本資料のうち、枠囲みの内容は 営業秘密又は防護上の観点から 公開できません。

東海第二発行	電所 工事計画審査資料
資料番号	工認-066 改10
提出月日	平成30年10月2日

V-1-9-3-2 緊急時対策所の居住性に関する説明書

目 次

1. 根	既要]
2. 緊	る急時対策所の居住性に関する基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]
2.1	基本方針]
2.2	適用基準, 適用規格等 · · · · · · · · · · · · · · · · · · ·	2
3. 緊	る急時対策所の居住性を確保するための防護措置	į
3. 1	換気設備等	4
3.2	生体遮蔽装置	7
3.3	酸素濃度計及び二酸化炭素濃度計	8
3.4	資機材及び要員の交代等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3.5	代替電源	8
4. 緊	る時対策所の居住性に係る被ばく評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ć
4.1	線量評価	Ć
4.2	酸素濃度及び二酸化炭素濃度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
4.3	緊急時対策所の居住性評価のまとめ	30
5. 素	ぬ除去の検討	31
5.1	緊急時対策所遮蔽壁入射線量の設定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
5.2	温度上昇の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
5.3	温度上昇のまとめ	3]
別添1	緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持について	
別添2	緊急時対策所遮蔽に係るストリーミングの考慮について	
別紙1	計算機プログラム(解析コード)の概要	

1. 概要

本説明書は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第46条及び第76条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づく緊急時対策所の居住性について、居住性を確保するための基本方針、居住性に係る設備の設計方針、放射線防護措置の有効性を示す評価等を含めて説明するものである。

2. 緊急時対策所の居住性に関する基本方針

2.1 基本方針

緊急時対策所の居住性を確保する観点から、以下の機能を有する設計とする。

- (1) 緊急時対策所は、原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な指示を行うための要員等を収容することができるとともに、それら関係要員が必要な期間にわたり滞在できる設計とする。
- (2) 緊急時対策所は、重大事故等が発生した場合においても当該事故等時に対処するために必要な指示を行う要員に加え、原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処するために必要な数の要員を包含が、重大事故等時に対処するために必要な数の要員を収容することができるとともに、当該事故等時に対処するために必要な指示を行う要員がとどまることができるよう、適切な遮蔽設計及び換気設計を行い、緊急時対策所の居住性を確保する。

緊急時対策所は、緊急時対策所非常用換気設備、緊急時対策所遮蔽及び二次遮蔽により居住性を確保する。

緊急時対策所の居住性を確保するためには換気設備を適切に運転し、緊急時対 策所内への希ガス等の放射性物質の侵入を低減又は防止する必要がある。このた め、放射線管理施設の放射線管理用計測装置により、大気中に放出された放射性 物質による放射線量を監視、測定し、換気設備の運転・切替の確実な判断を行う。

その他の居住性に係る設備として,緊急時対策所内の酸素濃度が活動に支障がない範囲にあることを正確に把握するため,可搬型の酸素濃度計を保管するとともに,二酸化炭素濃度も酸素濃度と同様に居住性に関する重要な制限要素であることから,可搬型の二酸化炭素濃度計を保管する。また,緊急時対策所非常用換気設備は,代替電源設備である緊急時対策所用発電機からの給電が可能な設計とする。

これら、居住性を確保するための設備及び防護具の配備、着用等、運用面の対策を考慮して被ばく評価並びに緊急時対策所内の酸素濃度及び二酸化炭素濃度評価を行い、その結果から、緊急時対策所の居住性確保について評価する。

居住性評価のうち被ばく評価に当たっては、「実用発電用原子炉に係る重大事

故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」 (以下「審査ガイド」という。)を参照して放射性物質等の評価条件及び評価手 法を考慮し、居住性に係る被ばく評価の判断基準を満足できることを評価する。

また、居住性評価のうち緊急時対策所内の酸素濃度及び二酸化炭素濃度評価に当たっては、「鉱山保安法(昭和24年法律第70号)鉱山保安法施行規則」(平成16年9月27日経済産業省令第96号、最終改正平成26年6月24日経済産業省令第32号)の労働環境における酸素濃度及び二酸化炭素濃度の許容基準に準拠し、許容基準を満足できることを評価する。

2.2 適用基準, 適用規格等

緊急時対策所の居住性に適用する基準、規格等は、以下のとおりとする。

- 解釈
- ・原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)(旧原子力安全・保安院,平成21・07・27原院第1号,平成21年8月12日)
- 鉱山保安法施行規則
- ・発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(昭和51年9月28日 原子力委員会決定,平成13年3月29日一部改訂)
- ・被ばく計算に用いる放射線エネルギー等について ((原子力安全委員会了承,平 成元年3月27日)一部改訂 平成13年3月29日)
- ・発電用軽水型原子炉施設の安全評価に関する審査指針(平成2年8月30日 原子力安全委員会決定,平成13年3月29日一部改訂)
- ・発電用原子炉施設の安全解析に関する気象指針(昭和57年1月28日原子力安全委員会決定,平成13年3月29日一部改訂)
- 技術基準規則
- ・空気調和・衛生工学便覧 第14版 (平成22年2月)
- ・沸騰水型原子力発電所 事故時の被ばく評価手法について HLR-021訂9 株式会 社日立製作所、平成16年1月
- ・「放射線施設のしゃへい計算 実務マニュアル 2015」のデータ集「放射線施設の 遮蔽計算実務 (放射線)データ集 2015」 (公益財団法人原子力安全技術センター)
- ICRP Publication 71, "Age-dependent Doses to Members of the Public from Intake of Radionuclides - Part 4 Inhalation Dose Coefficients", 1995
- ICRP Publication 72, "Age-dependent Doses to Members of the Public from Intake of Radionuclides - Part 5 Compilation of Ingestion and Inhalation Dose Coefficients", 1996
- ・ 審査ガイド
- ・JENDL-3.2に基づくORIGEN2用ライブラリ:ORLIBJ32(JAERI-Data/Code 99-003

(1999年2月))

- ・ JENDL-3.2に基づくORIGEN2用ライブラリ:軽水炉MOX燃料用ORIGEN2ライブラリ (JAERI-Data/Code 2000-036 (2000年11月))
- · L. Soffer, et al., "Accident Source Terms for Light-Water Nuclear Power Plants", NUREG-1465, February 1995
- ・NUPEC 平成9年度 NUREG-1465のソースタームを用いた放射性物質放出量の評価に 関する報告書 (平成10年3月)
- NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99
- *米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident Risks:Quantification of Major Input Parameters", Fabruary 1994
- R. G. 1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors"
- JAEA-Technology 2011-026「汚染土壌の除染領域と線量低減効果の検討」
- ・2007年制定 コンクリート標準示方書 構造性能照査編,土木学会
- ・2013年改定 建築工事標準仕様書・同解説 JASS 5N 原子力発電所施設における 鉄筋コンクリート工事、日本建築学会

3. 緊急時対策所の居住性を確保するための防護措置

緊急時対策所は、必要な要員を収容できるとともに、重大事故等時において、緊急時対策所の気密性並びに換気設備及び生体遮蔽性能とあいまって、想定する放射性物質の放出量等を東京電力ホールディングス株式会社福島第一原子力発電所事故と同等とし、かつ緊急時対策所内でのマスク着用、交代要員体制及び安定ョウ素剤の服用がなく、仮設設備を考慮しない要件においても、緊急時対策所にとどまる要員の実効線量が事故後7日間で100 mSvを超えない設計とする。

居住性に係る被ばく評価では、放射性物質が大気中へ放出されている間は、緊急時対策所非常用換気設備の使用により緊急時対策所建屋内を加圧し、緊急時対策所非常用フィルタ装置を通らない空気流入量は考慮しないこととしている。このため、緊急時対策所建屋(遮蔽含む。)及び緊急時対策所非常用換気設備の性能を維持・管理することで、被ばく評価条件を満足する設計とする。また、被ばく評価条件並びに酸素濃度及び二酸化炭素濃度評価条件を満足するよう、緊急時対策所非常用換気設備の機能・性能試験を実施する。

資機材の保管,管理等については,添付書類「V-1-9-3-1 緊急時対策所の機能に 関する説明書」に、身体サーベイ及び作業服の着替え等を行うための区画(以下「チ ェンジングエリア」という。)の詳細については、添付書類「V-1-7-2 管理区域の 出入管理設備及び環境試料分析装置に関する説明書」に示す。

緊急時対策所の居住性を確保するための設備、防護具の配備及び運用面の対策を以下のとおり講じる。

3.1 換気設備等

緊急時対策所非常用換気設備(緊急時対策所非常用送風機,緊急時対策所非常用フィルタ装置及び緊急時対策所加圧設備)は,基準地震動 S_Sによる地震力に対し,機能を喪失しないようにする。また,重大事故等が発生した場合において,緊急時対策所内への希ガス等の放射性物質の侵入を低減又は防止し,「3. 緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る被ばく評価の判断基準を超えない設計とするとともに,緊急時対策所内の酸素濃度及び二酸化炭素濃度が重大事故等時の対策のための活動に支障がない濃度を確保できる設計とする。

換気設計に当たっては、緊急時対策所の気密性に対して十分な余裕を考慮した設計とするとともに、緊急時対策所内には、重大事故等に対処するために必要な指示をする対策要員及び原子炉格納容器の破損等による発電所外への放射性物質の拡散の抑制に必要な現場活動等に従事する対策要員、合計70名を上回る最大100名を収容できる設計する。

また、緊急時対策所は、緊急時対策所外の火災により発生するばい煙や有毒ガス及 び降下火砕物に対して、ダンパを閉止し外気の取り込みを一時停止することにより、 対策要員を防護する。

重大事故等時に大気中に放出された放射性物質の状況に応じ、緊急時対策所非常用換気設備の確実な運転・切替操作ができるよう、緊急時対策所内にて放射線量を監視できる設計とする。

3.1.1 緊急時対策所非常用換気設備

緊急時対策所非常用換気設備は、重大事故等時に大気中に放出された放射性物質による放射線被ばくから緊急時対策所内にとどまる要員を防護するため、緊急時対策所非常用換気設備の運転状態を高性能粒子フィルタ及びよう素用チャコールフィルタを通して外気を取り込む非常時運転(緊対建屋加圧モード)に切り換え、緊急時対策所建屋内を加圧することにより、緊急時対策所非常用フィルタ装置を通らない空気の流入を防止する設計とする。

プルーム通過時には、緊急時対策所非常用換気設備の運転状態をプルーム通過 時加圧運転(災害対策本部加圧モード)に切り替え、緊急時対策所等を緊急時対 策所加圧設備にて加圧することで、周辺エリアより高い圧力とし、緊急時対策所 内への希ガス等の放射性物質の侵入を防止する設計とする。 プルーム通過後には、緊急時対策所非常用換気設備の運転状態をプルーム通過 後加圧運転(緊対建屋浄化モード)に切り替え、緊急時対策所等の加圧を継続し た状態で、緊急時対策所非常用フィルタ装置を通した外気の取入れ量を増加させ ることで、緊急時対策所建屋内に滞留している希ガス等を排出する設計とする。

緊急時対策所非常用換気設備の構成図を図4-8に示す。また、緊急時対策所非 常用換気設備の運転モードごとの構成図を図4-9から図4-11に示す。

緊急時対策所非常用換気設備の強度に関する詳細は、添付書類「V-3-8-1-3 緊急時対策所換気系の強度計算書」に示す。

(1) 居住性確保のための換気設備運転

a. 非常時運転

緊急時対策所は,緊急時対策所非常用送風機及び緊急時対策所非常用フィルタ装置により放射性物質を低減しながら外気を取り入れることができる。

また、緊急時対策所建屋内は、緊急時対策所非常用送風機により加圧される ため、緊急時対策所非常用フィルタ装置を通らない空気の流入はない。

b. 緊急時対策所加圧設備による加圧

緊急時対策所等は、緊急時対策所加圧設備により加圧されるため、プルーム 通過中に緊急時対策所内へ外気が侵入することはない。

(2) 緊急時対策所非常用送風機

緊急時対策所非常用送風機は,緊急時対策所内にとどまる要員の被ばくを低減し、かつ,酸素濃度及び二酸化炭素濃度を活動に支障がない濃度に維持でき、1個で緊急時対策所内を換気するために必要な容量を有する設計とする。容量の設定に当たっては,緊急時対策所建屋内の正圧維持並びに酸素濃度及び二酸化炭素濃度を維持・抑制するために必要な流量を考慮する。また,緊急時対策所非常用送風機は,緊急時対策所建屋内に設置し,外気中の放射性物質の濃度に応じて緊急時対策所加圧設備との切替えができるよう,緊急時対策所内のスイッチによる操作が可能な設計とする。

(3) 緊急時対策所非常用フィルタ装置

緊急時対策所非常用フィルタ装置は、緊急時対策所非常用送風機と同様、1個で必要な容量を有する設計とするとともに、チェンジングエリアを含め、緊急時対策所内に対して放射線による悪影響を及ぼさないよう、十分な放射性物質の除去効率及び吸着能力を確保するため、高性能粒子フィルタとよう素用チャコールフィルタを直列に配列することで、除去効率を高める設計とする。

緊急時対策所非常用フィルタ装置の除去効率を表4-17に,緊急時対策所非常用フィルタ装置の概略図を図4-12に示す。

a. フィルタ除去効率

緊急時対策所非常用フィルタ装置の高性能粒子フィルタによるエアロゾルの

除去効率は、99.99 %以上(フィルタ前置・後置直列の総合除去効率)となるように設計し、よう素用チャコールフィルタによるよう素の除去効率は、99.75 %以上(フィルタ前置・後置直列の総合除去効率)となるように設計する。

- b. フィルタ除去性能の維持等
 - (a) 除去性能(効率)については、以下の性能検査を定期的に実施し、確認 する。
 - ・微粒子/よう素除去効率検査
 - ・漏えい率検査及び総合除去効率検査
 - (b) フィルタ仕様(使用環境条件)の範囲内で使用する必要があることから、 温度や湿度が通常時に比べて大きく変わることがないよう、緊急時対策所 建屋内にて使用する。
 - (c) 原子炉格納容器破損による放射性物質の想定放出量のうち緊急時対策所への影響量(フィルタ捕集量)に対し、緊急時対策所非常用フィルタ装置は十分な保持容量及び吸着容量を有する設計とする。緊急時対策所非常用フィルタ装置のフィルタ捕集量については、別添1「緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持について」に示す。
 - (d) 原子炉格納容器から放出され、緊急時対策所非常用フィルタ装置のフィルタに付着する核分裂生成物の崩壊熱により、その性能(除去効率)が低下しない設計とする。緊急時対策所非常用フィルタ装置のフィルタに付着する核分裂生成物の崩壊熱による温度上昇については、別添1「緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持について」に示す。
 - (e) 緊急時対策所非常用フィルタ装置は、プレフィルタ及び高性能粒子フィルタを設置することで、粉塵等の影響によるよう素用チャコールフィルタの目詰まりを防止し、よう素用チャコールフィルタの差圧が過度に上昇しない設計とする。

緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持については、 別添1「緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持につい て」に示す。

c. 緊急時対策所内の対策要員への影響

緊急時対策所非常用フィルタ装置は、緊急時対策所非常用フィルタ装置自体が放射線源になることを踏まえ、緊急時対策所へ出入りする対策要員の被ばく防護のため、緊急時対策所遮蔽普通コンクリート(厚さ約100 cm)より外側の緊急時対策所建屋内に設置する。

(4) 緊急時対策所加圧設備

放射性物質放出時,緊急時対策所内に希ガス等の放射性物質が流入することを

防ぐため,緊急時対策所加圧設備により緊急時対策所等を加圧し,緊急時対策所 内にとどまる要員の被ばくの低減又は防止を図る。

緊急時対策所加圧設備は、線量評価における放射性物質の放出継続時間が10時間であることを踏まえ、緊急時対策所を正圧に加圧でき、かつ、酸素濃度及び二酸化炭素濃度を活動に支障がなく維持するために必要な容量を確保するだけでなく、余裕を含めて14時間の緊急時対策所等の加圧を可能とする容量として、320個以上(1個当たりの空気容量が46.7 Lのもの)を配備するものとする。正圧化された緊急時対策所内と周辺エリアとの差圧を監視できる計測範囲として0~200Paを有する緊急時対策所用差圧計を1個設置する。また、外気中の放射性物質の濃度に応じて緊急時対策所非常用換気設備との切替えができるよう、緊急時対策所内のスイッチによる操作が可能な設計とする。

また,系統に作用する圧力の過度の上昇を適切に防止するため,緊急時対策所 加圧設備出口に安全弁を設ける設計とする。

緊急時対策所加圧設備の強度に関する詳細は、添付書類「V-3-8-1-3-1 緊急時対策所加圧設備の強度評価書」に示す。

3.1.2 放射線管理用計測装置

緊急時対策所内への希ガス等の放射性物質の侵入を低減又は防止するため、換 気設備の操作に係る確実な判断ができるように放射線管理施設の放射線管理用計 測装置(可搬型モニタリング・ポスト及び緊急時対策所エリアモニタ)により、 大気中に放出された放射性物質による放射線量を監視・測定する。

緊急時対策所付近に加圧判断用として可搬型モニタリング・ポストを、緊急時対策所内に緊急時対策所エリアモニタを設置し、各々を監視することにより、プルーム通過時に緊急時対策所非常用換気設備の操作を実施する。

放射線管理用計測装置の仕様の詳細は、添付書類「V-1-7-1 放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書」に示す。

なお,可搬型モニタリング・ポストは,放射線管理施設の放射線管理用計測装置を緊急時対策所の設備として兼用する。

3.2 生体遮蔽装置

緊急時対策所遮蔽及び二次遮蔽は、基準地震動Ssによる地震力に対し、機能を喪失しないようにするとともに、緊急時対策所内にとどまる要員を放射線から防護するための十分な遮蔽厚さを有する設計とし、「3. 緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る被ばく評価の判断基準を超えない設計とする。

緊急時対策所遮蔽の放射線の遮蔽及び熱除去の評価については, 「5. 熱除去の検

討」に示す。緊急時対策所出入口開口の設計については、別添2「緊急時対策所遮蔽 に係るストリーミングの考慮について」に示す。

3.3 酸素濃度計及び二酸化炭素濃度計

緊急時対策所には、緊急時対策所内の酸素濃度及び二酸化炭素濃度が設計基準事故 時及び重大事故等時の対策のための活動に支障がない範囲にあることを正確に把握で きるように酸素濃度計及び二酸化炭素濃度計を保管する。

酸素濃度計及び二酸化炭素濃度計の詳細については、添付書類「V-1-9-3-1 緊急 時対策所の機能に関する説明書」に示す。

3.4 資機材及び要員の交代等

緊急時対策所にとどまる要員やプルーム通過後に屋外作業を行う対策要員の被ばく 低減措置を行う場合に備えたマスク、安定ヨウ素剤等の防護具類やチェンジングエリ アを運営するために必要な資機材を配備する。

重大事故等が発生し、緊急時対策所の外側が放射性物質により汚染したような状況下において、状況に応じて交代する要員や屋外作業を行った対策要員が緊急時対策所内へ汚染を持ち込まないようにチェンジングエリアを設置する。身体サーベイの結果、対策要員の汚染が確認された場合は、対策要員の除染を行うことができる区画を、身体サーベイを行う区画に隣接して設置することができるよう考慮する。

チェンジングエリアは、原子力災害対策特別措置法第10条特定事象が発生し、災害 対策本部長代理の指示があった場合、あらかじめ配備している資機材により運用する。

資機材の保管,管理等については,添付書類「V-1-9-3-1 緊急時対策所の機能に関する説明書」に,チェンジングエリアの詳細については,添付書類「V-1-7-2 管理区域の出入管理設備及び環境試料分析装置に関する説明書」に示す。

3.5 代替電源

緊急時対策所非常用送風機は、常用電源設備からの給電が喪失した場合においても 代替電源設備である緊急時対策所用発電機から給電できる設計とする。

代替電源の詳細については、添付書類「V-1-9-1-1 非常用発電装置の出力の決定に関する説明書」及び添付書類「V-1-9-3-1 緊急時対策所の機能に関する説明書」に示す。

4. 緊急時対策所の居住性に係る被ばく評価

4.1 線量評価

- 4.1.1 評価方針
 - (1) 判断基準

重大事故等時の緊急時対策所の居住性に係る被ばく評価に当たっては,審査ガイドに基づき,評価を行う。

判断基準は、解釈の第76条の規定のうち、以下の項目を満足することを確認する。

第76条 (緊急時対策所)

- 1 第1項及び第2項の要件を満たす緊急時対策所とは、以下に掲げる措置又はこれらと同等以上の効果を有する措置を行うための設備を備えたものをいう。
 - e) 緊急時対策所の居住性については、次の要件を満たすものであること。
 - ① 想定する放射性物質の放出量等は東京電力株式会社福島第一原子力 発電所事故と同等とすること。
 - ② プルーム通過時等に特別な防護措置を講じる場合を除き、対策要員は緊急時対策所内でのマスクの着用なしとして評価すること。
 - ③ 交代要員体制,安定ョウ素剤の服用,仮設設備等を考慮してもよい。ただし,その場合は,実施のための体制を整備すること。
 - ④ 判断基準は,対策要員の実効線量が7日間で100 mSvを超えないこと。

(2) 想定事故

想定する事故については、審査ガイドに従い「東京電力ホールディングス株式 会社福島第一原子力発電所事故と同等」とする。

(3) 被ばく経路

緊急時対策所の居住性に係る被ばく評価では、次の被ばく経路による被ばく線量を評価する。図4-1に、緊急時対策所の居住性に係る被ばく経路を示す。

- a. 被ばく経路① 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による外部被ばく
- b. 被ばく経路② 放射性雲中の放射性物質からのガンマ線による外部被ばく (クラウドシャイン)

- c. 被ばく経路③ 地表面に沈着した放射性物質からのガンマ線による外部被ば く (グランドシャイン)
- d. 被ばく経路④ 緊急時対策所内へ外気から取り込まれた放射性物質からのガンマ線による外部被ばく及び放射性物質の吸入摂取による内部被ばく

なお、本評価においては、対策要員の交代は考慮しないものとする。

(4) 大気中への放出量評価

大気中に放出される放射性物質の量は、審査ガイドに従い設定する。また、大 気中への放出量評価条件を表4-1に示す。

a. 事故直前の炉内蓄積量

事故直前の炉内蓄積量の計算には、燃焼計算コードORIGEN2コードを 使用する。計算に当たっては、9×9燃料炉心の代表的な燃焼度、比出力、初期 濃縮度及び運転履歴を考慮して炉心内蔵量を計算する。

・燃焼度 : 55000 MWd/t (燃焼期間は,5サイクルの平衡炉心

を想定)

・比出力 : 26 MW/t

• 初期濃縮度 : 3.8 %

・核データライブラリ : JENDL3.2 (BWR STEP-3 VR=0 %, 60 GWd/t)

以上により計算した標準 9×9 燃料炉心の単位熱出力当たりの炉内蓄積量を表 4-2 に示す。

事故直前の炉内蓄積量は、この値に原子炉熱出力である 3293 MW を掛け合わせて計算する。

b. 大気中への放出量

事故直前の炉心内蔵量に対する放射性物質の大気中への放出割合は、原子炉格納容器が破損したと考えられる福島第一原子力発電所事故と同等と想定する。

ここで、放射性物質の大気中への放出開始時刻は、事故(原子炉スクラム) 発生24時間後と仮定する。

希ガス類 : 97 %

よう素類 : 2.78 %

(CsI:95%, 無機よう素:4.85%, 有機よう素:0.15%)

C s 類 : 2.13 %

Те類 : 1.47 %

Ba類 : 0.0264 %

R u 類 : 7.53×10⁻⁸ %

Ce類: 1.51×10⁻⁴%

La類: 3.87×10⁻⁵%

以上により計算した大気中への放出量を表4-3に示す。

c. 原子炉建屋内の存在量

NUREG-1465*の炉心内蔵量に対する原子炉格納容器内への放出割合を基に原子炉建屋内に放出された放射性物質を設定する。

ここで、放射性物質の炉内蓄積量に対して、事故発生後24時間後に以下の 0.3倍の放射性物質が原子炉建屋内へ放出されるものとする。

希ガス類 : 100 %

よう素類 :61 %

C s 類 : 61 %

Te類 :31%

B a 類 : 12 %

R u 類 : 0.5 %

Ce類: 0.55%

La類 : 0.52 %

なお、希ガス類については大気中への放出分を考慮し、炉内蓄積量の97 % (福島第一原子力発電所事故と同等と想定)が大気中へ放出されるものとし、 残りが原子炉建屋内に浮遊するものとする。

以上により計算した原子炉建屋内の放射性物質の存在量を表4-4に示す。

注記 *: "Accident Source Terms for Light-Water Nuclear Power Plants", NUREG-1465, 1995/02

(5) 大気拡散の評価

重大事故等時の緊急時対策所の居住性に係る被ばく評価に使用する相対濃度及び相対線量は、旧原子力安全・保安院、平成21・07・27原院第1号「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)」(平成21年8月12日)及び「発電用原子炉施設の安全解析に関する気象指針(昭和57年1月28日原子力安全委員会決定、一部改訂 平成13年3月29日 原子力安全委員会)」(以下「気象指針」という。)に基づき評価する。

a. 大気拡散評価モデル

放出点から放出された放射性物質が大気中を拡散して評価点に到達するまで の計算は、ガウスプルームモデルを適用する。

(a) 相対濃度

相対濃度は、毎時刻の気象項目と実効的な放出継続時間をもとに評価点ごとに以下の式のとおり計算する。

$$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot \delta_i^d$$

ここで,

χ/Q : 実効放出継続時間中の相対濃度 (s/m³)

T : 実効放出継続時間 (h)

 $(\chi/Q)_i$: 時刻 i における相対濃度 (s/m^3)

 δ_i^d : 時刻 i において風向が当該方位 d にあるとき $\delta_i^d = 1$

:時刻 i において風向が他の方位にあるとき $\delta_i^d=0$

(地上放出の場合)

$$(\chi/Q)_i = \frac{1}{\pi \sum_{yi} \sum_{zi} U_i}$$

ここで,

 U_i :時刻 i の放出源を代表する風速 (m/s)

 Σ_{vi} : 時刻 i の建屋の影響を加算した濃度の水平方向(y 方向)の拡

がりのパラメータ (m)

 Σ_{zi} : 時刻 i の建屋の影響を加算した濃度の水平方向(z 方向)の拡

がりのパラメータ (m)

 σ_{vi} : 時刻 i の濃度の y 方向の拡がりパラメータ (m)

 σ_{zi} : 時刻 i の濃度の z 方向の拡がりパラメータ (m)

C:建屋の風向方向の投影面積 (m²)

A : 形状係数 (-)

上記のうち、気象項目(風向、風速及び σ_{yi} 、 σ_{zi} を求めるために必要な大気安定度)については、「b. 気象データ」に示すデータを、建屋の投影面積については「a. 建屋投影面積」に示す値を、形状係数については「f. 形状係数」に示す値を用いることとした。また、審査ガイドに基づき、実効放出継続時間は 10 時間とし、地上放出を想定する。

 σ_{vi} 及び σ_{zi} については、気象指針における相関式を用いて計算する。

(b) 相対線量

クラウドシャインガンマ線量を計算するために,空気カーマを用いた相対 線量を毎時刻の気象項目と実効放出継続時間をもとに,以下の式で計算する。

$$D/Q = (K_1/Q)E\mu_0 \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} B(\mu r) \chi(x', y', z') dx' dy' dz'$$

ここで,

D/Q : 評価地点(x,y,0)における相対線量 (μ Gy/Bq)

 (K_1/Q) : 単位放出率当たりの空気カーマ率への換算係数 $\left(\frac{dis\cdot m^3\cdot \mu Gy}{MeV\cdot Bars}\right)$

E:ガンマ線の実効エネルギ (MeV/dis)

 μ_0 : 空気に対するガンマ線の線エネルギ吸収係数 (1/m)

μ : 空気に対するガンマ線の線減衰係数 (1/m)

r : (x', y', z')から(x, y, 0)までの距離 (m)

 $B(\mu r)$: 空気に対するガンマ線の再生係数 (-)

 $B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^2 + \gamma(\mu r)^3$

ただし、 $\mu_0,\mu,\alpha,\beta,\gamma$ については、0.5 MeV のガンマ線に対する値を用い、以下のとおりとする。

$$\mu_0 = 3.84 \times 10^{-3} (m^{-1}), \quad \mu = 1.05 \times 10^{-2} (m^{-1})$$

 $\alpha = 1.000, \quad \beta = 0.4492, \quad \gamma = 0.0038$

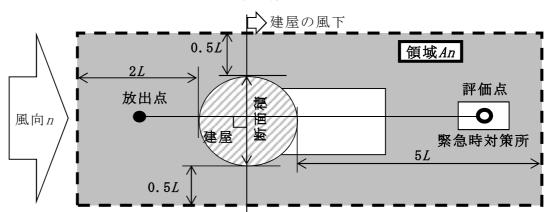
 $\chi(x',y',z')$: 放射性雲中の点(x',y',z')における濃度 (Bq/m³)

b. 気象データ

2005年4月~2006年3月の1年間における気象データを使用する。なお、 当該データの使用に当たっては、風向、風速データが不良標本の棄却検定により、過去10年間の気象状態と比較して異常でないことを確認している。

c. 相対濃度及び相対線量の評価点

相対濃度及び相対線量の評価点は、線量結果が厳しくなる様、原子炉建屋外 壁から見て緊急時対策所建屋外壁の最近接点とする。


d. 評価対象方位

放出点と巻き込みを生じる建屋及び評価点との位置関係によって、建屋の影響を考慮して拡散の計算を行う。

緊急時対策所の被ばく評価においては、放出点と巻き込みを生じる建屋及び評価点との位置関係について、以下の条件すべてに該当した場合、放出点から放出された放射性物質は建屋の風下側で巻き込みの影響を受け拡散し、評価点に到達するものとする。放出点から評価点までの距離は、保守的な評価となるように水平距離を用いる。

