TK-1-1931 改 1 平成 30 年 10 月 2 日 日本原子力発電株式会社

本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません。

タービンペデスタルと建屋躯体の相対変位について

1. 絶対値和による相対変位

主蒸気配管 (タービン建屋内: Sd 機能維持) に対する波及影響検討として, タービンペデスタル (以下「T/G 架台」という。) と建屋躯体の Sd 地震時の接触の有無について評価する。

地震応答解析モデルを図 1-1 に、各軸の支配領域を図 1-2 に示す。なお、T/G 架台と建屋 躯体のクリアランスは 25mm である。

絶対値和による T/G 架台と建屋躯体の相対変位を表 1-1 及び表 1-2 に示す。最大相対変位は、S s - 3 1 の タービン建屋質点レベル EL. 18.00 m において、クリアランス(25 mm)を超える。

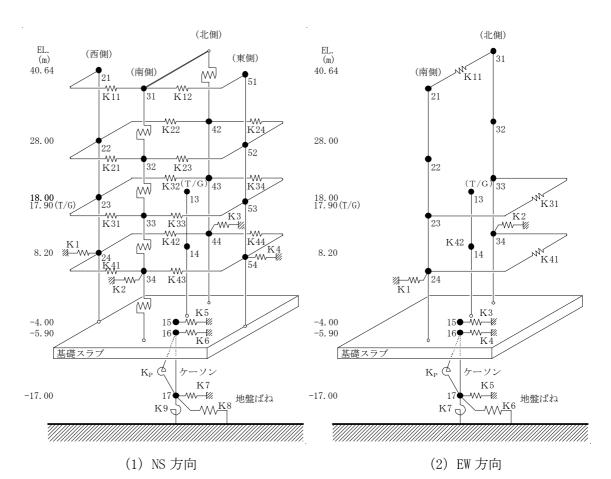
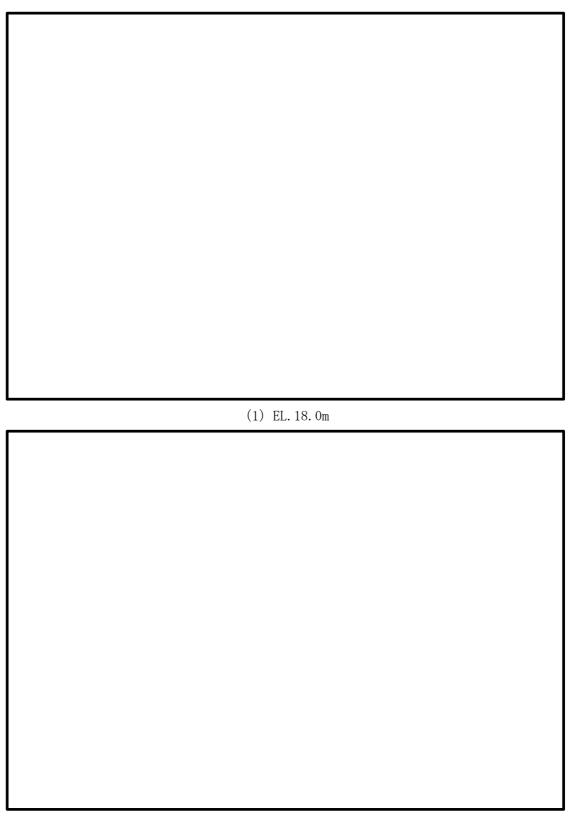
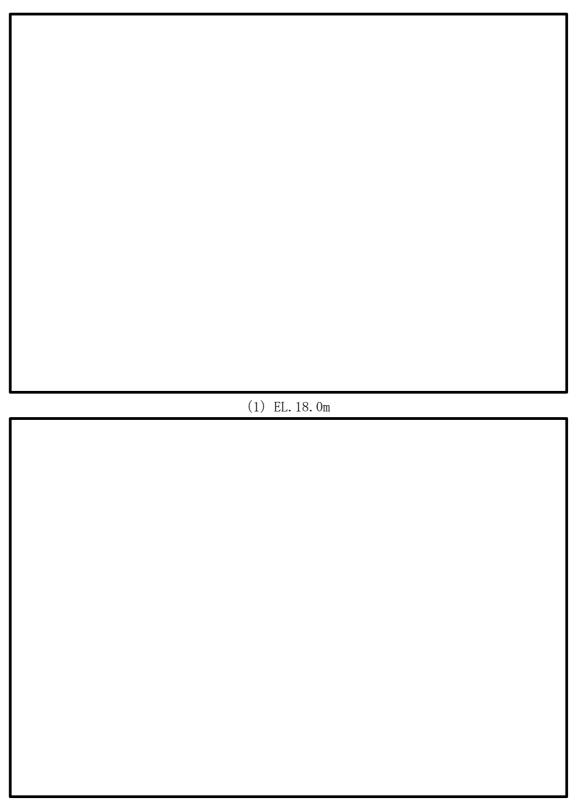




