ~ D1	NS	0.469	0.183	0.393	0.169		
102	5s-D1	EW	0.626	0.186	0. 473	0. 428		
201	C	NS	0.567	0.212	0.424	0.268		
202	5s-22	EW	0.588	0.177	0.431	0.291		
301	S = 21	NS	0. 587	0.227	0.320	-		
302	55-31	EW	0. 879	0.242	0.444	0.336		
		①最大値	0.879	0.242	0.473	0.428		
		②設計値	0.996	0.243	0.490	0.481		
		2/1	1.13	1.00	1.04	1.12		

表 2-6 各検討ケースの評価結果

※設計値:組合せ係数法による値

※青枠:NS方向+鉛直方向地震力による杭軸力検討部位 ※赤枠:EW方向+鉛直方向地震力による杭軸力検討部位

図 2-15 軸力を評価する杭位置

図 2-16 時刻歴の算定結果 S_s-D1 (EW 方向, ケース 102)

図 2-17 時刻歴の算定結果 S_s-31 (EW 方向,ケース 302)

2.4 緊急時対策所建屋

杭支持力等及び断面応力の時刻歴波形を図 2-18~図 2-23 示す。

図 2-18 杭支持力等及び断面応力の時刻歴波形(S_s-22, NS 方向)

図 2-19 杭支持力等及び断面応力の時刻歴波形(S_s-22, EW 方向)

図 2-20 杭支持力等及び断面応力の時刻歴波形(S_s-D1, NS 方向)

図 2-21 杭支持力等及び断面応力の時刻歴波形(S_s-D1, EW 方向)

図 2-22 杭支持力等及び断面応力の時刻歴波形(S_s-31, NS 方向)

図 2-23 杭支持力等及び断面応力の時刻歴波形(S_s-31, EW 方向)

3. 主排気筒の時刻歴検定比の算定結果

主排気筒の鉄塔(主柱材)について,基準地震動S_s-D1,S_s-21及びS_s-31に対する主排気筒の時刻歴検定比の算定結果を図 3-1~図 3-3に示す。

図 3-1 主排気筒の時刻歴検定比の算定結果(S_s-D1)

図 3-2 主排気筒の時刻歴検定比の算定結果(S_s-21)

図 3-3 主排気筒の時刻歴検定比の算定結果(S_s-31)