- (a) 放出源の高さが建屋の高さの 2.5 倍に満たない場合
- (b) 放出源と評価点を結んだ直線と平行で放出源を風上とした風向nについて,放出源の位置が風向nと建屋の投影形状に応じて定まる一定の範囲(下図の領域A.n)の中にある場合

風向に対して垂直な 建屋の中心線

注: Lは風向に垂直な建屋又は建屋群の投影面高さ又は投影幅の小さい方

(c) 評価点が、巻き込みを生じる建屋の風下にある場合

上記の三つの条件のうちの一つでも該当しない場合には, 建屋の影響 はないものとして大気拡散評価を行うものとする。

緊急時対策所の居住性に係る被ばく評価においては、放射性物質の放出源として原子炉建屋を仮定することから、建屋の影響があるものとして評価を行う。評価対象とする方位は、放出された放射性物質が建屋の影響を受けて拡散すること及び建屋の影響を受けて拡散された放射性物質が評価点に届くことの両方に該当する方位とする。具体的には、全16方位のうち以下の(a)~(c)の条件に該当する方位を選定し、すべての条件に該当する方位を評価対象とする。

- (a) 放出点が評価点の風上にあること。
- (b) 放出点から放出された放射性物質が,原子炉建屋の風上側に巻き込まれるような範囲に放出点が存在すること。
- (c) 原子炉建屋の風下側で巻き込まれた大気が評価点に到達すること。 評価対象とする方位は、原子炉建屋を見込む方位の範囲の両端が、それぞれ の方位に垂直な投影形状の左右に 0.5L (L は対象となる複数の方位の投影面積 の中の最小面積とする) だけ幅を広げた部分を見込む方位を仮定する。

上記選定条件(b)の条件に該当する風向の方位の選定には、放出点が評価点の風上となる範囲が対象となり、選定条件(c)の条件に該当する風向の方位の選定として、評価点から原子炉建屋+0.5Lを含む方位を対象とする。

以上より、選定条件(a) \sim (c)の条件にすべて該当する方位は、2 方位 (ENE, E) となる。評価対象とする風向を図 4-2 に示す。

e. 建屋投影面積

建屋投影面積は小さい方が厳しい結果となるため、対象となる複数の方位の 投影面積の中で最小面積を全ての方位の計算の入力として共通に適用する。 原子炉建屋の投影面積を図 4-3 に示す。

f. 形状係数

建屋の形状係数は 1/2*1 とする。

g. 累積出現頻度

緊急時対策所の居住性に係る被ばく評価に用いる相対濃度と相対線量は、大 気拡散の評価に従い、実効放出継続時間を基に計算した値を年間について小さ い方から順に並べたとき累積出現頻度 97 %*1に当たる値を用いる。

h. 評価結果

重大事故等時の緊急時対策所の居住性に係る被ばく評価に使用する大気拡散 評価条件を表 4-5 に示す。

重大事故等時の緊急時対策所の居住性に係る被ばく評価に使用する相対濃度 (χ/Q) 及び相対線量 (D/Q) の評価結果を下表に示す。

項	目	評価条件
緊急時対策所	$\chi / Q (s/m^3) *2$	1.1×10^{-4}
(滞在時)	D/Q (Gy/Bq)	6. 1×10^{-19}
グランドシャイン	$\chi / Q (s/m^3) *2$	1.1×10^{-4}

注記 *1:「発電用原子炉施設の安全解析に関する気象指針」昭和 57 年 1 月 28 原子力安全委員会決定, 平成 13 年 3 月 29 日一部改訂

*2:緊急時対策所滞在時の室内に外気から取り込まれた放射性物質による 被ばく及びグランドシャインの算出は、放出源の原子炉建屋外壁に 対して緊急時対策所外壁の最近接点を評価点として算出した χ / Q を用いる。

4.1.2 線量計算

- (1) 実効線量の評価
 - a. 被ばく経路① (原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線よる被ばく)

重大事故等時に原子炉建屋内に浮遊する放射性物質からの直接ガンマ線及び スカイシャインガンマ線による対策要員の実効線量は、施設の位置、建屋の配 置、形状等から評価する。以下、評価条件及び評価結果を示す。

(a) 評価条件

イ. 線源強度

線源強度は,「4.1.1(4) 大気中への放出量評価」のc.項に記述する原子炉建屋内の存在量に基づき,次のとおり求める。

- (イ) 重大事故等時に炉心から原子炉格納容器内に放出された放射性物質は、原子炉格納容器から原子炉建屋(二次格納施設)内に放出される。この 二次格納施設内の放射性物質を直接ガンマ線及びスカイシャインガンマ 線の線源とする。
- (ロ) 二次格納施設内の放射性物質は自由空間内に均一に分布するものとする。

以上,表4-6に二次格納施設内に浮遊する放射性物質による事故後7日間の積算線源強度を示す。

口. 幾何条件

直接ガンマ線及びスカイシャインガンマ線評価における原子炉建屋の評価モデルを図4-4及び図4-5に示す。直接ガンマ線の線源範囲は、原子炉建屋の地下1階以上*¹とし、保守的に各階の二次格納施設の東西南北最大幅をとることとする。スカイシャインガンマ線の線源範囲は、原子炉建屋運転階のみ*²とする。原子炉建屋は保守的に二次遮蔽のみを考慮する。また、中央制御室周囲は、自室の壁、床、天井を考慮する。ここで、壁厚は、各階ごとに東西南北をそれぞれ最小厚さで代表する。

また,直接ガンマ線及びスカイシャインガンマ線評価における緊急時対策所の評価モデルを図4-6に示す。二次遮蔽のコンクリート密度は東海第二発電所建設時の骨材(砂,砂利)配合記録より,日本建築学会建築工事標準仕様書・同解説「原子力発電所施設における鉄筋コンクリート工事(JASS 5N)」に基づき乾燥単位容積質量として評価した2.0 g/cm³とする。緊急時対策所の遮蔽体として,緊急時対策所の壁及び天井を考慮し,緊急時対策所のコンクリート躯体形状を模擬する。評価で考慮する原子炉建屋,緊急時対策所の壁及び天井は,公称値からマイナス側許容差(-5 mm)を引いた値とする。

注記 *1:地下階は外壁厚さが厚く、地面にも遮られるため十分無視できる。

*2:原子炉建屋運転階の床はコンクリート厚さが厚く,下層階からの放射線を十分に遮蔽している。したがって,建屋天井から放射されるガンマ線を線源とするスカイシャインガンマ線の評価では,下層階に存在する放射性物質からの放射線の影響は十分小さいため,線源として無視できる。

ハ. 評価点

評価点は、緊急時対策所内の作業エリアを想定し、図4-4から図4-6に示すように、線量結果が厳しくなるよう原子炉建屋から最短距離として、直接ガンマ線は緊急時対策所の原子炉建屋側の壁内面、スカイシャインガンマ線は天井下面とする。

二. 計算コード

直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャインガンマ線は、ANISN及びG33-GP2Rコードを用いる。

(b) 評価結果

以上の条件に基づき評価した原子炉建屋内の放射性物質からの直接ガンマ 線及びスカイシャインガンマ線による実効線量を表4-7に示す。

b. 被ばく経路② (放射性雲中の放射性物質のガンマ線による被ばく)

大気中に放出された放射性物質からのガンマ線による緊急時対策所内での対 策要員の外部被ばく線量を以下に評価する。

(a) 評価条件

イ. 放射性物質の放出量

放射性物質の大気中への放出量は、「4.1.1(4) 大気中への放出量評価」の「b. 大気中への放出量」に基づくものとする。

口. 大気拡散条件

線量評価に使用する相対線量 (D/Q) は、「4.1.1(5) 大気拡散の評価」の「h. 評価結果」に示した下表の値を使用する。

D/Q (Gy/Bq)	6. 1×10^{-19}
----------------	------------------------

(b) 評価方法

大気中に放出された放射性物質からのガンマ線による室内作業時の外部被 ばく線量は、大気中への放出量に相対線量を乗じて計算した値に、遮蔽壁に よる減衰効果を考慮して計算する。

$$H_{\gamma} = \sum_{i} \{Q_{i} \cdot D/Q \cdot K\} \cdot F(x)$$

ここで,

H, :放射性物質からのガンマ線による外部被ばく線量 (Sv)

K: 空気カーマから実効線量への換算係数(1 Sv/Gy)

D/Q:相対線量 (Gy/Bq)

Q: :核種iの大気中への放出量(Bq)

(ガンマ線実効エネルギ0.5 MeV換算値)

F(x): 遮蔽壁厚さxにおける減衰率(-)

ここで、緊急時対策所の遮蔽壁厚さ(コンクリート99 cm*)における減衰率は、大気中への放出量を線源として、QAD-CGGP2Rコードにより計算した下表の値を使用する。

コンクリートの	希ガス	2×10^{-5}
減衰率	希ガス以外	6×10^{-5}

注記 *: 遮蔽壁厚さは, 緊急時対策所外壁 (50 cm) 及び災害対策本部 周囲の遮蔽壁 (50 cm) の公称値からそれぞれマイナス側許容 差 (-5 mm) を引いた値を示す。

(c) 評価結果

放射性雲中の放射性物質からのガンマ線による実効線量を表4-8に示す。

- c. 被ばく経路③ (地表面に沈着した放射性物質のガンマ線による外部被ばく) 大気中へ放出され地表面に沈着した放射性物質からのガンマ線 (グランドシャイン)による緊急時対策所での外部被ばくによる対策要員の実効線量は,評価期間中の大気中への放射性物質の放出量を基に大気拡散効果,地表沈着効果及び4.1.2(1)項の実効線量の評価の「a. 被ばく経路① (原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく)」で考慮した緊急時対策所の遮蔽体によるガンマ線の遮蔽効果を考慮して評価する。
 - (a) 放射性物質の地表沈着量

大気中へ放出された放射性物質の地表面への沈着量評価では、地表面への 乾性沈着及び降雨による湿性沈着を考慮して地表面沈着濃度を計算する。地 表面への沈着速度の条件を表4-9に示す。

イ. 放射性物質の放出量

放射性物質の大気中への放出量は、「4.1.1(4) 大気中への放出量評価」の「b. 大気中への放出量」に基づくものとする。

口. 大気拡散条件

線量評価に使用する相対濃度 (χ/Q) は、「4.1.1(5) 大気拡散の評

価」の「h. 評価結果」に示した下表の値を使用する。

χ / Q (s/m^3)	1.1×10^{-4}
----------------------	----------------------

ハ. 地表面への沈着速度

沈着速度は、有機よう素はNRPB-R322*1を参考として0.001~cm/s、有機よう素以外はNUREG/CR-4551*2を参考として0.3~cm/sと設定し、湿性沈着を考慮した沈着速度は、線量目標値評価指針の記載(降水時における沈着率は乾燥時の $2\sim3$ 倍大きい値となる)を参考に、保守的に乾性沈着速度の4倍*3として、有機よう素は0.004~cm/s、有機よう素以外は1.2~cm/sとする。

注記 *1: NRPB-R322: Atmospheric Dispersion Modelling Liaison Committee, Annual Report 1998/99

*2: J.L. Sprung 等: Evaluation of Severe Accident Risks:
Quantification of Major Input Parameters, NUREG/CR4551 Vol. 2 Rev. 1 Part 7, 1990

*3:降雨沈着における空気中濃度鉛直分布の最大値等を想定し た係数

二. 地表面沈着濃度の評価

評価期間中の地表面沈着濃度は、以下により計算する。

$$GC_i = \frac{V_G \cdot \chi / Q \cdot f \cdot Q_i}{\lambda_i} \cdot (1 - e^{-\lambda_i \cdot T})$$

ここで,

GC_i :核種iの地表面沈着濃度(積算値) (Bq・s/m²)

V_G : 沈着速度 (m/s) χ/Q : 相対濃度 (s/m³)

f : 沈着した放射性物質のうち残存する割合(1.0)

Q i :核種iの積算放出量 (Bq)

λ_i :核種iの崩壊定数 (1/s)

T:被ばく評価期間 (5.184×10⁵ s) [当初24時間を除く

6日間 (24 h~168 h) 〕

以上により計算した、地表面沈着濃度を表4-10に示す。

(b) 実効線量評価条件

イ. 線源強度

重大事故等時、大気中へ放出され地表面及び建屋屋上に沈着した放射性物質を線源とし、地表面等に均一に分布しているものとする。グランドシャイン線源強度は表4-11に示す事故後7日間の積算値を用いる。

口. 幾何条件

グランドシャイン評価モデルを図4-7に示す。線源範囲は、緊急時対策所中心から東西南北400 m*までとする。本評価では、緊急時対策所建屋の屋上面、緊急時対策所建屋の外側の地表面の2つの範囲に分割して評価する。なお、地表面は緊急時対策所屋上下面レベルと同一の高さにモデル化する。

注記 *: JAEA-Technology 2011-026「汚染土壌の除染領域と線量低減効果の検討」において評価対象から400 m離れた位置の線源が及ぼす影響度は1%以下である。これより、評価点から片側400 mまで線源領域とし、グランドシャインを面線源からの被ばくと想定する場合は、全体の線源領域として800 m×800 mを設定した。

ハ. 評価点

評価点は緊急時対策所を想定し、図4-7に示すように、上下方向は線量結果が厳しくなる緊急時対策所屋上の下面位置を、水平方向は遮蔽を考慮して線源からの距離が近い位置として、緊急時対策所の壁内面位置に設定した。

二. 計算コード

グランドシャインは、QAD-CGGP2Rコードを用い評価する。

(c) 評価結果

以上の条件に基づき評価したグランドシャインによる実効線量を表4-12に示す。

d. 被ばく経路④ (室内に外気から取り込まれた放射性物質による被ばく) 外気から取り込まれた放射性物質からのガンマ線による緊急時対策所内での対策要員の外部及び内部被ばく線量を以下に評価する。

(a) 評価条件

イ. 放射性物質の放出量

放射性物質の大気中への放出量は、「4.1.1(4) 大気中への放出量評価」の「b. 大気中への放出量」に基づくものとする。

口. 大気拡散条件

線量評価に使用する相対濃度(χ/Q)は、「4.1.1(5) 大気拡散の評価」の「h. 評価結果」に示した下表の値を使用する。

χ / Q (s/m^3)	1. 1×10 ⁻⁴
----------------------	-----------------------

ハ. 換気設備条件

緊急時対策所の換気設備条件は、表4-13の値を使用する。

(b) 評価方法

外気から取り込まれた放射性物質による緊急時対策所内放射能濃度及び実 効線量は以下により評価する。

イ. 緊急時対策所内放射能濃度の評価

緊急時対策所内の放射能濃度は、次式により評価する。

$$\frac{d(V \cdot C_{i}(t))}{dt} = (1 - \eta) \cdot C_{i}^{0}(t) \cdot f_{1} + C_{i}^{0}(t) \cdot f_{2}$$
$$- C_{i}(t) \cdot (f_{1} + f_{2} + \eta \cdot F_{R}) - \lambda_{i} \cdot V \cdot C_{i}(t)$$

ここで,

C_i(t) : 時刻 t における緊急時対策所内の核種 i の濃度 (Bq/m³)

