本資料のうち,	枠囲みの内容は
営業秘密又は防	「護上の観点から
公開できません。	0

東海第二発電所	工事計画審査資料				
資料番号	工認-1112改1				
提出年月日	平成 30 年 10 月 4 日				

V-2-2-33 SA用海水ピットの耐震性についての計算書

1.	概	\overline{e} 1
2.	基	本方針
2	. 1	位置
2	. 2	構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	. 3	評価方針・・・・・・・・・・・・5
2	. 4	適用基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	耐	震評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	. 1	評価対象断面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	. 2	許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	. 3	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	耐	·震評価結果·······
4	. 1	構造部材の健全性に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
4	. 2	基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、SA用海水ピットが基準地震動S。に対して十分な構造強度及び支持機能を有していることを確認するものである。

SA用海水ピットに要求される機能の維持を確認するにあたっては、地震応答解析及び静的解 析に基づく構造部材の健全性評価及び基礎地盤の支持性能評価により行う。

- 2. 基本方針
- 2.1 位置

SA用海水ピットの平面配置を図 2-1 に示す。

図 2-1(1) SA用海水ピットの平面配置図(全体平面図)

図 2-1 (2) SA用海水ピットの平面配置図(拡大図)

2.2 構造概要

SA用海水ピットは,外径約 14 m,内径約 10 m,高さ約 34 m の鉄筋コンクリート造の円 筒状の地中構造物で,十分な支持性能を有する岩盤に直接設置する。非常時においては海水 の通水機能を求められる土木構造物であり,鉄筋コンクリート躯体上部には,外郭浸水防護 設備であるSA用海水ピット開口部浸水防止蓋を設置する。

SA用海水ピットの<mark>平面図を図 2-2,断面図を図 2-3に示す。</mark>

図 2-2 SA用海水ピットの平面図

注記 : SA用海水ピットについては標準構造断面図を示す。 図 2-3 SA用海水ピットの断面図

2.3 評価方針

SA用海水ピットは、常設重大事故防止設備及び常設重大事故緩和設備に分類される。 SA用海水ピットの耐震評価は、添付書類「V-2-2-32 SA用海水ピットの地震応答計算 書」において、敷地の原地盤における地盤剛性及び液状化強度特性の代表性及び網羅性を踏ま えた上で、ばらつき等を考慮し実施する地震応答解析の結果に基づき、重大事故等対処施設の 評価として、表 2-1 に示すとおり、構造部材の健全性評価及び基礎地盤の支持性能評価を行う。 構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで、構造強度を有するこ とを確認する。

構造部材の健全性評価については、構造部材の発生応力が許容限界以下であることを確認する。基礎地盤の支持性能評価については、基礎地盤に生じる接地圧が極限支持力に基づく許容限界以下であることを確認する。

SA用海水ピットの耐震評価フローを図 2-4 に示す。

評価方針	評価項目	部位	評価方法	許容限界								
構造強度	構造部材の	全構造部材	曲げ軸力, せん断力に	短期許容応力度								
を有する	健全性		対する発生応力が許容									
こと			限界以下であることを									
			確認									
	基礎地盤の	基礎地盤	接地圧が許容限界以下	極限支持力*								
	支持性能		であることを確認									

表 2-1 SA用海水ピットの評価項目

注記 *:妥当な安全余裕を考慮する。

※詳細は図 2-5 に示す

図 2-4 SA用海水ピットの耐震評価フロー

構造部材の応答値算定及び健全性評価についての耐震評価詳細フローを図 2-5 に示す。

図 2-5 SA用海水ピットの応答値算定及び健全性評価ついての耐震評価詳細フロー

以下にフロー図に示す項目について方針を示す。

2.3.1 2次元有効応力解析

SA用海水ピットの地震応答解析は,地盤と構造物の相互作用を考慮できる2次元有限 要素法を用いて,基準地震動S。に基づき設定した水平地震動と鉛直地震動の同時加振に よる逐次時間積分の時刻歴応答解析にて行う。SA用海水ピットは,中心位置において各 構造部材と等価な剛性を有する構造梁(線形はり要素)によりモデル化する。また,地盤 については,有効応力の変化に応じた地震時挙動を考慮できるモデル化とする。

2次元有効応力解析を実施し、SA用海水ピットの鉛直鉄筋の健全性評価のために、2 次元有効応力解析にて算出される線形はり要素の発生断面力(曲げモーメント,軸力,せん断力)を抽出する。SA用海水ピットの水平鉄筋の健全性評価のために、SA用海水ピット側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x')と間隙水要素の発生応 力(Δu)の和)の時刻歴最大値,すなわち地震時最大地盤反力を抽出する。さらに、頂 版及び中床版部材の健全性評価のために、各床版位置における最大鉛直加速度を抽出し、 底版の健全性評価のために、SA用海水ピット底面をモデル化した仮想剛梁要素に地盤か ら作用する鉛直方向有効直応力(σ_y')及び間隙水要素の発生応力(Δu)の和を底面 方向分布に応じて合計した値,すなわち、鉛直方向の地震時地盤反力の時刻歴最大値を抽 出する。