図1-1 地震応答解析モデル

(2) EL. 8. 2m

図 1-2(1/2) 各軸の支配領域(NS 方向)

(2) EL. 8. 2m

図 1-2(2/2) 各軸の支配領域(EW 方向)

表 1-1 T/G 架台と建屋躯体の絶対値和による相対変位(EL. 17.9m)

(1) NS 方向

	最大応答変位(mm)					相対変位(mm)			
地震動	T/G 架台	西側	南側	北側	東側	西側	南側	北側	東側
	質点 13	質点 23	質点 33	質点 43	質点 53	質点 23	質点 33	質点 43	質点 53
$S_d - D1$	11.6	8.4	13.3	10.5	8.4	20.0	24. 9	22. 1	20.0
S _d -11	3. 5	2. 7	4.4	3. 3	2.7	6. 2	7.9	6.8	6. 2
$S_{d} - 12$	4. 9	3. 9	5. 9	4.4	4.0	8.8	10.8	9. 3	8. 9
$S_{d} - 13$	5. 1	4. 1	5. 9	4.3	4. 1	9. 2	11.0	9. 4	9. 2
$S_{d} - 14$	4.2	3. 4	5. 3	4. 2	3.4	7.6	9.5	8. 4	7. 6
$S_{d} - 21$	9. 7	6.0	11.4	8. 5	6.0	15. 7	21.1	18. 2	15. 7
$S_{d} - 22$	8.7	6.0	11. 1	7. 9	6.0	14. 7	19.8	16.6	14. 7
$S_{d} - 31$	12.9	10.0	15. 0	11.9	10.0	22. 9	<u>27. 9</u>	24.8	22. 9

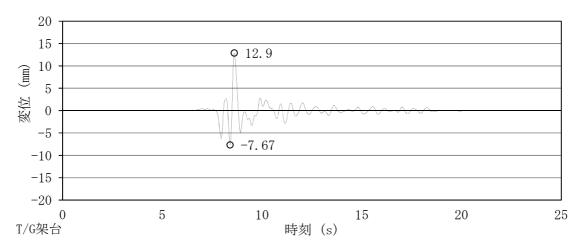
(2) EW 方向

	į	最大応答変位 (mm)	相対変位(mm)		
地震動	T/G 架台	南側	北側	南側	北側
	質点 13	質点 23	質点 33	質点 23	質点 33
$S_d - D1$	0. 95	0. 96	0.75	19. 1	17. 0
$S_{d} - 11$	0.38	0. 39	0.30	7. 7	6.8
$S_{d} - 12$	0. 44	0. 42	0.32	8. 6	7. 6
$S_{d} - 13$	0. 42	0. 42	0. 32	8. 4	7. 4
$S_{d} - 14$	0.36	0. 34	0. 25	7. 0	6. 1
$S_{d} - 21$	0.45	0. 42	0.36	8. 7	8. 1
$S_{d} - 22$	0.66	0. 65	0.49	13. 1	11.5
$S_{d} - 31$	1. 10	0. 99	0.76	20. 9	18.6

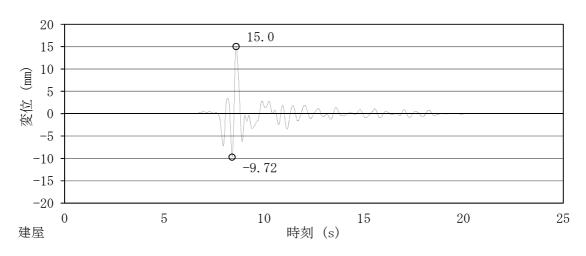
表 1-2 T/G 架台と建屋躯体の絶対値和による相対変位 (NS 方向, EL. 8. 2m)