V : 換気設備処理空間容積 (m³)

η:非常用フィルタ装置の除去効率(-)

 $C_i^0(t)$: 時刻tにおける外気取入れ口での核種iの濃度 (Bq/m^3)

 $C_i^0(t) = Q_i(t) \cdot \chi / Q$

 $Q_i(t)$: 時刻 t における大気への核種 i の放出率 (Bq/s)

χ/Q:相対濃度(s/m³)

f₁ : 外気取り込み量 (m³/s)

f₂ : 外気リークイン量 (m³/s)

F_R :再循環装置フィルタ流量 (m³/s)

λ_i :核種 i の崩壊定数 (s⁻¹)

ロ. 実効線量の評価

緊急時対策所内に取り込まれた放射性物質による実効線量は、次に述べる放射性物質の吸入による内部被ばく及び放射性物質のガンマ線による外部被ばくの和として計算する。

(イ) 放射性物質の吸入による内部被ばく

放射性物質の吸入による内部被ばくは、次式で評価する。

$$H_{I}^{i} = \int_{0}^{T} R \cdot H_{\infty}^{i} \cdot C_{i}(t)dt$$

ここで,

Hi : 核種iの吸入摂取の内部被ばくによる実効線量 (Sv)

R : 呼吸率 (m³/s) (成人活動時の呼吸率1.2 m³/h)

Hⁱ。:核種iの吸入摂取による成人の実効線量係数 (Sv/Bq)

C:(t): 時刻 t における緊急時対策所内の核種 i の濃度

 (Bq/m^3)

T :被ばく評価期間 (5.184×10⁵ s) [当初24時間を除く 6日間 (24 h~168 h)]

(ロ) 放射性物質のガンマ線による外部被ばく 放射性物質のガンマ線による外部被ばくは,次式で計算する。

$$\begin{split} H_{\gamma}^{i} &= \int_{0}^{T} 6.2 \times 10^{-14} \cdot E_{\gamma}^{i} \cdot \left\{ 1 - e^{-\mu r} \right\} \cdot C_{i}(t) dt \cdot F(x) \\ &= \Xi \mathcal{T}, \end{split}$$

 6.2×10^{-14} : サブマージョンモデルによる換算係数 $\left(\frac{\mathrm{dis} \cdot \mathrm{m}^3 \cdot \mathrm{Gy}}{\mathrm{MeV} \cdot \mathrm{Bq} \cdot \mathrm{s}}\right)$

 H_{ν}^{i} : 核種iのガンマ線の外部被ばくによる実効線量 (Sv)

Eⁱ : 核種iのガンマ線実効エネルギ (MeV/dis)

μ : 空気に対するガンマ線の線エネルギ吸収係数

 $(3.9 \times 10^{-3} / \text{m})$

r : 外部被ばくに係る空間と等価な半球の半径 (m)

 $r = \sqrt[3]{\frac{3 \cdot V_S}{2 \cdot \pi}}$

V_s : 外部被ばくに係る空間体積 (m³) *1

C_i(t) : 時刻 t における緊急時対策所内の核種 i の濃度 (Bq/m³)

T:被ばく評価期間 (5.184×10⁵ s) [当初24時間を除く 6日間 (24 h~168 h)]

F(x): 緊急時対策所遮蔽による減衰率(-)

ここで,緊急時対策所滞在時の緊急時対策所周囲のコンクリート遮蔽壁(厚さ $49.5~cm^{*2}$)による減衰率は,その他エリア内の放射性物質の最大濃度を線源として,QAD-CGGP2Rコードにより計算した下表の値を使用する。

コンクリートの	希ガス	7×10^{-4}
減衰率	希ガス以外	1×10^{-2}

注記 *1:緊急時対策所に滞在する対策要員が外部被ばくの影響を うける区画として、緊急時対策所バウンダリ体積から災 害対策本部空調機械室(対策要員が滞在する区画と階層 が異なり天井等による遮蔽がある区画)を除いた体積 (2403.7 m³)を保守的に切り上げた値(3000 m³)を設 定 *2: 緊急時対策所周囲の遮蔽壁 (50 cm) の公称値からマイナス側許容差 (-5 mm) を引いた値を示す。

緊急時対策所内に取り込まれた放射性物質による実効線量の線量計算条件を表4-14に示す。

(c) 評価結果

放射性雲中の放射性物質からのガンマ線による緊急時対策所内での実効線量を表4-15に示す。

(2) 評価結果のまとめ

重大事故等時の緊急時対策所の対策要員に及ぼす実効線量の内訳を表4-16に 示す。

(3) 判断基準への適合性

重大事故等時の緊急時対策所の対策要員の被ばく評価結果を下表に示す。

これに示すように、重大事故等時の緊急時対策所の対策要員の実効線量は、7 日間で約35 mSvである。

したがって、評価結果は判断基準の「対策要員の実効線量が7日間で100 mSvを超えないこと」を満足している。

実効線量 (mSv/7日間)

3. 5×10^{1}

4.2 酸素濃度及び二酸化炭素濃度評価

4.2.1 評価方針

(1) 評価の概要

緊急時対策所加圧設備による加圧を実施した場合において、緊急時対策所内の 酸素濃度及び二酸化炭素濃度が活動に支障がない濃度(許容濃度未満)であることを評価する。

本評価における滞在人数,評価期間等は,保守的な結果となるよう設定する。 また,酸素消費量,二酸化炭素吐出し量等は,緊急時対策所加圧設備の使用時に 緊急時対策所内にとどまる要員の活動状況等を想定し,設定する。

(2) 酸素及び二酸化炭素濃度許容濃度の設定

緊急時対策所加圧設備による加圧は、希ガス等の放射性物質を含む外気が緊急時対策所内に侵入しないように実施する防護措置であり、緊急時対策所加圧設備による加圧時は、緊急時対策所出入口扉を閉め、緊急時対策所内を密閉するという限られた環境である。

このため、酸素及び二酸化炭素許容濃度は、表4-18に示すとおり、限られた環境下における労働環境を規定している「鉱山保安法施行規則」に定める酸素濃度及び二酸化炭素濃度許容基準(酸素濃度:19 vo1%以上、二酸化炭素濃度:1.0 vo1%以下)に準拠する。

(3) 酸素濃度維持及び二酸化炭素濃度抑制に必要な流量の計算

緊急時対策所等を加圧し、その圧力を維持するために必要な流量並びに緊急時対策所内の酸素濃度維持及び二酸化炭素濃度抑制に必要な流量を計算し、その結果から酸素濃度及び二酸化炭素濃度の評価を行う。緊急時対策所内の酸素濃度及び二酸化炭素濃度計算条件を表4-19に示す。なお、計算に使用する、呼吸量、酸素消費量等は「空気調和・衛生工学便覧」から引用する。

被ばく評価上の緊急時対策所加圧設備による加圧時間は、審査ガイドに基づき、 プルーム通過中の10時間及びプルーム通過後の1時間の合計11時間とする。

11時間連続で緊急時対策所加圧設備により加圧した場合における換気流量,酸素濃度及び二酸化炭素濃度との関係は以下のとおりである。

a. 緊急時対策所内の正圧維持について

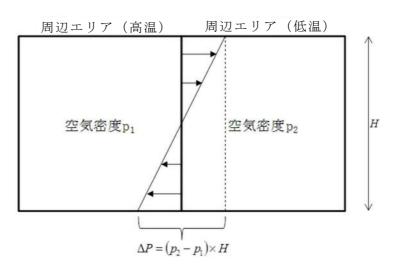
緊急時対策所建屋内に設置する緊急時対策所のインリークは、周辺エリアと の温度差によって生じる圧力差を考慮すれば良い。このインリークを防止する ため、緊急時対策所内を周辺エリアより高い圧力に加圧する。

緊急時対策所内の加圧は,以下に示すとおり約12.8 Paが必要であるため,

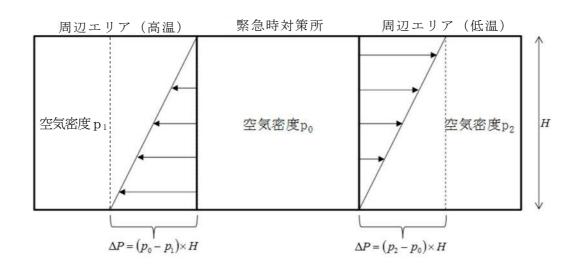
緊急時対策所の加圧目標は、余裕を考慮して周辺エリアより+20 Pa以上とする。

(a) 温度差を考慮した加圧値

緊急時対策所と周辺エリアとの境界壁間に隙間がある場合は、両区画に温度差があると、下図の圧力分布に示すように空気の密度差に起因して高温区画の上部から低温区画へ空気が流入し、低温区画の下部から高温区画へ空気が流れ込む。


これら各々の方向に生じる圧力差の合計△Pは次の式で表される。

$$\triangle P = (p_2 - p_1) \times H$$


ここで,

p :空気密度

H: 緊急時対策所の階層高さ

したがって、緊急時対策所を⊿Pだけ加圧することにより、周辺エリアと 温度差が生じても下図の圧力分布に示すように緊急時対策所へのインリーク を防ぐことができる。

重大事故等時の緊急時対策所及び周辺エリアの温度は、外気の気象観測データ(水戸地方気象台の過去の観測記録)を基に最高温度を40.0 ℃、最低温度を-12.7 ℃とする。緊急時対策所の天井高さは約5.7 mであるため、以下のとおり12.8 Pa以上の圧力差があれば温度の影響を受けたとしても、正圧を維持できる。

×高低差

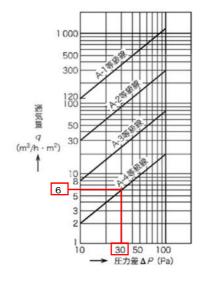
 $= (1.356 - 1.128) \times 5.7$

 $=1.30 \text{ (kg/m}^2)$

≒12.8 (Pa)

(b) 正圧維持に必要な空気供給量

緊急時対策所はコンクリートの間仕切りで区画されることから、壁の継ぎ目からのリークはないものとする。したがって、緊急時対策所のリークポテンシャルは、ドア開口の隙間、壁貫通部(配管、ケーブル、ダクト)である。


イ. ドア開口リーク量

気密が要求される建屋/部屋に使用されるドアの気密性はJIS A 4 7 0 2 にて定義されている。緊急時対策所の周辺エリアとの差圧は、+ 20 Paを設計値としているが、ドアからのリーク量の算出に当たっては、保守的に圧力差+30 Paにおける通気量を用いる。最も気密性の高い等級A-4のドアでは、圧力差+30 Paにおけるドア面積当たりの通気量が $6~m^3/h\cdot m^2$ であることから(下図JIS A 4 7 0 2 気密性参照)、ドアからのリーク量は以下の式により算出できる。

 $Q_{FT} = S \times 6$

 Q_{rr} : ドアからのリーク量 (m^3/h)

S: 緊急時対策所のドアの面積合計 (9.5 m²)

ロ. 壁貫通部のリーク量

壁貫通部のリーク量は、原子炉二次格納施設のリーク率の設計値を参考 に0.5回/dayを用いると、以下の式により算出できる。

 $Q_{\text{ fim}} = V \times 0.5 \div 24$

Q_{貫通部}: 貫通部からのリーク量 (m³/h)

V: 緊急時対策所バウンダリ体積(3035.1 m³)

したがって、緊急時対策所のリーク量は以下の式より約121 m³/hとなる。

Q = Q FT
$$(m^3/h)$$
 + Q $\# m^3/h$)
= $S \times 6 + V \times 0.5 \div 24$
= $9.5 \times 6 + 3035.1 \times 0.5 \div 24$
 $\div 121 (m^3/h)$

Q:供給空気供給量(m³/h)

b. 酸素濃度維持に必要な空気供給量

許容酸素濃度は19 vo1%以上,滞在人数は100人,酸素消費量は成人の呼吸量(静座時)とし,許容酸素濃度以上に維持できる空気供給量は以下のとおりである。

$$Q = \frac{G_a \times P}{K - K_0} \times 100 = \frac{-0.02184 \times 100}{19.00 - 20.95} \times 100 = 112 \text{ m}^3/\text{h}$$

Ga:酸素発生量(-0.02184 m³/h/人)

P:人員(100人)

K₀:供給空気中酸素濃度(20.95 vo1%)

K : 許容最低酸素濃度 (19.00 vol%)

c. 二酸化炭素濃度抑制に必要な空気供給量

許容二酸化炭素濃度は1.0 vo1%以下,空気中の二酸化炭素量は0.03 vo1%,滞在人数100人の二酸化炭素吐出量は,計器監視等を行う程度の作業時(極軽作業)の量とし,許容二酸化炭素濃度以下に維持できる空気供給量は以下のとおりである。

$$Q = \frac{G_a \times P}{K - K_0} \times 100 = \frac{0.022 \times 100}{1.0 - 0.03} \times 100 = 227 \text{ m}^3/\text{h}$$

Ga:二酸化炭素発生量(0.022 m³/h/人)

P:人員(100人)

K₀: 供給空気中二酸化炭素濃度(0.03 vo1%)

K : 許容最高二酸化炭素濃度 (1.0 vol%)

また、緊急時対策所加圧設備運転時間はプルーム放出時間の10時間に、プルーム通過後の緊急時対策所加圧設備から緊急時対策所非常用換気設備への切替時間として余裕をみて2時間を加え、さらに2時間の余裕を持たせて14時間分とする。14時間後の時点で二酸化炭素濃度が1.0 vol%を超えない空気供給量は約150 m³/hとなる。

$$\begin{aligned} \mathbf{K}_{t} &= \mathbf{K}_{0} + \left(\mathbf{K}_{1} - \mathbf{K}_{0} \right) \times e^{-\frac{\mathbf{Q}}{\mathbf{V}} \times t} + \mathbf{G}_{a} \times \frac{\mathbf{P}}{\mathbf{Q}} \left(1 - e^{-\frac{\mathbf{Q}}{\mathbf{V}} \times t} \right) \\ &= \left(\mathbf{K}_{1} - \mathbf{K}_{0} - \mathbf{G}_{a} \times \frac{\mathbf{P}}{\mathbf{Q}} \right) \times e^{-\frac{\mathbf{Q}}{\mathbf{V}} \times t} + \left(\mathbf{K}_{0} + \mathbf{G}_{a} \times \frac{\mathbf{P}}{\mathbf{Q}} \right) \end{aligned}$$

Kt: t時間後の二酸化炭素濃度 (vol%)

K₁:緊急時対策所内初期二酸化炭素濃度(0.5 vol%)

K₀: 供給空気中二酸化炭素濃度 (0.03 vo1%)

Ga: 二酸化炭素発生量 (0.022 m³/h/人)

P:人員(100人)

Q : 空気供給量 (m³/h)

V:緊急時対策所バウンダリ体積(3035.1 m³)