図 2-6 2 次元有効応力解析からの応答値の抽出概念図

- 2.3.2 鉛直断面に対する耐震評価
 - (1) 鉛直断面の曲げ軸力に対する評価

SA用海水ピットは直交する2断面(海水引込み管方向と緊急用海水取水管方向)を解 析断面として選定し,2次元有効応力解析を実施し部材の設計を行う。SA用海水ピット の鉛直鉄筋は2次元有効応力解析において算出される線形はり要素の発生断面力(曲げモ ーメント及び軸力)を用いて照査を行う。その際,水平2方向及び鉛直方向地震力に対し て円筒形立坑の場合は,地震動の加振方向に対して抵抗する部位が明確でない。そこで, 直交する2つの2次元有効応力解析モデルによる解析結果のうち,時刻歴最大となる時刻 の曲げモーメントが直交する方向にも同時に作用する(曲げモーメントを√2倍)として, 構造部材の曲げ軸力による発生応力が許容限界以下であることを確認する。

図 2-7 線形はり要素の鉛直断面設計概念図

(2) 鉛直断面のせん断力に対する評価

2次元有効応力解析において算出される線形はり要素の発生せん断力(S)に対しコン クリートの有効断面積(A_w)で抵抗するものとし、せん断応力度 $\tau = S/A_w$ がコンクリー ト標準示方書に示される許容せん断応力度 τ_{a1} 以下である場合にはせん断補強筋は不要で ある。

許容せん断応力度_{てal}を超える場合はせん断補強筋(A_{s1})が必要となり,2次元有 効応力解析において算出される線形はり要素の発生せん断力を用いて照査を行い,構造部 材の発生せん断力が鉄筋コンクリートとしての許容限界すなわち短期許容せん断力V_a以 下であることを確認する。 (3) 側壁と版部材の結合部における局所の曲げモーメント増分の廻り込みを考慮した耐震評 価

側壁と版部材の隅角部には、床版の曲げモーメント(M_o)が側壁に廻り込む。また側 壁が版部材に支持される拘束効果により、地震時荷重を面外方向に受けた場合に曲げモー メントが反転する(M₁, M₂)。この現象は2次元有効応力解析において考慮することが できない。このためここでは、側壁と版部材の結合部における曲げモーメント増分の廻り 込みを考慮した検討を行う。

図 2-8 に版部材から側壁に廻り込む曲げモーメント概念図を示す。

図 2-8 版部材から側壁に廻り込む曲げモーメント概念図

側壁と版部材を結合することにより版部材に発生する端部の曲げモーメント(M_o)は、 境界条件を固定支持としたはり要素を用いた有効応力解析により算定する。側壁は床版 中心間距離で固定支持された、単位幅を有する両端固定はりとしてモデル化し、各層に おける地震時荷重を作用させた場合に、支持位置に発生する曲げモーメント(M_1 , M_2) を算定する。地震時荷重については、各鉛直スパンの地盤反力(地盤要素の水平有効直 応力(σ_x)+間隙水要素の発生応力(Δu))の合算値が最大となる時刻の地盤反力分 布を用いる。

版部材の端曲げモーメント(M_o)及び版部材に拘束された側壁に発生する端曲げモー メント(M₁, M₂のうちモーメントの連続性を考えて両者の最大値を用いる)の和を設計曲 げモーメントとする。

上記により得られる設計曲げモーメントから鉛直鉄筋の引張応力度(σ_{v2})を算定する。 $\sqrt{2}$ 倍したモーメントを用いて求められた鉛直鉄筋の引張応力度(σ_{v1})を加算した鉛直鉄筋の引張応力度(σ_{v1} + σ_{v2})が許容限界以下であることを確認する。

- 2.3.3 水平断面に対する耐震評価
 - (1) 水平断面の設計

SA用海水ピットの水平断面については、側壁を線形はり要素としてモデル化した静的 フレーム解析により水平断面の照査を行なう。

作用させる荷重は、2次元有効応力解析結果から抽出した、SA用海水ピット側方の地 震時地盤反力(地盤要素の水平有効直応力(σ_x')と間隙水要素の発生応力(Δu)) の全時刻の最大値である。水平断面の評価概念図を図 2-9 に示す。

構造部材の発生断面力(曲げモーメント,軸力,せん断力)が許容限界以下であること を確認する。なお,ここで設計する主鉄筋(A_{s2})は、2次元フレーム解析モデルの側壁 面外方向の地震時最大地盤反力で生じる曲げ軸力に対する配筋である。

図 2-9 水平断面の評価概念図(フレーム計算)

(2) 水平2方向及び鉛直方向地震力への対応

SA用海水ピットの設計における水平2方向及び鉛直方向地震力に対する耐震安全性は、 側壁面内方向の水平鉄筋の配筋量にて確認する。

SA用海水ピットの側壁における面内方向の水平鉄筋として,2次元有効応力解析(鉛 直断面)モデルの側壁面内方向のせん断力に対するせん断補強鉄筋(A_{s1})と,水平断 面の2次元フレーム解析モデルの側壁面外方向の地震時最大地盤反力で生じる曲げ軸力に 対する主鉄筋(A_{s2})は同じ向きの配筋となる。したがって,A_{s1}の必要鉄筋量とA_{s2} の必要鉄筋量を足し合わせた合計必要鉄筋量以上の実配筋量が各側壁の面内方向に配置さ れていることを確認する。