(1) NS 方向

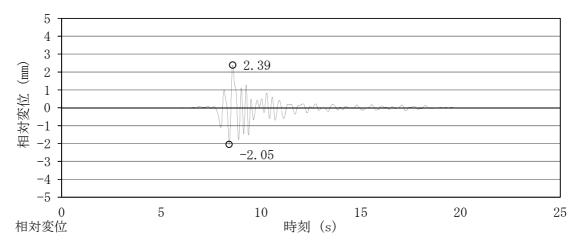
	最大応答変位 (mm)					相対変位(mm)			
地震動	T/G 架台	西側	南側	北側	東側	西側	南側	北側	東側
	質点 14	質点 24	質点 34	質点 44	質点 54	質点 24	質点 34	質点 44	質点 54
$S_d - D1$	8.0	5.8	10.5	6. 5	5.8	13.8	18.5	14. 5	13.8
$S_{d} - 11$	2.4	2.0	3.9	2.0	2.0	4. 4	6.3	4.4	4. 4
$S_{d} - 12$	3. 7	3. 1	5. 4	3. 2	3. 1	6.8	9. 1	6. 9	6.8
$S_{d} - 13$	3. 5	3. 2	5. 4	3. 3	3. 2	6. 7	8.9	6.8	6. 7
$S_{d} - 14$	3.0	2. 5	4.3	2.7	2.5	5. 5	7.3	5. 7	5. 5
$S_{d} - 21$	6. 1	3. 7	8.6	4. 5	3.8	9.8	14. 7	10.6	9. 9
$S_{d} - 22$	5. 6	3. 5	6. 9	4. 2	3.6	9. 1	12.5	9.8	9. 2
$S_d - 31$	8.9	6.8	10. 4	7. 5	6. 9	15. 7	19. 3	16. 4	15.8


(2) EW 方向

	į	最大応答変位 (mm)	相対変位(mm)		
地震動	T/G 架台	南側	北側	南側	北側
	質点 14	質点 24	質点 34	質点 24	質点 34
$S_d - D1$	0.74	0. 78	0.52	15. 2	12.6
S _d -11	0. 29	0. 33	0. 22	6. 2	5. 1
$S_{d} - 12$	0. 34	0. 34	0. 22	6.8	5. 6
$S_{d} - 13$	0.32	0. 33	0. 22	6. 5	5. 4
$S_{d} - 14$	0. 28	0. 27	0.18	5. 5	4. 6
$S_{d} - 21$	0. 33	0. 35	0. 25	6.8	5.8
$S_{d} - 22$	0. 49	0. 51	0.32	10. 0	8. 1
$S_{d} - 31$	0.84	0. 79	0. 53	16. 3	13. 7


2. 時刻歴和による相対変位

「1. 絶対値和による相対変位」では、 S_d-3 1 地震時の NS 方向において、タービン建屋 南側をモデル化した軸と T/G 架台をモデル化した軸の相対変位がクリアランスの 25mm を上回る結果となった。


ここでは,時刻歴相和による相対変位を求め,接触の有無について評価する。 S_d-31 地 震時各質点の変位時刻歴と時刻歴和による相対変位を図2-1に示す。図2-1に示すように,時刻歴和による相対変位の最大値は2.39~mmでクリアランスの25mm以下となり,T/G架台と建屋は接触しないことを確認した。

(1) T/G 架台(質点 13)の変位時刻歴

(2) 建屋南側(質点33)の変位時刻歴

(3) T/G 架台-建屋間の相対変位時刻歴 図 2-1 変位時刻歴

3. ねじれによる影響

T/G 架台には、発電機 1 基、低圧タービン 3 基及び高圧タービン 1 基が設置され、それぞれの 1 基あたりの重量は遮蔽体を含め、それぞれ約 600t、970t、650t である。

重量の大きい低圧タービン3基を中央に配置し、その両横に同程度の重量の発電機と高圧タービンを配置することにより、偏心の少ない設計としている。上記のとおり、時刻歴和による相対変位はクリアランスに対し十分余裕があり、ねじれによる影響を考慮しても T/G 架台と建屋躯体が衝突することはない。

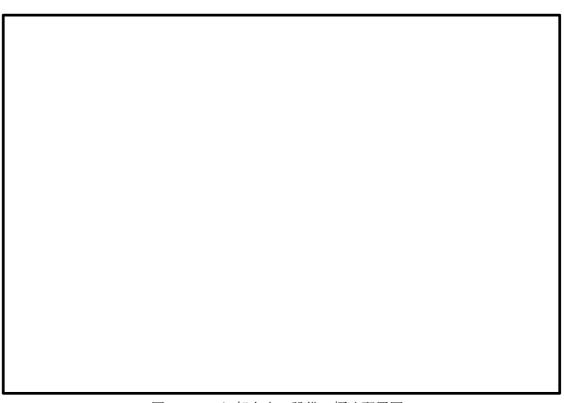


図 3-1 T/G 架台上の設備の概略配置図