4.2.2 評価結果

(1) 酸素濃度維持及び二酸化炭素濃度抑制に必要な空気供給量

緊急時対策所を正圧維持するために必要な空気供給量は約121 m³/hであり、また、酸素濃度維持に必要な空気供給量は約112 m³/h、二酸化炭素濃度抑制に必要な空気供給量は約150 m³/hである。緊急時対策所加圧設備からの空気供給量は、これらに余裕を見た160 m³/hとすれば、緊急時対策所加圧設備による加圧11時間後の酸素濃度は約20 vo1%, 二酸化炭素濃度は約0.9 vo1%となり、被ばく評価上の緊急時対策所加圧設備による加圧時間である11時間においても、緊急時対策所内の正圧維持並びに酸素濃度及び二酸化炭素濃度を維持・抑制するための条件(限られた労働環境における許容酸素濃度19 vo1%以上及び許容二酸化炭素濃度10 vo1%以下)を満足することができる。

緊急時対策所加圧設備を使用した場合における緊急時対策所内の酸素濃度及び二酸化炭素濃度の推移を図4-14に示す。

(2) 必要空気ボンベ個数

必要な空気ボンベ個数は、1個当たりの空気容量が46.7 Lのもので、使用量を7.15 m 3 /個とした場合、320個程度となる。この個数は、被ばく評価上の放射性

物質の放出継続時間10時間に余裕を加え、14時間の緊急時対策所の加圧を可能と する容量である。

4.3 緊急時対策所の居住性評価のまとめ

緊急時対策所の居住性を確保するための設備を考慮して被ばく評価並びに酸素濃度 及び二酸化炭素濃度評価を行い、その結果、それぞれ判断基準を満足していることか ら、緊急時対策所の居住性を確保できると評価する。

5. 熱除去の検討

熱除去の検討では、伝熱理論に基づいた解析手法により遮蔽体中の温度上昇が最も厳 しい箇所において評価する。

5.1 緊急時対策所遮蔽壁入射線量の設定方法

緊急時対策所遮蔽の表面に入射するガンマ線は、直接ガンマ線、スカイシャインガンマ線、クラウドシャイン及びグランドシャインがある。緊急時対策所遮蔽体を透過するガンマ線はグランドシャインが支配的であることから、遮蔽体表面に入射するガンマ線としてグランドシャインの入射線量を設定する。

評価点は入射線量が最大となる緊急時対策所中心の天井上面とする。

5.2 温度上昇の計算方法

遮蔽体は主にコンクリートで構成されており、評価上、コンクリートのみとして評価する。

重大事故等時における7日間積算のグランドシャイン線源に基づく,緊急時対策所 遮蔽壁への入射線量は約 1.5×10^2 Gyであり,当該入射線量から緊急時対策所遮蔽壁 表面の7日間積算のガンマ発熱量を求めると,約 3.1×10^{-4} kJ/cm³*1となる。これによる温度上昇は次式で算出する。

 $\angle T = Q \times 1000/ (c \cdot \rho)$

∠T : 温度上昇 (℃)

Q :7日間積算のガンマ発熱量 (約3.1×10⁻⁴ kJ/cm³) c :コンクリートの比熱 (1.05 kJ/ (kg·℃)) *2

 ρ : コンクリートの密度 (2.1 g/cm³)

これより、緊急時対策所遮蔽の外側及び内側表面の熱伝達を保守的に断熱状態としても、遮蔽体(コンクリート)の温度上昇は0.1 ℃以下となる。

注記 *1:入射線量及びコンクリートの密度より算出(1.5×10²(J/kg)×2.1(g/cm³)) *2:2007年制定 コンクリート標準示方書 構造性能照査編,土木学会

5.3 温度上昇のまとめ

緊急時対策所のコンクリート遮蔽体表面でのガンマ線による温度上昇は0.1 \mathbb{C} 以下となり、「遮蔽設計基準等に関する現状調査報告(1977年、日本原子力学会)」において示されているガンマ線に対するコンクリート温度制限値(内部最高温度177 \mathbb{C} / 周辺最高温度149 \mathbb{C})以下であることを確認した。

第4-1表 大気中への放出放射能量評価条件 (1/2)

項目	評価条件	選定理由
評価事象	東京電力ホールディングス 株式会社福島第一原子力発 電所事故と同等	審査ガイドに示されたとおり設定
初期濃縮度	3.8 %	9×9燃料炉心のU-235初期濃縮度
炉心熱出力	3293 MWt	定格熱出力
炉心比出力	26 MW/t	熱出力に基づく炉心比出力
運転時間	1サイクル当たり 10,000時間(416日)	1サイクル13ヶ月(約395日)を考慮し て設定
取替炉心の 燃料装荷割合	1サイクル: 0.229 2サイクル: 0.229 3サイクル: 0.229 4サイクル: 0.229 5サイクル: 0.084	取替炉心の燃料装荷割合に基づき設定
炉内蓄積量	希ガス類:8.7×10 ¹⁸ Bq よう素類:1.0×10 ¹⁹ Bq Cs類:1.1×10 ¹⁸ Bq Te類:4.8×10 ¹⁸ Bq Ba類:9.9×10 ¹⁸ Bq Ru類:1.8×10 ¹⁹ Bq Ce類:5.7×10 ¹⁹ Bq La類:3.2×10 ¹⁹ Bq (核種毎の炉内蓄積量を核 種グループ毎に集約して記載)	「単位熱出力当たりの炉内蓄積量(24時間減衰値))(Bq/MW)」×「3293MW(定格熱出力)」 (単位熱出力当たりの炉内蓄積量(Bq/MW)は,BWR共通条件として,東海第二と同じ装荷燃料(9×9燃料(A型)),運転時間(10,000時間)で算出したABWRのサイクル末期の値を使用)

第4-1表 大気中への放出放射能量評価条件 (2/2)

1百 口	第4-1衣 大気中への放出放射能重	
項 目 放射性物質の 大気中への 放出割合	評価条件 希ガス類: 97 % よう素類: 2.78 % Cs類: 2.13 % Te類: 1.47 % Ba類: 0.0264 % Ru類: 7.53×10 ⁻⁸ % Ce類: 1.51×10 ⁻⁴ % La類: 3.87×10 ⁻⁵ %	選定理由 審査ガイドに示されたとおり設定 4.4(1)a. 事故直前の炉内蓄積量 に対する放射性物質の大気中への 放出割合は,原子炉格納容器が破 損したと考えられる福島第一原子 力発電所事故並みを想定する。 希ガス類:97 % よう素類:2.78 % (CsI:95 %,無機よう素: 4.85 %,有機よう素:0.15 %) (NUREG-1465を参考に設定) Cs類:2.13 % Te類:1.47 % Ba類:0.0264 % Ru類:7.53×10 ⁻⁸ % Ce類:1.51×10 ⁻⁴ %
よう素の形態	粒子状よう素:95 % 無機よう素:4.85 % 有機よう素:0.15 %	La類: 3.87×10 ⁻⁵ % 同上
放出開始時刻	24時間後	審査ガイドに示されたとおり設定 4.4(4)a. 放射性物質の大気への 放出開始時刻は,事故(原子炉ス クラム)発生24時間後と仮定す る。
放出継続時間	10時間	審査ガイドに示されたとおり設定 4.4(4)a. 放射性物質の大気中への放出継続時間は、保守的な結果となるように10時間と仮定する。
事故の 評価期間	7日間	審査ガイドに示されたとおり設定 3. 判断基準は、対策要員の実効 線量が7日間で100mSvを超えない こと。

表4-2 放射性物質の炉内蓄積量

核 種 グループ	単位熱出力当たり の炉心内蔵量 (Bq/MW)	炉内蓄積量 (24時間減衰値) (Bq)
希ガス類	6.6×10^{15}	8.7×10^{18}
よう素類	8.6×10^{15}	1.0×10^{19}
C s 類	3.4×10^{14}	1.1×10^{18}
Те類	2.4×10^{15}	4.8×10^{18}
Ba類	7. 3×10^{15}	9.9×10^{18}
Ru類	7.3×10^{15}	1.8×10^{19}
Ce類	2.3×10^{16}	5. 7×10^{19}
La類	1. 7×10^{16}	3.2×10^{19}

表4-3 放射性物質の大気中への放出量

核 種 グループ	炉内蓄積量 (24時間減衰値)	大気中への 放出量
970-7	(Bq)	(Bq)
希ガス類	8.7×10^{18}	8.4×10^{18}
よう素類	1.0×10^{19}	2.9×10^{17}
C s 類	1.1×10^{18}	2.4×10^{16}
Те類	4.8×10^{18}	7. 1×10^{16}
Ва類	9.9×10^{18}	2.6×10^{15}
Ru類	1.8×10^{19}	1.3×10^{10}
Ce類	5.7×10^{19}	8.7×10^{13}
La類	3.2×10^{19}	1.2×10^{13}

表4-4 原子炉建屋内の放射性物質の存在量

	/// // / / / / / / / / / / / / / / / /	,
核 種 グループ	炉内蓄積量 (24時間減衰値)	原子炉建屋内の積算 崩壊数*
970-7	(Bq)	(Bq⋅s)
希ガス類	8.7×10^{18}	7. 3×10^{22}
よう素類	1.0×10^{19}	4.0×10^{23}
C s 類	1.1×10^{18}	1.0×10^{23}
Те類	4.8×10^{18}	1.2×10^{23}
Ba類	9.9×10^{18}	1.6×10^{23}
Ru類	1.8×10^{19}	7. 5×10^{21}
Ce類	5.7×10^{19}	2.7×10^{22}
La類	3.2×10^{19}	1.9×10^{22}

注記 *:事故発生後7日間(当初24時間を除く6日間)の 積算崩壊数を示す。

表 4-5 重大事故等時の緊急時対策所の居住性に係る被ばく評価に使用する 大気拡散評価条件

		1
項目	評価条件	備 考
評 価 点	緊急時対策所外壁	原子炉建屋外壁に対して最近 接点とする。
放射性物質の放出源	原子炉建屋外壁	緊急時対策所外壁に対して最近接点とする。
放出源の有効高さ	地上放出を仮定	_
実 効 放 出 継 続 時 間	10 時間	_
評 価 距 離	310 m	_
建屋による巻き込み効果	建屋の影響あり	_
評価 方位(同一方位と見なす方位)	ENE, E (2 方位)	放出源から評価点までの距離 がある程度確保されていることから、建屋+0.5Lの範囲を 包絡する方位を対象とする (図 4-2 参照)。
建屋の風向方向の投影面積	3000 m^2	建屋投影面積は小さい方が象と しい方が象と最大の投影面積の大力が象を なる方位の子炉建屋、方向の では、では、では、では、では、では、では、では、では、では、では、では、では、で
建屋の形状係数	0.5	気象指針どおり。
気 象 デ ー タ	2005 年 4 月~2006 年 3 月 までに観測された地表付 近を代表する地上高 10 m (標高 18 m)地点の風 向,風速データを使用	建屋影響を受ける大気拡散評価を行うため地上風(地上高10 m)の気象データを使用過去10年間の気象状態と比較して異常がなく,気象データの代表性が確認された2005年4月~2006年3月の1年間の気象データを使用

表 4-6 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線評価用 7日間積算線源強度

群	エネルギ (MeV)	ガンマ線積算線源強度 (-)	群	エネルギ (MeV)	ガンマ線積算線源強度 (-)
1	0.01	1.9×10^{22}	22	1.5	1.5×10^{22}
2	0.02	2.1×10^{22}	23	1.66	1.6×10^{21}
3	0.03	9.9×10^{22}	24	2.0	3.3×10^{21}
4	0.045	5.0×10^{22}	25	2.5	2.1×10^{21}
5	0.06	1.0×10^{22}	26	3.0	1.1×10^{20}
6	0.07	6. 7×10^{21}	27	3.5	2.4×10^{17}
7	0.075	5.9×10^{21}	28	4.0	2.4×10^{17}
8	0.1	2.9×10^{22}	29	4.5	6. 4×10^{11}
9	0.15	1. 7×10^{22}	30	5.0	6. 4×10^{11}
10	0.2	4.4×10^{22}	31	5.5	6. 4×10^{11}
11	0.3	8.8×10 ²²	32	6.0	6. 4×10^{11}
12	0.4	1.3×10^{23}	33	6. 5	7. 4×10^{10}
13	0.45	6.5×10^{22}	34	7.0	7. 4×10^{10}
14	0.51	9. 3×10^{22}	35	7. 5	7. 4×10^{10}
15	0.512	3.1×10^{21}	36	8.0	7. 4×10^{10}
16	0.6	1.4×10^{23}	37	10.0	2.3×10^{10}
17	0.7	1.5×10^{23}	38	12.0	1.1×10^{10}
18	0.8	6.7×10^{22}	39	14.0	0.0
19	1.0	1.3×10^{23}	40	20.0	0.0
20	1.33	3.0×10^{22}	41	30.0	0.0
21	1.34	9. 2×10^{20}	42	50.0	0.0

表4-7 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による実効線量

被ばく経路	実効線量 (mSv/7日間)
直接ガンマ線及び スカイシャインガンマ線	1.1×10^{-3}

表4-8 放射性雲中の放射性物質からのガンマ線による実効線量

被ばく経路	実効線量 (mSv/7日間)
クラウドシャイン	4.9×10^{-2}

表4-9 地表面への沈着速度の条件

項目	評価条件	備考
地表面への 沈着速度	エアロゾル: 1.2 cm/s 無機よう素: 1.2 cm/s 有機よう素: 4.0×10 ⁻³ cm/s 希ガス: 沈着無し	線量目標値評価指針*1を参考に、 湿性沈着を考慮して乾性沈着速度 (0.3 cm/s)の4倍を設定 エアロゾル及び無機よう素の乾性 沈着速度はNUREG/CR-4551 Vo12*2 より設定 有機よう素のの乾性沈着速度は NRPB-R322*3より設定

注記 *1:発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会)

*2:米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident Risks:Quantification of Major Input Parameters", Fabruary 1994

st 3: NRPB-R322-Atomosphere Dispersion Mpdelling Liaison Committee Annual Report

表4-10 大気中に放出された放射性物質の地表面沈着濃度

核 種 グループ	大気中への放出量	地表面沈着濃度 (7日間積算値)
	(Bq)	(Bq⋅s/m²)
よう素類	2.9×10^{17}	7.9×10^{16}
C s 類	2.4×10^{16}	1.6×10^{16}
Те類	7. 1×10^{16}	2.5×10^{16}
Ba類	2.6×10^{15}	1.5×10^{15}
Ru類	1. 3×10^{10}	4.9×10^9
Ce類	8.7×10^{13}	3.2×10^{13}
La類	1.2×10^{13}	6. 2×10^{12}