図 2-10 にSA用海水ピット側壁の水平鉄筋の設計イメージ図を示す。

- 2.3.4 版の耐震評価
 - (1) 頂版及び中床版に対する耐震評価

頂版及び中床版については、開口部を模擬したはり要素を用いた応力解析により設計断 面力を算定する。慣性力については、2次元有効応力解析により各床版位置における最大 鉛直加速度を算出し、重力加速度で除することで鉛直設計震度を求め算定する。単純支持 によるはり要素を用いた応力解析に基づき算定した水平方向の必要主鉄筋量以上を頂版及 び中床版上下面側それぞれに格子状に配置すると共に、鉛直方向の必要せん断補強筋量以 上を配置する。

SA用海水ピットの頂版及び中床版の構造部材の発生応力が許容限界以下であることを 確認する。

SA用海水ピットの頂版及び中床版平面図を図 2-11 に、頂版の設計モデル概念図を図 2-12 に示す、中床版の設計モデル概念図を図 2-13 に示す。

(2) 底版に対する耐震評価

底版は接続する側壁の中心間距離をスパンとした単位幅の1方向版としてモデル化し, 設計断面力を算定する。境界条件は単純支持とする。

設計荷重は2次元有効応力解析において、仮想剛梁要素(底面)下面の地盤要素に発生 する鉛直方向有効直応力(σ_y))及び間隙水要素の発生応力(Δu)の底版幅方向合力が 最大となる時刻を抽出し、その時刻における地盤反力分布を作用させる。また、静水圧も 分布荷重として考慮する。

単純支持によるはり要素を用いた応力解析に基づき算定した水平方向の必要主鉄筋量以 上を底版上下面側それぞれに格子状に配置すると共に、鉛直方向の必要せん断補強筋量以 上を配置する。

SA用海水ピットの底版の構造部材の発生応力が許容限界以下であることを確認する。 底版の応力解析概念図を図 2-14 に示す。

図 2-14 底版の応力解析概念図

2.4 適用基準

適用する規格,基準等を以下に示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成24年3月)

3. 耐震評価

3.1 評価対象断面

評価対象断面は, 添付書類「V-2-2-32 SA用海水ピットの地震応答解析」における評価 対象断面と同様とする。

SA用海水ピットの評価対象断面位置を図 3-1 に,評価対象断面を図 3-2 に示す。

図 3-1 SA用海水ピット 評価対象断面位置図

図 3-2 (1) SA用海水ピット 評価対象断面図 (①-①断面)

図 3-2(2) SA用海水ピット 評価対象断面図(②-②断面)

3.2 許容限界

許容限界は、添付書類「V-2-1-9 機能維持の基本方針」に基づき設定する。

(1) 構造部材の健全性に対する許容限界 SA用海水ピットは,許容応力度法による照査を行う。 表 3-1 にコンクリート及び鉄筋の許容限界を示す。

表 3-1 構造部材の健全性に対する許容限界

		評価項目	許容限界		
			(N/mm^2)		
コンクリ	$- h^{*1}$	短期許容曲げ圧縮応力度 σ _{ca}	21.0		
$(f'_{ck}=40$	N/mm^2)	短期許容せん断応力度 τ _{al}	0.825* ³		
	SD490*2	短期許容引張応力度 σ sa	435		
鉄筋	SD390*1	短期許容引張応力度 σ _{sa}	309		
	SD345*1	短期許容引張応力度 σ _{sa}	294		

注記 *1:コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成 24 年 3 月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] (土木学会,2002年制定)」に基づき設定する。

(2) 基礎地盤の支持性能における許容限界

極限支持力は, 添付書類「V-2-1-3 地盤の支持性能に係る基本方針」に基づき, 道路橋 示方書(Ⅰ共通編・IV下部構造編)・同解説(日本道路協会, 平成 24 年 3 月)により設定 する。

表 3-2 に極限支持力度を示す。

項目	許容限界
極限支持力度q_d(kN/m²)	6025

表 3-2 基礎地盤の支持性能に対する許容限界

3.3 評価方法

SA用海水ピットの耐震評価は、添付書類「V-2-2-32 SA用海水ピットの地震応答<mark>計算</mark> 書」に基づく地震応答解析より算定した照査用応答値が「3.2 許容限界」において設定した 許容限界以下であることを確認する。

(1) 鉛直部材の構造部材の健全性評価

鉄筋コンクリートの曲げ軸力照査及びせん断力照査に対して,地震応答解析により算定し た応力が許容限界以下であることを確認する。

鉛直断面の構造部材の曲げ軸力照査及びせん断力照査に対して,地震応答解析により算定 した応力が許容限界以下であることを確認する。

①-①断面の曲げ軸力照査における最大照査値の評価時刻での断面力図を図 3-3 に、せん 断力照査における最大照査値の評価時刻での断面力図を図 3-4 に示す。

②一②断面の曲げ軸力照査における最大照査値の評価時刻での断面力図を図 3-5 に、せん 断力照査における最大照査値の評価時刻での断面力図を図 3-6 に示す。

 図 3-3 曲げ軸力照査における最大照査値の評価時刻での断面力 (①-①断面, S_s-D1, t=53.95 s)
 (解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 3-4 せん断力照査における最大照査値の評価時刻での断面力 (①-①断面, S_s-D1, t=53.92 s) (解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

地盤を強制的に液状化させることを仮定した解析ケース)

図 3-6 せん断力照査における最大照査値の評価時刻での断面力 (②-②断面, S_s-D1, t=53.92 s) (解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) (2) 水平断面の構造部材の健全性評価

水平断面については、地震応答解析結果より、各部材の照査値が最も厳しい荷重条件を抽 出して静的フレーム解析を実施し、発生応力が許容限界以下であることを確認する。 (3) 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては,基礎地盤に生じる接地圧が極限支持力に基づく許容 限界以下であることを確認する。