表4-11 グランドシャイン評価用7日間積算線源強度

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.	4 11 9 7 2 P 2 P 7 P	н і іш	1/14 • • • • • • • • • •	W. 18.1.3.2.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	群	· ·		群		ガンマ線積算線源強度 (cm ⁻²)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.01	1.1×10^{11}	22	1.5	2.7×10^{11}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.02	1.2×10^{11}	23	1.66	2.2×10^{10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.03	1.7×10^{12}	24	2.0	4. 6×10^{10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.045	3.7×10^{11}	25	2.5	4.4×10^{10}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.06	1.9×10^{11}	26	3.0	9. 4×10^8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.07	1.2×10^{11}	27	3.5	7. 9×10^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	0.075	2.3×10^{10}	28	4.0	7. 9×10^3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	0.1	1.2×10^{11}	29	4.5	2.1×10^{-2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0.15	1.1×10 ¹¹	30	5.0	2.1×10^{-2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0.2	8. 0×10 ¹¹	31	5.5	2.1×10^{-2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	0.3	1.6×10^{12}	32	6.0	2.1×10^{-2}
14 0.51 1.6×10^{12} 35 7.5 2.4×10^{-3} 15 0.512 5.5×10^{10} 36 8.0 2.4×10^{-3} 16 0.6 2.4×10^{12} 37 10.0 7.4×10^{-4} 17 0.7 2.7×10^{12} 38 12.0 3.7×10^{-4} 18 0.8 1.2×10^{12} 39 14.0 0.0 19 1.0 2.4×10^{12} 40 20.0 0.0	12	0.4	2.5×10^{12}	33	6.5	2.4×10^{-3}
15 0.512 5.5×10^{10} 36 8.0 2.4×10^{-3} 16 0.6 2.4×10^{12} 37 10.0 7.4×10^{-4} 17 0.7 2.7×10^{12} 38 12.0 3.7×10^{-4} 18 0.8 1.2×10^{12} 39 14.0 0.0 19 1.0 2.4×10^{12} 40 20.0 0.0	13	0.45	1.2×10^{12}	34	7.0	2.4×10^{-3}
16 0.6 2.4×10^{12} 37 10.0 7.4×10^{-4} 17 0.7 2.7×10^{12} 38 12.0 3.7×10^{-4} 18 0.8 1.2×10^{12} 39 14.0 0.0 19 1.0 2.4×10^{12} 40 20.0 0.0	14	0.51	1.6×10^{12}	35	7. 5	2.4×10^{-3}
17 0.7 2.7×10^{12} 38 12.0 3.7×10^{-4} 18 0.8 1.2×10^{12} 39 14.0 0.0 19 1.0 2.4×10^{12} 40 20.0 0.0	15	0.512	5.5×10^{10}	36	8.0	2.4×10^{-3}
18 0.8 1.2×10^{12} 39 14.0 0.0 19 1.0 2.4×10^{12} 40 20.0 0.0	16	0.6	2.4×10^{12}	37	10.0	7. 4×10^{-4}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	0.7	2.7×10^{12}	38	12.0	3.7×10^{-4}
	18	0.8	1. 2×10 ¹²	39	14.0	0.0
$\begin{bmatrix} 20 & 1 & 33 & 5 & 7 \times 10^{11} & 41 & 30 & 0 & 0 & 0 \end{bmatrix}$	19	1.0	2.4×10^{12}	40	20.0	0.0
20 1.33 3.7×10 41 30.0	20	1.33	5. 7×10 ¹¹	41	30.0	0.0
21 1.34 1. 7×10^{10} 42 50.0 0.0	21	1.34	1.7×10^{10}	42	50.0	0.0

表4-12 グランドシャインによる実効線量

被ばく経路	実効線量 (mSv/7日間)
グランドシャイン	1.8×10 ⁻¹

表4-13 緊急時対策所の換気設備条件

	期間		事象発生~24 h	24 h∼34 h	34 h∼35 h	35 h∼168 h
放射性物質	放射性物質放出の状況 希ガス		×	0	×	×
(〇:放出, ×	(○:放出,×:放出なし) 希ガス以外		×	0	×	×
	加品	E方式	a—.:	空気ボンベ		·=
	緊急時対策所 処理空間容積		a— II	3000 m ³ (緊急時対策所)		9=
加圧設備 —	リークイ:	ン量 (n³/h)	a— n	0 m³/h (0 回/h)		-
	運転	モード	緊対建屋加圧モード	災害対策本部加圧モード	緊対建屋浄化モード	緊対建屋加圧モード
緊急時対策所	处理2	空間容積	15800 m³ (緊急時対策所及び浄化エリア)		12800 m³ (浄化エリア)	
非常用換気設備	外気取込	み量 (n³/h)	5000 m³/h	900 m²/h	5000	m ³ /h
非 用 供 风 改 佣	よう素用チャコ	ールフィルタ効率		99	%	
	粒子状フ	イルタ効率		99. :	9 %	
	リークイ:	ン量 (m³/h)		0 m³/h (0 回/h)	
緊急時対策所の	コンク!	リート厚さ	12—11	49.	o em	14
第100 第100 第100 第100 第100 第100 第100 第100	コンク!	ノート密度	94—1	2. 1	g/cm³	94
対する遮蔽壁	波	衰率	-	希ガス : 7×10 ⁻⁴ 希ガス以外 : 1×10 ⁻²		V=
*1:浄化エリアとは,	*よう素用チャコール	換気設備により,高性能 フィルタを通して外気を	繁急等 対策所 学気ボンベ 学気ボンベ 機気系統量 5.000m³√h	第念時 対策87 空気ボンベ 参気系が至 90kg ³ /h	原急時 対策所 空気がシベ 空気がシベ を対象系法権 5,000m ³ /5	第名時 対策所 作化エリア 次気ボンベ 換気系領軸 5,600m ² /h
備 考*3 *3: 事象発生~24 h は, 室内に外気から取り込まれた放射性物質による被ばくの影響は無い。24 h~168 h の室内に外気から取り込まれた放射性物質による被ばくの評価方法等は4.1.2 (1) d. に示す。		【緊急時対策所,浄化エリア】 ・緊急時対策所非常用送風機を起動し、粒子フィルタ及びよう素フィルタにて浄化した空気を緊急時対策所内に取り込む非常時運転を実施・建屋内は正圧維持	【緊急時対策所】 ・緊急時対策所加圧設備による加圧運 転を実施し、緊急時対策所内への放 射性物質の流入を防止する。 【浄化エリア】 ・緊急時対策所非常用換気設備の少量 外気取り込みにより放射性物質の 流入を低減 ・建屋内は正圧維持	【緊急時対策所】 ・緊急時対策所加圧設備による加圧運転を継続 【浄化エリア】 ・緊急時対策所非常用換気設備の外気 取り込みにより建屋内の放射性物質を排出 ・建屋内は正圧維持	 「緊急時対策所】 ・緊急時対策所加圧設備による加圧運転を停止 【浄化エリア】 ・緊急時対策所非常用換気設備の外気取り込みにより建屋内の放射性物質の排出を継続・建屋内は正圧維持 	

表4-14 線量計算条件

項目	評価条件	選定理由	備考
線量換算係数	成人実効線量換算係数を使用 (主な核種を以下に示す) I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq I-134:1.5×10 ⁻¹⁰ Sv/Bq I-135:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:2.0×10 ⁻⁸ Sv/Bq Cs-136:2.8×10 ⁻⁹ Sv/Bq Cs-137:3.9×10 ⁻⁸ Sv/Bq 上記以外の核種は ICRP Pub. 71*1, 72*2に基づく	ICRP Publication 71* ¹ , 72* ² に 基づく	_
呼吸率	1.2 m³/h	成人活動時の 呼吸率を審査 指針* ³ 及び ICRP Publication 71* ¹ に基づく	被ばく評価手法(内規) $7.3.3(4)$ 吸入摂取による運転員の内部被ばく線量は,次のとおり計算する。 $H_I = \int_0^T R \cdot H_\infty \cdot C_I(t) dt$ $H_I: よう素の吸入摂取の内部がはくによる実効線量(Sv) R: \mathbb{F}_{0} 呼吸率(成人活動時)(m^3/s) H_\infty: よう素(I-131)吸入摂取時の成人の実効線量への換算係(Sv/Bq) C_I(t): \mathbb{F}_{0} 対比における中央制御室内の放射能濃度(I-131等価量)(Bq/m^3) T: 計算期間(30日間)(S)$

注記 *1:ICRP Publication 71, "Age-dependent Doses to Members of the Public from Intake of Radionuclides - Part 4 Inhalation Dose Coefficients", 1995

*2: ICRP Publication 72, "Age-dependent Doses to Members of the Public from Intake of Radionuclides - Part 5 Compilation of Ingestion and Inhalation Dose Coefficients", 1996

*3:発電用軽水型原子炉施設の安全評価に関する審査指針(平成2年8月30日 原子力安全委員会決定,平成13年3月29日一部改訂)

表4-15 外気から室内に取り込まれた放射性物質による実効線量

	実効線量(mSv/7日間)
ガンマ線による外部被ばく	2.3×10^{1}
吸入による内部被ばく	1.1×10^{1}
合 計	3.5×10^{1}

表4-16 重大事故等時の緊急時対策所の対策要員の実効線量の内訳

	実効線量(mSv/7日間)					
	外部被ばく	内部被ばく	合 計			
建屋からの直接ガンマ線及びスカ イシャインガンマ線による被ばく	1.1×10^{-3}	_	1.1×10^{-3}			
放射性雲中の放射性物質からのガンマ線による被ばく	4.9×10^{-2}	_	4.9×10^{-2}			
外気から室内に取り込まれた放射 性物質による被ばく	2. 3×10 ¹	1. 1×10 ¹	3.5×10^{1}			
大気中へ放出され地表面に沈着し た放射性物質からのガンマ線によ る被ばく	1.8×10 ⁻¹	_	1.8×10 ⁻¹			
合 計	2. 4×10 ¹	1. 1×10 ¹	3.5×10^{1}			

表4-17 緊急時対策所非常用フィルタ装置除去効率一覧

	名称		緊急時対策所非常用フィルタ装置			
種類			高性能粒子フィルタ	よう素用チャコールフィルタ		
効率	単体除去効率	%	99.97以上 (0.15 μm粒子)	99.75以上 (相対湿度70 %, 温度10℃に おいて)		
	総合除去効率* %		99.99以上 (0.5 μm粒子)	99.75以上 (相対湿度70 %, 温度10℃に おいて)		

注記*:フィルタ前置・後置直列の除去効率

表4-18 酸素及び二酸化炭素許容濃度

項目	許 容 濃 度	備 考
酸素濃度	19 vol%以上	「鉱山保安法施行規則」を準拠 (鉱山労働者が作業し,又は通行する坑内は, 当該濃度以下とする通気の確保を要求)
二酸化炭素濃度	1.0 vol%以下	「鉱山保安法施行規則」を準拠 (鉱山労働者が作業し,又は通行する坑内は, 当該濃度以下とする通気の確保を要求)

表4-19 緊急時対策所内の酸素濃度及び二酸化炭素濃度計算条件

項目	評価条件	設定理由	備	考
人数	100 人	プルーム通過時に緊急時対策所にと どまる要員数に余裕を見て設定		
体 積 (緊急時対策所 バウンダリ体積)	3035.1 m ³	緊急時対策所等を加圧する範囲のバウンダリ体積として設定(緊急時対策所(災害対策本部,宿泊・休憩室),食料庫及び災害対策本部空調機械室の体積を合計した数値)	図4- 参照	
評価期間	14 時間	プルーム放出時間の10時間に,プルーム通過後の緊急時対策所加圧設備から緊急時対策所非常用換気設備への切替時間として余裕を見て2時間を加え,さらに2時間の余裕を持たせて14時間分とし,緊急時対策所を14時間正圧維持できる空気供給量		
空気流入	なし	保守的な評価となるため考慮しない		
初期酸素濃度	20.51 vol%	緊急時対策所加圧設備による加圧 前の緊急時対策所の外気取入量を基 に設定		
初期二酸化炭素濃度	0.5 vo1%	緊急時対策所加圧設備による加圧 前の緊急時対策所の外気取入量を基 に設定		
酸素消費量	21.84 L/h	「空気調和・衛生工学便覧」より 準備を含む現場作業対応がないため 「静座」より引用	1人当た の消費量	
二酸化炭素吐出し量	22 L/h	「空気調和・衛生工学便覧」より 準備を含む現場作業対応がないため 「極軽作業」より引用	1人当た	

緊急時対策所の居住性に係る被ばく評価

図4-1 重大事故等時の緊急時対策所の対策要員の被ばく経路

46

図4-2 重大事故等時の評価方位

図4-3 原子炉建屋断面積(投影面積)

図4-4 緊急時対策所被ばく評価時の直接ガンマ線評価モデル (1/3)

図4-4 緊急時対策所被ばく評価時の直接ガンマ線評価モデル (2/3)

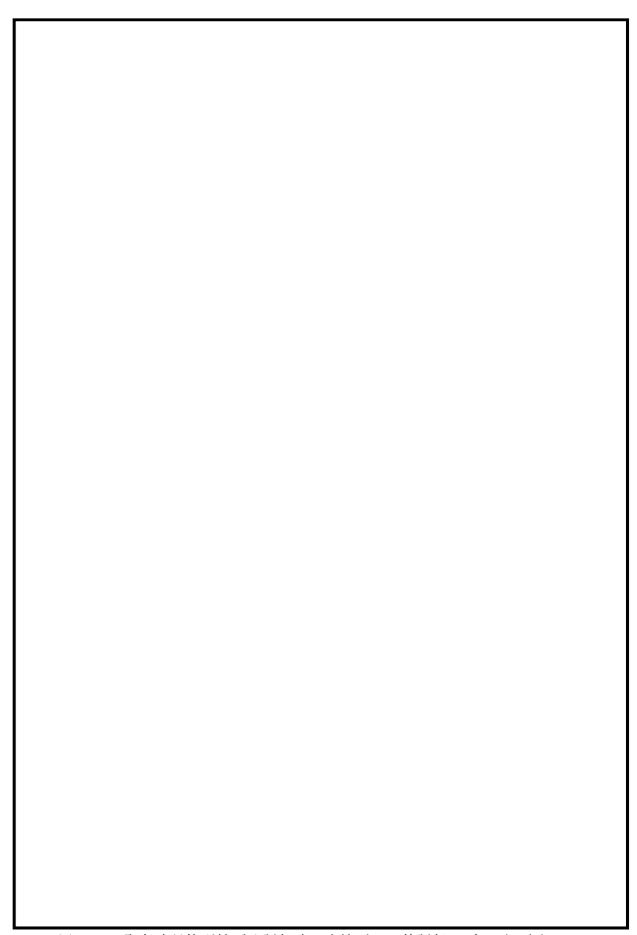


図4-4 緊急時対策所被ばく評価時の直接ガンマ線評価モデル (3/3)

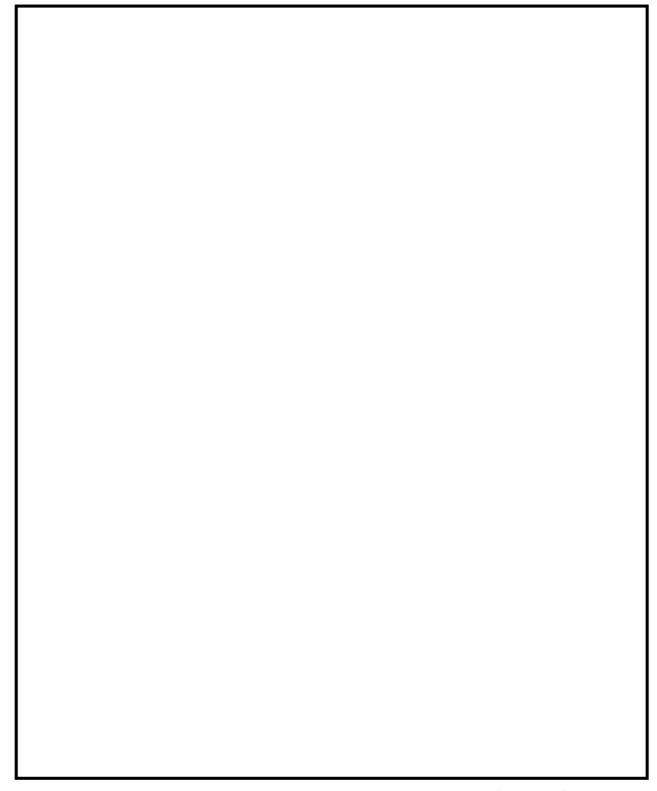


図4-5 緊急時対策所被ばく評価時のスカイシャインガンマ線評価モデル

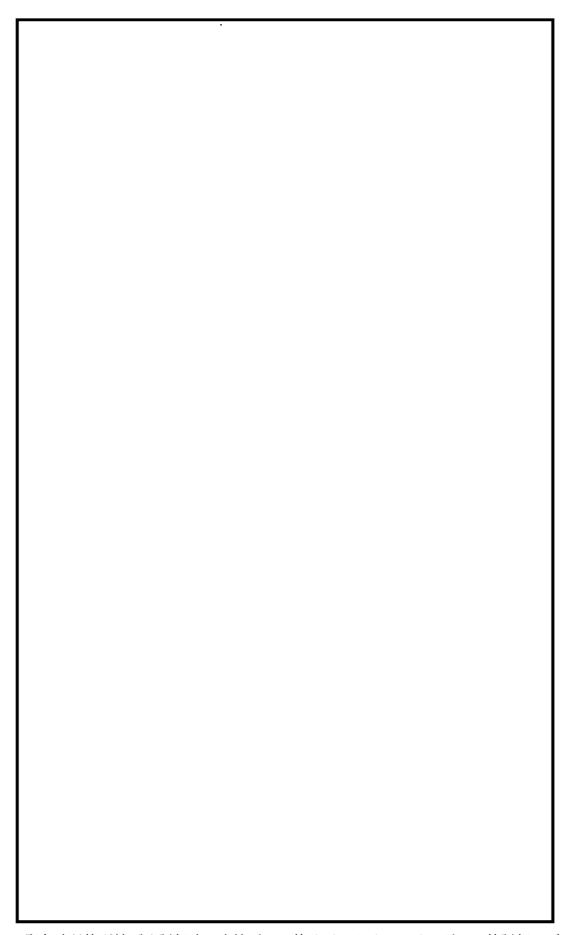


図4-6 緊急時対策所被ばく評価時の直接ガンマ線及びスカイシャインガンマ線評価モデル

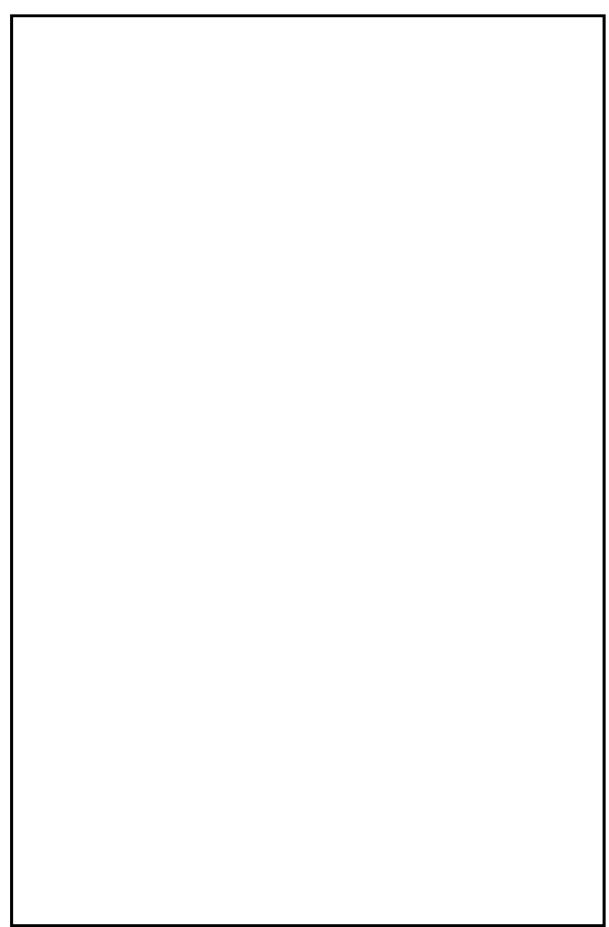
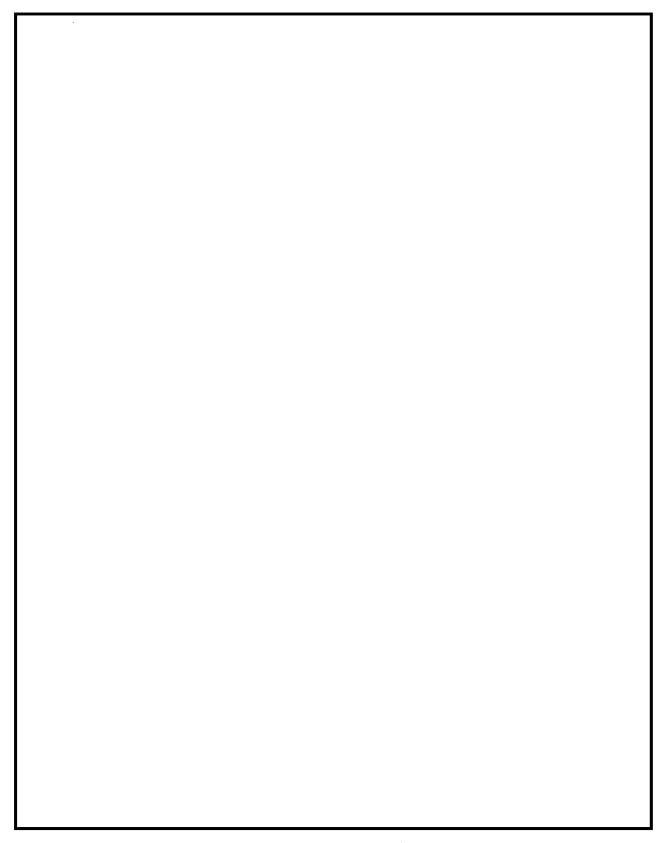
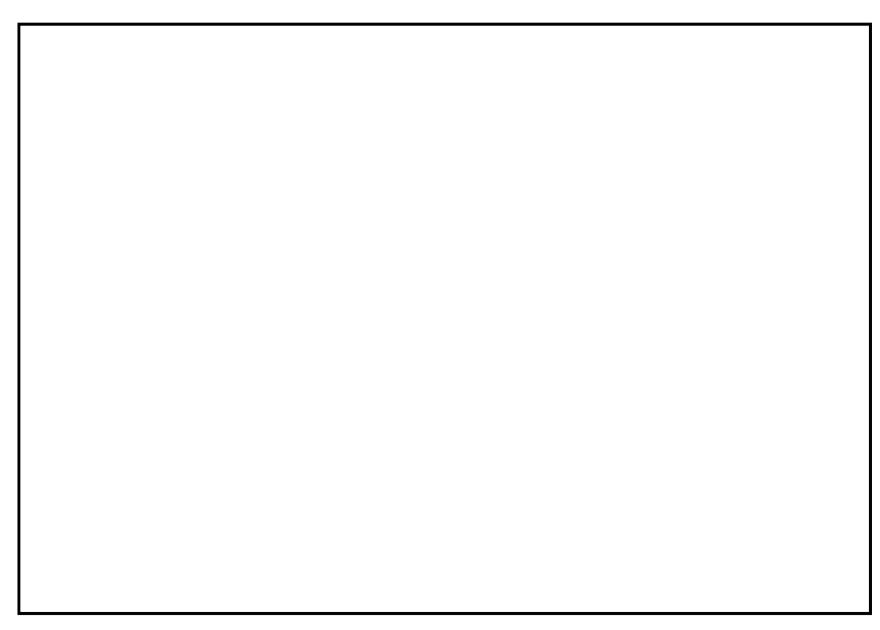




図4-7 グランドシャイン評価モデル (1/2)

NT2 補② V-1-9-3-2 R6

図4-8 緊急時対策所非常用換気設備構成図

図4-9 緊急時対策所非常用換気設備構成図 (緊対建屋加圧モード)

図4-10 緊急時対策所非常用換気設備構成図(災害対策本部加圧モード)

図4-11 緊急時対策所非常用換気設備構成図 (緊対建屋浄化モード)

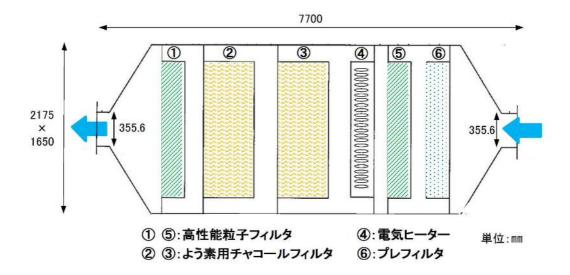


図4-12 緊急時対策所非常用フィルタ装置概略図

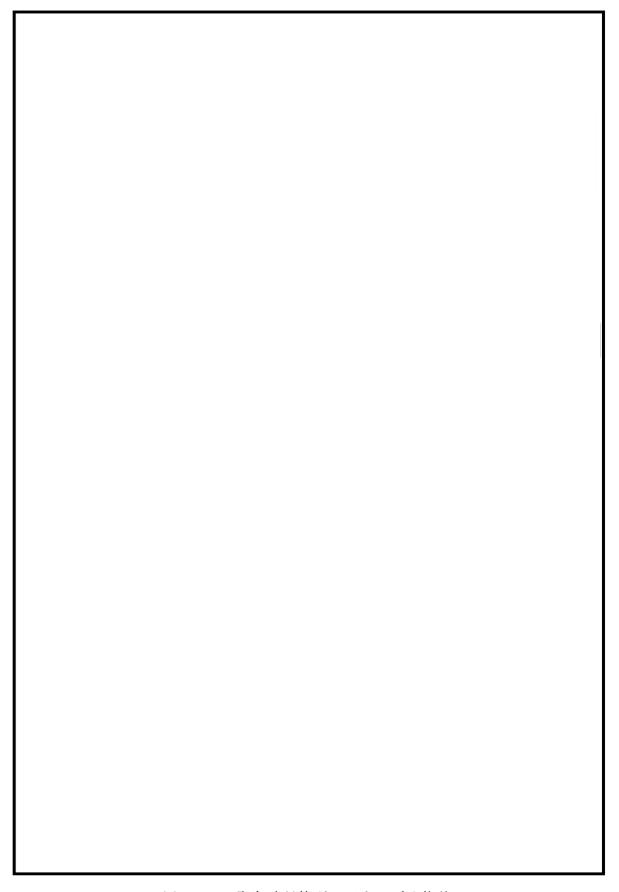
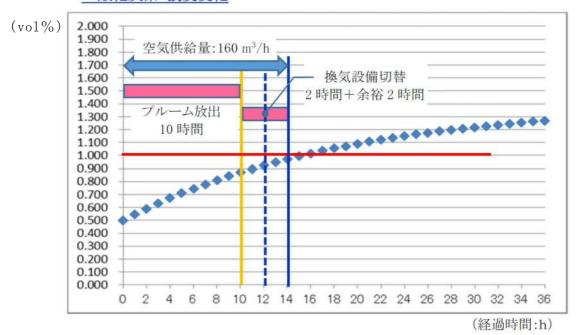



図4-13 緊急時対策所のバウンダリ体積

二酸化炭素 濃度変化

酸素 濃度変化

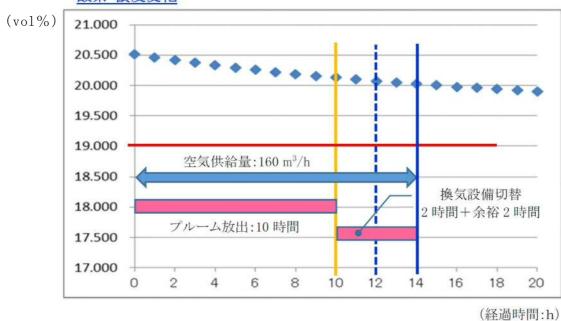


図4-14 緊急時対策所内酸素濃度及び二酸化炭素濃度推移

緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持について

緊急時対策所非常用フィルタ装置のフィルタ除去性能の維持について

緊急時対策所非常用フィルタ装置は、除去効率(性能)を維持するよう、十分な保持容量及び吸着容量を有する設計とするとともに、フィルタに付着する核分裂生成物の崩壊熱により性能が低下しない設計とする。

1. フィルタ捕集量

緊急時対策所非常用フィルタ装置のフィルタ捕集量は、別添表-1に示す炉心内蓄積質量及び別添図-1に示す過程による評価の結果、放射性微粒子量は約 1.0×10^{-1} g、よう素量は約 1.8×10^{-2} gである。

高性能粒子フィルタの粉塵保持容量は、375 g/枚であり、高性能粒子フィルタの枚数は、8枚/基のうちチャコールより前置している枚数は4枚/基となり、保持容量は1500 g となる。

よう素用チャコールフィルタの保持容量は、保守的に考え保持容量の小さいョウ化カリウム添着炭の $100~\mu~g/g$ を保持できるものとする。活性炭充填量は17.3~kg/hレイであり、18~hレイ/基設置しているため、保持容量は31.14~gとなる。

緊急時対策所非常用フィルタ装置の捕集量並びに保持容量及び吸着容量を別添表-2 に示す。

- 2. フィルタに付着した核分裂生成物崩壊熱による温度上昇
 - (1) フィルタに付着した核分裂生成物崩壊熱による発熱量

フィルタの発熱量 Q_F は、線量評価における割合で大気に放出された核分裂生成物(希ガス除く)が、緊急時対策所非常用フィルタ装置のフィルタにより全量捕集されるものとし、フィルタに蓄積する最大放射能とアルファ線、ベータ線及びガンマ線の全吸収エネルギを乗じて全吸収による発熱量 Q_F を下式により計算する。

フィルタに蓄積する最大放射能及び最大発熱量を別添表-3に示す。

 $Q_F = q_F \times (アルファ線全吸収エネルギ+ベータ線全吸収エネルギ+ガンマ線全吸収エネルギ) <math>\times 1.6 \times 10^{-19}$

 $q_F = \int T q_1(t) \cdot \chi / Q \cdot L_F \cdot F(t) dt$

ここで

q_E :フィルタに蓄積する最大放射能 (Bq)

q₁(t): 事故後t時間における放出量(Bq)

α/Q:緊急時対策所における相対濃度(s/m³)

L_F :送風機稼動中の風量 (900 m³/h)

F(t): 減衰率 (ORIGEN 2 により計算)

T :送風機稼動時間 (h)

以上から $Q_F = 約2.1$ Wとなり、保守的に10 Wとして温度評価を行う。

(2) フィルタに付着した核分裂生成物崩壊熱による温度上昇

崩壊熱による発熱量($Q_F = 10$ W)と、非常用フィルタ装置(ケーシング)の放熱量qがバランスするときの温度上昇を求める。

ケーシングからの放熱量qは一般的に下式により求められる。

 $q = K \times A \times \triangle T$

ここで

△T:ケーシングの上昇温度(℃)