接地圧が許容限界に対して最も厳しくなる解析ケースにおいて,基礎地盤に生じる最大接 地圧分布を図 3-7 に示す。

図 3-7 (1) ①-①断面方向における最大接地圧分布図(S_s-D1) (解析ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 3-7(2) ②-②断面方向における最大接地圧分布図(S_s-D1) (解析ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

- 4. 耐震評価結果
- 4.1 構造部材の健全性に対する評価結果
 - 4.1.1 鉛直断面<mark>に対する</mark>評価結果
 - (1) 2次元有効応力解析に対する健全性評価

2次元有効応力解析により得られるコンクリートの曲げ軸力に対する照査結果を表 4-1 に,鉄筋の曲げ軸力に対する照査結果を表 4-2 に,せん断力に対する評価結果を表 4-3 に 示す。なお,発生応力は各地震動,各部材において最大となる値を示している。

以上より, SA用海水ピットの鉛直断面の構造部材の発生応力が許容限界以下であるこ とを確認した。

	地震動		断面性状				発生断面力		発生	短期許容	
解析 ケース		評価 位置	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲 げモーメント (kN・m)	軸力 (kN)	応力度 σ _c (N/mm ²)	応力度 σ _{ca} (N/mm ²)	照查值 σ _c /σ _{ca}
4	S _s – D 1	上部	3545	12407	11521	D51@150(外側2段) D29@150(外側) D41@150(内側)	670155	34180	4.1	21	0.20
4	S _s – D 1	下部	3545	12407	11521	D51@150(外側2段) D41@150(外側1段) D41@150(内側2段)	1215467	57569	6.7	21	0.32

表 4-1 (1) コンクリートの曲げ軸力照査結果(①-①断面)

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

@:鉄筋の配置間隔

表 4-1 (2) コ	ンクリー	トの曲げ車	由力昭杳結果	(2)-2)断面)
	<i>u</i>)	* / /	- 1 * / PH 1 / T		

	地震動	評価 位置	断面性状				発生断面力		発生	短期許容	
解析 ケース			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲 げモーメント (kN・m)	軸力 (kN)	応力度 σ _c (N/mm ²)	応力度 σ _{ca} (N/mm ²)	照查値 σ _c /σ _{ca}
4	S _s – D 1	上部	3545	12407	11521	D51@150(外側2段) D29@150(外側) D41@150(内側)	597574	31591	3. 7	21	0.18
4	S _s – D 1	下部	3545	12407	11521	D51@150(外側2段) D41@150(外側1段) D41@150(内側2段)	1098932	53107	6.0	21	0.29

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

	地震動	評価 位置	断面性状				発生断面力		発生	短期許容	
解析 ケース			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲 げモーメント (kN・m)	軸力 (kN)	心力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ _s /σ _{sa}
4	S _s – D 1	上部	3545	12407	11521	D51@150(外側2段) D29@150(外側) D41@150(内側)	664310	31379	108	435	0.25
4	S _s – D 1	下部	3545	12407	11521	D51@150(外側2段) D41@150(外側1段) D41@150(内側2段)	1211302	55515	158	435	0.37

表 4-2(1) 鉄筋の曲げ軸力照査結果(①-①断面)

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

@:鉄筋の配置間隔

		-	衣 4-2	(2)	ず力力	の曲り軸刀原食箱		虾囬)			
	地震動		断面性状		2		発生断面力		発生	短期許容	
解析 ケース		評価 位置	部材幅 b(mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲 げモーメント (kN・m)	軸力 (kN)	応力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ _s /σ _{sa}
4	S _s – D 1	上部	3545	12407	11521	D51@150(外側2段) D29@150(外側) D41@150(内側)	597574	31591	94	435	0.22
4	S _s – D 1	下部	3545	12407	11521	D51@150(外側2段) D41@150(外側1段) D41@150(内側2段)	1098932	53107	142	435	0.33

表 4-2(2) 鉄筋の曲げ軸力照査結果(②-②断面)

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

	五百0(1)	£7().	1/1 • /		•> C/			нутши/	
解析	地震動	証価	断面性状			鉄笛仕様	発生	短期許容	昭杳値
ケース		位置	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断力 V(kN/m)	せん断力 V _a (kN/m)	V/V a
4	S _s – D 1	上部	3545	12407	11521	D35@150	70166	93616	0.75
4	S _s – D 1	下部	3545	12407	11521	D29@150(2段)	97349	120709	0.81

表 4-3(1) 鉄筋コンクリートのせん断力照査結果(①-①断面)

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

@:鉄筋の配置間隔

表 4-3	(2)	鉄筋コンク	リー	トのせん	い断力照査結果	(2)-	-②断面)
-------	-----	-------	----	------	---------	------	-------

角忍 太丘		堼価		断面性状	<u>.</u>	坐 笛仕样	発生	短期許容	昭杏値
ケース	地震動	位置	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断力 V(kN/m)	せん断力 V _a (kN/m)	V/V a
4	S _s – D 1	上部	3545	12407	11521	D35@150	63607	93616	0.68
4	S _s – D 1	下部	3545	12407	11521	D29@150(2段)	90682	120709	0.76

注記 ④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース) 評価位置は下図に示す。

(2) 側壁と版部材の結合部における局所の曲げモーメント増分の廻り込みを考慮した耐震評 価

①-①断面, ②-②断面それぞれで最大の照査値を示す評価位置, <mark>解析</mark>ケース<mark>及び基準</mark> 地震動での評価結果を示す。表 4-<mark>4</mark>に鉛直断面の評価結果を示す。

							断面性状			発生断	面力	圧縮	短期許容	
新品	解析	を見ていていた。		亚価位	罟	部材幅	部材高	有効高	鉄筋仕様	曲げ	書	応力度	応力度	照查値
P91 EU	ケース	2012年3月		н (ш(<u>т</u> .)	<u> </u>	b	h	d	(引張鉄筋)	モーメント	中田/J (1-N/m)	σc	σ _{ca}	$\sigma_{\rm c}/\sigma_{\rm ca}$
						(mm)	(mm)	(mm)		(kN • m/m)	(KIN/ M)	(N/mm^2)	(N/mm^2)	
①-①断面 ④				有効応力解析	σ,,	3545	12407	11521	0.0510150	101243	5386	6.9	21	0.33
		0 D1	下	拘束効果		0545	10407	11501	2-D51@150	11770	0	14.0	01	0.67
	(4)	5 s - D 1	部	による曲げ	σ v 2	3545	12407	11521	3-D41@150	11//3	0	14.0	21	0.67
				合計	$\sigma_{\rm v1}'+\sigma_{\rm v2}$	-	-	-	-	-	-	20.9	21	0.995
				有効応力解析	σ , , ,	3545	12407	11521	0.0510150	94256	5320	6.5	21	0.31
②-②断面 ④		0 D1	下	拘束効果		0545	10407	11501	2-D51@150	10004	0	10.0	10	0.00
	(4)	5 s - D 1	部	による曲げ	σ _{v2}	3545	12407	11521	3-D41@150	10634	0	12.6	21	0.60
				合計	$\sigma_{v1}{}^{\prime} + \sigma_{v2}$	-	-	-	-	-	-	19.1	21	0.91

表 4-4(1) 鉛直断面のコンクリートの曲げ軸力に対する評価結果

注記 :評価位置は下図に示す。

@:鉄筋の配置間隔

			表	$4 - \frac{4}{2}$ (2)	鉛直路	断面の	鉄筋	の曲け	「軸力に対	する評価	西結果	:		
断面	解析 ケース	地震動		評価位	置	部材幅 b (mm)	断面性状 部材高 h (mm)	、 有効高 d (mm)	鉄筋仕様 (引張鉄筋)	発生断i 曲げ モーメント (kN・m/m)	面力 軸力 (kN/m)	引張 応力度 σ. (N/mm ²)	短期許容 応力度 σ _{ca} (N/mm ²)	照査値 σ c/ σ c a
①-①断面	-①断面 ④ Ss-D1		下部	有効応力解析 拘束効果 による曲げ	σ _{v1} ,	3545 3545	12407 12407	11521 11521	2-D51@150 3-D41@150	101243 11773	5386 0	158 261	435	0.37
②-②断面	②断面 ④ S ≤	S s - D 1	下部	 合計 有効応力解析 拘束効果 による曲げ 	$\frac{\sigma_{v1} + \sigma_{v2}}{\sigma_{v1}}$	- 3545 3545		- 11521 11521	- 2-D51@150 3-D41@150	94256 10634	- 5320 0	419 145 236	435 435 435	0.97 0.34 0.55
				合計	$\sigma_{\rm v1}'+\sigma_{\rm v2}$	-	-	-	-	-	-	381	435	0.88

注記 :評価位置は下図に示す。

- 4.1.2 水平断面に対する耐震評価結果
 - (1) 静的フレーム解析に対する健全性評価

コンクリートの曲げ軸力に対する照査結果を表 4-5 に,鉄筋の曲げ軸力に対する照査結 果を表 4-6 に,せん断力に対する評価結果を表 4-7 に示す。なお,発生応力は各地震動, 各部材において最大となる値を示している。

以上より, SA用海水ピットの水平断面の構造部材の発生応力が許容限界以下であるこ とを確認した。

			Ħ	快定ケー	ス		断面性状			發生新面	<i>.</i> +	発生	短期許容	
解析 ケース 地震動	地震動	評価	地震	時荷重	告哄		BIEIT-1/	-	鉄筋仕様	元二时间		応力度	応力度	照査値
	2012 2 01	似直	荷重 方法	方向	土水圧	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	$\sigma_{\rm c}$ (N/mm ²)	σ_{ca} (N/mm ²)	σ _c /σ _{ca}
4	S _s – D 1	上部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1800	D35@150	1947	6053	5.2	21	0.25
		下部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1725	D29@150 (2段)	4046	13749	11.1	21	0.53

注記 :評価位置は下図に示す。

@:鉄筋の配置間隔

表 4-<mark>6</mark> <mark>水平断面の</mark>鉄筋の曲げ軸力照査結果

(解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

解析 ケース	地震動	評価	決 地震即	と定ケー 寺荷重	ス _{一 一 中} 正		断面性状		鉄筋仕様	発生断面	力	発生 応力度	短期許容 応力度	照査値
		位置	荷重 方法	方向	市时 土水圧	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	σ_s (N/mm ²)	σ_{sa} (N/mm ²)	σ _s /σ _{sa}
4	S _s – D 1	上部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1800	D35@150	770	302	51	309	0.17
		下部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1725	D29@150 (2段)	997	1416	14	309	0.05