K : 熱貫流率 (約4.5 W/ (m² · °C))

 $(K = 1 / (1/\alpha_{i} + d/\lambda + 1/\alpha_{o})$

 α : 表面熱伝達率 (内側) (9 W/ ($\mathbf{m}^2 \cdot \mathbf{C}$))

 α 。 :表面熱伝達率 (外側) (9 W/ ($\mathbf{m}^2 \cdot \mathbf{C}$))

d :ケーシング板厚(0.006 m)

λ : ケーシング熱伝達率 (16.3 W/ (m・℃))

A : ケーシング伝熱面積 (36 m²)

この式と、発熱量と放熱量のバランス ($Q_F = q$) より、 $\triangle T = 6.2 \times 10^{-2}$ Cとなる。

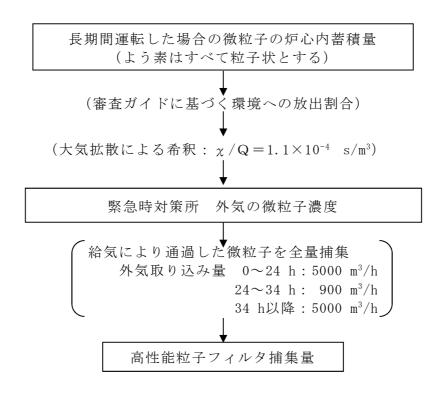
緊急時対策所非常用フィルタ装置のフィルタに付着する核分裂生成物の量は、「フィルタ捕集量」より約 1.2×10^{-1} gであり、この核分裂生成物の発熱量とフィルタユニット(ケーシング)から屋外への放熱量とのバランスを考慮すると、核分裂生成物による温度上昇は約 6.2×10^{-2} $^{\circ}$ $^{\circ}$ となり、温度上昇は殆どない。

フィルタ装置の使用可能温度は設計上35 ℃であること及び核分裂生成物による温度上昇は殆どないことから、除去効率(性能)が低下することはない。

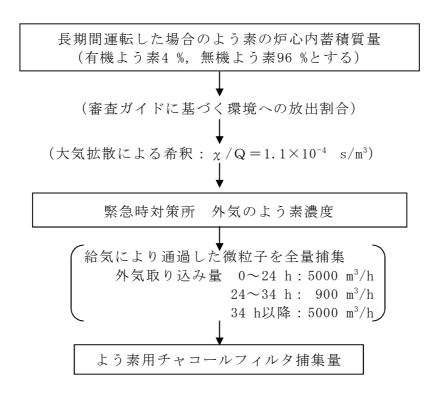
別添表-1 炉心内蓄積量(安定核種を含む)

核種グループ	炉心内蓄積量 (kg)
よう素類	2.4×10^{1}
C s 類	1.5×10^{2}
Sb類	3.2×10^{-2}
Te類	5.9×10^{-1}
Sr類	6. 8×10 ¹
Ba類	2.2×10^{0}
Ru類	1.9×10^{1}
Ce類	8.0×10^{2}
La類	2.8×10^{1}
合計	1.1×10^{3}

別添表-2 緊急時対策所非常用フィルタ装置の捕集量並びに保持容量 及び吸着容量(1段当たり)


	捕集量	保持容量/吸着容量*			
放射性微粒子	1.0×10 ⁻¹ g	1500 g			
よう素	1.8×10 ⁻² g	31.14 g			

注記 *:緊急時対策所非常用フィルタ装置の保持容量(高性能粒子フィルタ) 及び吸着容量(よう素用チャコールフィルタ)


別添表-3 フィルタに蓄積する最大放射能及び最大発熱量

-					
+2-1-1-	蓄積放射能量	アルファ線	ベータ線	ガンマ線	発熱量
核種	(Bq)	エネルギ* (eV)	エネルギ* (eV)	エネルギ* (eV)	(W)
I-131	2.2×10^{-12}	(ev)	1. 9×10 ⁵	3. 8×10 ⁵	2. 0×10 ⁻¹
I-132	2.7×10^{-12}		4. 9×10 ⁵	2. 3×10 ⁶	1. 2×10 °
I-133	2.0×10^{-12}		4. 1×10 ⁵	6. 1×10 ⁵	3. 2×10 ⁻¹
I-134	1. 6×10 ⁴		6. 3×10 ⁵	2. 6×10 ⁶	8. 2×10 ⁻⁹
	2. 3×10 ¹¹		3. 4×10 ⁵	1. 6×10 ⁶	7.2×10^{-2}
I-135					5. 3×10 ⁻⁴
Rb-86	4. 4×10 ⁹		6. 7×10 ⁵	9. 3×10 ⁴	
Cs-134	3. 1×10 ¹¹ 8. 0×10 ¹⁰		1. 6×10 ⁵	1. 6×10 ⁶	8. 5×10 ⁻² 2. 0×10 ⁻²
Cs-136			1. 3×10 ⁵	1. 4×10 ⁶	
Cs-137	2. 5×10 ¹¹		2. 5×10 ⁵	5. 9×10 ⁵	3. 4×10 ⁻²
Sb-127	8. 8×10 ¹⁰		3. 1×10 ⁵	6.9×10 ⁵	1. 4×10 ⁻²
Sb-129	4. 3×10 ⁹		4. 0×10 ⁵	1. 4×10 ⁶	1. 2×10 ⁻³
Te-127	9. 2×10 ¹⁰		2. 2×10 ⁵	4.9×10 ³	3.4×10^{-3}
Te-127m	7. 4×10 ⁹		7. 6×10 ⁴	1. 1×10 ⁴	1. 0×10 ⁻⁴
Te-129	3. 5×10 ¹⁰		5. 4×10 ⁵	6. 2×10 ⁴	3. 4×10 ⁻³
Te-129m	4. 0×10 ¹⁰		2. 7×10 ⁵	3. 7×10 ⁴	2. 0×10 ⁻³
Te-131m	1. 5×10 ¹¹		1. 6×10 ⁵	1.4×10 ⁶	3.8×10 ⁻²
Te-132	1. 4×10 ¹²		9. 7×10 ⁴	2. 3×10^{-5}	7. 5×10 ⁻²
Sr-89	2. 3×10 ¹⁰		5. 8×10 ⁵	0.0	2. 2×10 ⁻³
Sr-90	2. 3×10 ⁹		2. 0×10 ⁵	0.0	7. 3×10 ⁻⁵
Sr-91	3. 6×10 ⁹		6. 5×10 ⁵	7. 1×10 ⁵	7. 9×10 ⁻⁴
Sr-92	2. 4×10^{-7}		2. 0×10^{-5}	1. 3×10 ⁶	6. 0×10^{-6}
Ba-139	5. 5×10 ⁴		9. 0×10 ⁵	4.6×10 ⁴	8. 3×10 ⁻⁹
Ba-140	4. 0×10^{-10}		3. 2×10^{-5}	1.8×10 ⁵	3. 2×10^{-3}
Co-58	1. 9×10^{-3}		3. 4×10^{-4}	9.7×10 ⁵	3. 0×10^{-1}
Co-60	8. 0×10 ²		9. 7×10 ⁴	2.5 \times 10 ⁶	3. 3×10^{-1}
Mo-99	9. 1×10 ⁴		3. 9×10^{-5}	1.5×10 ⁵	7. 9×10^{-9}
Tc-99m	8. 6×10 ⁴		1. 5×10^{-4}	1. 3×10 ⁵	2.0×10^{-9}
Ru-103	9.7×10 ⁴		6. 7×10^{-4}	5. 0×10 ⁵	8. 7×10^{-9}
Ru-105	8. 0×10 ²		4. 1×10^{-5}	7. 4×10^{-5}	1. 5×10^{-1}
Ru-106	3. 4×10^{-4}		1. 0×10^{-4}	0.0	5. 4×10 ⁻¹
Rh-105	4. 0×10^{-4}		1. 5×10^{-5}	7. 7×10^{-4}	1.5×10^{-9}
Ce-141	2. 2×10 ⁸		1. 7×10 ⁵	7. 7×10 ⁴	8. 6×10 ⁻⁶
Ce-143	1. 1×10 ⁸		4. 3×10 ⁵	2.8×10 ⁵	1. 3×10 ⁻⁵
Ce-144	1. 7×10 ⁸		9. 1×10 ⁴	1.9×10 ⁴	3. 0×10 ⁻⁶
Np-239	1. 7×10 ⁹		2. 6×10 ⁵	1.8×10 ⁵	1. 2×10 ⁻⁴
Pu-238	3. 5×10 ⁵	5. 5×10 ⁶	1. 1×10 ⁴	2. 1×10^{-3}	3. 0×10^{-7}
Pu-239	4. 5×10 ⁴	5. 1×10 ⁶	7. 5×10 ³	1.1×10 ³	3. 7×10^{-8}
Pu-240	5. 0×10 ⁴	5. 2×10 ⁶	1. 1×10 ⁴	1.9×10 ³	4. 1×10 ⁻⁸
Pu-241	1.8×10 ⁷	1. 2×10 ²	5. 2×10 ³	1.8×10 °	1. 5×10 ⁻⁸
Y-90	3. 5×10 ⁶		9. 3×10 ⁵	1. 3×10 °	5. 2×10 ⁻⁷
Y-91	4. 4×10 ⁷		6. 0×10 ⁵	3. 1×10^{-3}	4. 3×10 ⁻⁶
Y-92	6. 4×10 ⁵		1.5×10 ⁶	2. 5×10 ⁵	1. 7×10 ⁻⁷
Y-93	7. 4×10 ⁶		1. 2×10 ⁶	9.6×10 ⁴	1.5×10 ⁻⁶
Zr-95	5. 8×10 ⁷		1. 2×10 ⁵	7. 3×10 ⁵	7. 9×10 ⁻⁶
Zr-97	1. 8×10 ⁷		7. 1×10 ⁵	1. 9×10 ⁵	2. 5×10 ⁻⁶
Nb-95	5. 9×10 ⁷		4. 5×10 ⁴	7. 6×10 ⁵	7. 6×10 ⁻⁶
La-140	6. 2×10 ⁷		5. 4×10 ⁵	2. 3×10 ⁶	2. 8×10 ⁻⁵
La-141	4. 2×10 ⁵		9. 6×10 ⁵	2. 7×10 ⁴	6. 7×10 ⁻⁸
La-142	2. 9×10 ²		8. 7×10 ⁵	2. 4×10 ⁶	1. 5×10 ⁻¹
Pr-143	5. 1×10 ⁷		3. 2×10 ⁵	9. 0×10 ⁻³	2. 6×10 ⁻⁶
Nd-147	2.1×10^{-7}		2. 7×10 ⁵	1. 4×10 ⁵	1. 4×10 ⁻⁶
Am-241	5. 6×10 ³	5. 5×10 ⁶	3. 7×10 ⁴	2. 9×10 ⁴	5. 0×10 ⁻⁹
Cm-242	1. 8×10 ⁶	6. 1×10 ⁶	9. 6×10 ³	2. 9×10 2. 0×10 ³	1.7×10^{-6}
	1.0 \(\cdot \)10	0.1 \(10	9. U /\ 1U	2.0 ^ 10	1.1 ^ 10
Cm-244	1. 1×10 ⁵	5. 8×10 ⁶	7.9×10^{-3}	1. 7×10^{-3}	1. 1×10^{-7}

注記 *: JAEA-Data/Code 2011-025「JENDL FP Decay Data File 2011 and Fission Yields Data File 2011」 2012.3 日本原子力研究開発機構 JAERI-1347 Nuclear Decay Data for Dosimetry Calculation Revised Data of ICRP Publication 38 February2005 日本原子力研究所

緊急時対策所非常用フィルタ装置の高性能粒子フィルタ捕集量評価の過程

緊急時対策所非常用フィルタ装置のよう素用チャコールフィルタ捕集量評価の過程

別添図-1 緊急時対策所非常用フィルタ装置(高性能粒子フィルタ及びよう素用チャコールフィルタ) 捕集量評価の過程

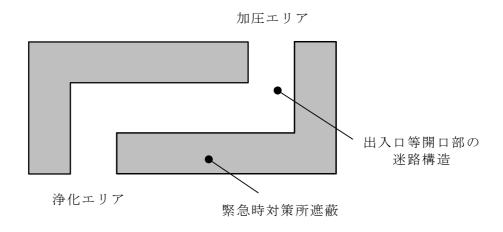
緊急時対策所遮蔽に係るストリーミングの考慮について

緊急時対策所遮蔽に係るストリーミングの考慮について

緊急時対策所に設置する出入口開口部又は配管その他の貫通部から、緊急時対策所遮蔽を透過せず、散乱等によるストリーミングが加圧エリアに影響を与えないよう、放射線の漏えい防止措置を講ずる。

ストリーミングに対する防止措置の概要図を別添図-2に示す。

1. 出入口開口部に対する考慮


緊急時対策所の出入口開口からのストリーミングが加圧エリアに影響を与えないよう 以下の放射線の漏えい防止措置を講ずる。

- (1) 出入口開口部は、原則として開口部を通して線源が直接見通せないよう迷路構造とする。
- (2) 出入口開口部の大きさは、可能な限り小さくする。

2. 配管その他の貫通部に対する考慮

緊急時対策所の配管その他の貫通部からのストリーミングが加圧エリアに影響を与えないよう以下の放射線の漏えい防止措置を講ずる。

- (1) 貫通部は、原則として床上2 m以上の位置に設置する。
- (2) 貫通部は、原則として貫通部を通して線源が直接見通せない位置に設置する。
- (3) 隣接する貫通部は、可能な限り間隔を開ける。
- (4) 貫通部の大きさは、可能な限り小さくする。

別添図-2 出入口等開口部に対する放射線漏えい防止措置の概要図

計算機プログラム (解析コード) の概要

目 次

1.	はじめに			• • • •	 	 	 	· 別紙1-1
2.	解析コー	ドの概	要	• • • •	 	 	 	・別紙1-2
2.	1 Q A D	— C G	G P 2	R	 	 	 	・別紙1-2
2.	2 ANI	SN			 	 	 	・別紙1-2
2.	3 G 3 3	– G Р	2 R		 	 	 	・別紙1-2
2.	4 ORI	GEN	2		 	 	 	· 別紙1-2

1. はじめに

本資料は、V-1-9-3-2「緊急時対策所の居住性に関する説明書」において使用した計算機プログラム(解析コード)について説明するものである。

2. 解析コードの概要

2.1 QAD-CGGP2R

本解析コードの概要については、「V-5-6 計算機プログラム (解析コード) の概要・QAD-CGGP2R」に示す。

2.2 ANISN

本解析コードの概要については、「V-5-11 計算機プログラム(解析コード)の概要・ANISN」に示す。

2.3 G 3 3 - G P 2 R

本解析コードの概要については、「V-5-12 計算機プログラム(解析コード)の概要・G33-GP2R」に示す。

2.4 ORIGEN2

本解析コードの概要については、「V-5-7 計算機プログラム (解析コード) の概要・ORIGEN2」に示す。