注記 :評価位置は下図に示す。

表 4-7 水平断面の鉄筋コンクリートのせん断力照査結果

(解析ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

			決	定ケー	ス		바다 고급 사는 나는					
解析 ケース	地震動	評価	地震明	寺荷重	一步中		町 面1主八		鉄筋仕様	発生 せん断力	短期計容 せん断力	照查值
	地成到	位置	荷重 方法	方向	土水圧	部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	V (kN/m)	V_{a} (kN/m)	V/V _a
	S _s – D 1 –	上部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1800	D19@300×300	1776	2111	0.85
(4)		下部	両押	$\rightarrow \leftarrow$	最小	1000	2000	1725	D32@300×300	3809	4512	0.85

注記 :評価位置は下図に示す。

(2) 水平2方向及び鉛直向地震力に対する耐震評価結果

SA用海水ピットの水平鉄筋については,直交する2つの2次元有効応力解析(海水引 込み管方向,取水管方向)による側壁の面内方向のせん断力に対する必要せん断補強筋量 (A_{s1})と面外方向の最大動土圧に対する必要主鉄筋量(A_{s2})をそれぞれ算定し,足 し合わせた合計必要鉄筋量以上が実配筋量として配置されていることを確認した。

海水引込み管方向断面,取水管方向断面それぞれで最大の照査値を示す評価位置,解析 ケースでの評価結果を示す。表4-8に水平断面の評価結果を示す。

表 4-8(1) 水平鉄筋の鉛直せん断力に対する評価結果(A_{s1})

					断面性状		鉄筋仕様	発生	短期許容	四木店
断面	解析ケース	地震動	評価位置	部材幅	部材高	有効高	(せん断補強筋)	せん断力	せん断力	照宜॥ 17/17
				b (mm)	h (mm)	d (mm)	A s 1	V (kN/m)	V $_{a}$ (kN/m)	V/V a
①-①断面	4	S s - D 1	下部	3545	12407	11521	8-D29@150	7846	9729	0.81
2-2断面	4	S s - D 1	下部	3545	12407	11521	8-D29@150	7309	9729	0.76

注記 :評価位置は下図に示す。

<mark>@:鉄筋の配置間隔</mark>

表 4-8(2) 水平断面のコンクリートの曲げ軸力に対する評価結果

				ł	央定ケース			断面性状			発生断	面力	圧縮	短期許容	
解析 断面 ケー	解析	北雷動	評価	地震時	荷重	ditent:	部材幅	部材高	有効高	鉄筋仕様	#1957 - 201	** +	応力度	応力度	照査値
149/1 [181]	ケース	地展到	位置	載荷	-5-5-	吊吁	b	h	d	(引張鉄筋)	(1.N m/m)	甲田/J (1eN/m)	σc	σса	$\sigma_{\rm c}/\sigma_{\rm c a}$
				方法	刀回	工水庄	(mm)	(mm)	(mm)		(KN•m/m)	(KIN/ m)	(N/mm^2)	(N/mm ²)	
① 一 ①	Ø	S = D1	下部	両畑1	->	星小	1000	2000	1800	2-D29@150	4046	12740	11	91	0.53
断面	4	55 D1	1 11		~	政/」、	1000	2000	1800	2-D29@150	4040	13749	11	21	0.00
2-2		0 D1			\downarrow	E.I	1000	0000	1000	2-D29@150	8070	10045		01	0.50
断面	4)	S s - D 1	「日の	阿押し	Ŷ	取小	1000	2000	1800	2-D29@150	3872	13245	11	21	0. 53

注記 :評価位置は下図に示す。

<mark>@:鉄筋の配置間隔</mark>

				決	定ケース			断面性状		ML ME / L ME	発生断	面力	引張	短期許容	
Not the	解析	山西山	評価	地震時	荷重	Mr. m.h.	部材幅	部材高	有効高	(1) ぼかばし (1) ぼうかん		+1.4	応力度	応力度	照査値
町面 ケース	地展動	位置	載荷		吊時	b	h	d	(5) 振鉄肋)	田りモーメント	□ (1)1()	σc	б _{са}	σ c / σ c a	
				方法	力问	土水庄	(mm)	(mm)	(mm)	A _{s2}	(KN • m/m)	(KN/m)	(N/mm^2)	(N/mm^2)	
<u></u>		0 D.1	1 47	14.400 1		E.I.	1000	0000	1000	D35@150	770	000	-1	000	0.17
断面	(4)	Ss-DI	上部	斤押し	Ļ	一 敢小	1000	2000	1800	D35@150	770	302	51	309	0.17
2-2		C. D1	1. 女理	山田		E.J.	1000	9000	1800	D35@150	710	201	47	200	0.10
断面	(4)	5 s – D I	上部	万押し	→	取小	1000	2000	1800	D35@150	/18	301	47	309	0.16

表 4-8(3) 水平鉄筋の曲げ軸力に対する評価結果(A_{s2})

注記 :評価位置は下図に示す。

<mark>@:鉄筋の配置間隔</mark>

(3) せん断補強筋量と主鉄筋量の足し合わせ

<mark>鉛直断面のせん断力照査による必要せん断補強筋量と,水平断面の曲げ軸力照査による</mark> 必要主鉄筋量を足し合わせた必要鉄筋量以上を配置する。断面諸元一覧を表 4-9 に示す。

			断面	性状				主鉄管	名		
				12.00					<u>~</u> 外側+	-内側	
	側	壁	部材幅	部材高	鉄筋	必要 鉄笛曼	仅	段	数	鉄筋	建放量
					但里力功	奶加里	1E	外側	内側	間隔	<u> </u>
			(mm)	(mm)	-	(mm^2/m)	(mm)	-	-	(mm)	(mm^2/m)
	水平	主筋	1000	2000	SD390	2168.4			-	_	
1. 女7	鉛直	せん断補強	3545	12407	SD390	9566.5			_	_	-
工制		計	—	_	-	11734.9			—	_	
	配筋(足し合わせ)	1000	2000	SD390	_	35	1	1	150	12755.3
	水平	主筋	1000	2000	SD390	857.0			—		
下部	鉛直	せん断補強	3545	12407	SD390	13876.5			-		
		計	—			14733.5			-		
	配筋(<u></u> 配筋(足し合わせ)		2000	SD390	-	29	2	2	150	17131.5

表 4-9 断面諸元一覧(足し合わせ)

注記 : 必要鉄筋量は照査時鉄筋量×照査値として算出した。

4.1.3 頂版及び中床板に対する耐震評価結果

コンクリートの曲げ軸力照査結果を表 4-10 に,鉄筋の曲げ軸力照査結果を表 4-11 に, せん断力に対する評価結果を表 4-12 に示す。なお,発生応力は各地震動,各部材において 最大となる値を示している。

以上より、SA用海水ピットの頂版<mark>及び</mark>中床版の構造部材の発生応力が許容限界以下で あることを確認した。

			. ,		-							
					断面性状			発生断面	动	発生	短期許容	
解析 ケース	地震動	評価 位置		部材幅 b(mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	応力度 σ _c (N/mm ²)	応力度 σ _{ca} (N/mm ²)	照査値 σ _c /σ _{ca}
	S s - D 1	百匹	梁①	3200	3000	2800	D51@150	20275	0	5.7	21	0.28
1	S s - D 1	贝瓜	梁②	1300	3000	2800	D38@150	1127	0	1.0	21	0.05
	S s - D 1	中反	末版	1000	1500	1300	D51@150	1780	0	5.8	21	0.28

表 4-10(1) コンクリートの曲げ軸力照査結果(①-①断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

表 4-10	(2)	コンクリー	トの曲げ軸力昭香結果	(の一の)新面)
X 4 ⁻ 1) (2)	コンクリー	ドワ曲り軸刀忠追和木	

				断面性状				発生断面力		発生	短期許容	
解 ケース	地震動	評価 位置		部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲パブモーメント (kN・m)	軸力 (kN)	応力度 σ _c (N/mm ²)	応力度 σ _{ca} (N/mm ²)	照査値 σ c/ σ ca
	S _s – 2 1	西东	梁①	3200	3000	2800	D51@150	20275	0	5.7	21	0.28
1	S _s - 2 1	貝瓜	梁②	1300	3000	2800	D38@150	1127	0	1.0	21	0.05
	S _s - 2 1	中反	末版	1000	1500	1300	D51@150	1747	0	5.6	21	0.27

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

表 4-11(1) 鉄筋の曲げ軸力照査結果(①-①断面)

					断面性状			発生断面	动	発生	短期許容	
解析 ケース	地震動	評価 位置		部材幅 b (mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	応力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ _s /σ _{sa}
	S s - D 1	百屿	梁①	3200	3000	2800	D51@150	20275	0	187	435	0.44
1	S s - D 1	頂版	梁②	1300	3000	2800	D38@150	1127	0	44	435	0.11
	S s - D 1	中反	末版	1000	1500	1300	D51@150	1780	0	118	435	0.28

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

					断面性状			発生断面力		発生	短期許容	
解析 ケース	地震動	評価 位置		部材幅 b (mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲ゖ゚゚ヺモーメント (kN・m)	軸力 (kN)	応力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ s/ σ sa
	S _s – 2 1	百五	梁①	3200	3000	2800	D51@150	20275	0	187	435	0.43
1	S _s - 2 1	贝瓜	梁②	1300	3000	2800	D38@150	1127	0	44	435	0.11
	S _s - 2 1	中反	末版	1000	1500	1300	D51@150	1747	0	115	435	0.27

表 4-11(2) 鉄筋の曲げ軸力照査結果(②-②断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

4-1-5				断面性状			発生	短期許容	
解析 ケース	地震動	評価 位置	部材幅 b (mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (せん断補強筋)	せん断力 V (kN/m)	せん断力 V _a (kN/m)	照査値 V∕V a
	S _s – D 1	梁①	3200	3000	2800	D32@300×300	5900	9530	0.62
1	S _s – D 1	梁②	1300	3000	2800	-	1137	2611	0.44
	S _s – D 1	中床板	1000	1500	1300	D19@300×300	553	1524	0.37

表 4-12(1) 鉄筋コンクリートのせん断力照査結果(①-①断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

解析	uu 🚌 sel	評価		断面性状		鉄筋仕様	発生	短期許容	照査値	
ケース	地震動	位置	部材幅 b (mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断刀 V (kN/m)	しん例刀 V a (kN/m)	V/V a	
	S _s – 2 1	梁①	3200	3000	2800	D32@300×300	5900	9530	0.62	
1	S _s – 2 1	梁②	1300	3000	2800	-	1137	2611	0.44	
	S _s – 2 1	中床板	1000	1500	1300	D19@300×300	543	1524	0.36	

表 4- <mark>12</mark> (2)	鉄筋コンクリートのせん断力照査結果(2)-2)断面

注記 ①:原地盤に基づく液状化強度特性を用いた解析ケース

@:鉄筋の配置間隔

4.1.4 底版に対する耐震評価結果

コンクリートの曲げ軸力照査結果を表 4-13 に,鉄筋の曲げ軸力照査結果を表 4-14 に, せん断力に対する評価結果を表 4-15 に示す。なお,発生応力は各地震動,各部材におい て最大となる値を示している。

以上より, SA用海水ピットの底板の構造部材の発生応力が許容限界以下であることを 確認した。

なお,底版の配筋は,版部材と側壁の結合部における局所の曲げモーメント増分の廻り 込みを考慮している。

				断面性状			発生断面力		発生	短期許容	
解析 ケース	地震動	評価 位置	部材幅 b (mm)	部材高 b (mm)	古地宣	鉄筋仕様	曲ノギェーハル	またナ	応力度	応力度	照查值
					1月30日 d (mm)	(引張鉄筋)	(kN·m)	単田ノJ (kN)	σ	σ _{ca}	$\sigma_{\rm c}/\sigma_{\rm ca}$
			U (mm)	II (mm)	Q (mm)		(itit iii)	(111)	(N/mm^2)	(N/mm^2)	
3	S s - D 1	底版	1000	3000	2800	D51@150 (2段)	15839	0	10.0	21	0.48

表 4-13(1) コンクリートの曲げ軸力照査結果(①-①断面)

注記 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

表 4-13(2) コンクリートの曲げ軸力照査結果(2-2)断面)

解析 ケース	地震動	評価 位置		断面性状			発生断面力		発生	短期許容	
			部材幅 b (mm)	部材高 h (mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	応力度 σ _c (N/mm ²)	応力度 σ _{ca} (N/mm ²)	照査値 σ _c /σ _{ca}
5	S s - D 1	底版	1000	3000	2800	D51@150 (2段)	14794	0	9.2	21	0.44

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

@:鉄筋の配置間隔

表 4-14(1) 鉄筋の曲げ軸力照査結果(①-①断面)

				断面性状			発生断面力		発生	短期許容	
解析 ケース	批雲動	評価 位置	部材幅	部材高	右為宣	鉄筋仕様	曲パギチーかい	市中ナフ	応力度	応力度	照查値
	地反助		b (mm)	h (mm)	d (mm)	(引張鉄筋)	(kN•m)	(kN)	σ_s	σ_{sa}	σ_{s}/σ_{sa}
3	S s - D 1	底版	1000	3000	2800	D51@150 (2段)	15839	0	259	435	0.60

注記 ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

表 4-	14	(2)	鉄筋の曲げ軸力照査結果	(2)-	②断面)
------	----	-----	-------------	------	------

解析 ケース	地震動	評価 位置	断面性状				発生断面力		発生	短期許容	
			部材幅 b (mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (引張鉄筋)	曲げモーメント (kN・m)	軸力 (kN)	応力度 σ _s (N/mm ²)	応力度 σ _{sa} (N/mm ²)	照査値 σ _s /σ _{sa}
5	S s - D 1	底版	1000	3000	2800	D51@150 (2段)	14794	0	242	435	0.56

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

@:鉄筋の配置間隔

			断面性状				举生	短期許容	
解析 ケース	地震動	評価 位置	部材幅 b (mm)	部材高 h(mm)	有効高 d (mm)	鉄筋仕様 (せん断補強筋)	して せん断力 V (kN/m)	せん断力 V _a (kN/m)	照査値 V/V a
3	S _s – D 1	底版	1000	3000	2800	D38@300×300	5447	10062	0.55

表 4-15(1) せん断力照査結果(①-①断面)

注記 ③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

@:鉄筋の配置間隔

評価位置は下図に示す。

表	4-	15	(2)	4
			· · ·	

せん断力照査結果(②-②断面)

解析 ケース	地震動	評価 位置	断面性状			鉄筋仕様	発生	短期許容	照査値
			部材幅 b(mm)	部材高 h(mm)	有効高 d (mm)	(せん断補強筋)	せん断刀 V (kN/m)	V a (kN/m)	V/V a
5	S s – D 1	底版	1000	3000	2800	D38@300×300	4914	10062	0.49

注記 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

@:鉄筋の配置間隔

4.1.5 概略配筋図

図 4-<mark>1</mark>に概略配筋図を示す。

図 4−<mark>1</mark> 概略配筋図

4.2 基礎地盤の支持性能に対する評価結果
 基礎地盤の支持性能照査結果を表 4-16 に示す。
 SA用海水ピットの基礎地盤に生じる最大接地圧が極限支持力度以下であることを確認した。

		圣诞地盘9天的工能矸Щ相木(① ①阿回)					
解析ケース	地震動	最大接地圧	極限支持力度				
		(kN/m^2)	(kN/m^2)				
1	S _s – D 1	1953	6025				

表 4-16(1) 基礎地盤の支持性能評価結果(①-①断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース

解析ケース	地震動	最大接地圧	極限支持力度	
		(kN/m^2)	(kN/m^2)	
1	S _s – D 1	1804	6025	

表 4-16(2) 基礎地盤の支持性能評価結果(2-2)断面)

注記 ①: 原地盤に基づく液状化強度特性を用いた解析ケース